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THESIS ABSTRACT

FULL NAME OF STUDENT MOHAMMED MUSTAFA KAFINI
TITLE OF STUDY FRACTIONAL CALCULUS

AND SOME OF ITS APPLICATIONS
MAJOR FIELD MATHEMATICS
DATE OF DEGREE DECEMBER, 2002

Many concepts in mathematics can be generalized .In this thesis, we discuss
the generalization of the concept of integrals to include integrals of fractional
orders. Historical survey and the contributions of many famous
mathematicians have been introduced. Three approaches to the definition of
the fractional integral are proved. As a consequence of this definition,
fractional derivative is handled. Leibniz’s rule, Taylor’s series expansion and
the order of contact between two functions are also generalized. As an
application, we modify an algorithm, which enables us to write two functions
in terms of each other. Well-known examples like (sin t, t) and (e, t) are
discussed. New laboratory experimental examples such as the relation

between distance and speed, and current and voltage are found.
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1. Introduction

The concept of the differentiation operator D = d/dz is. familiar to all who have
studied the elemetary calculus. For suitable functions f, the nth derivative of f ,
namely D" f(z) = d"f(z)/dz™ is well-defined provided that n is a positive integer. In
1695 L’Hépital inquired of Leibniz what meaninig could be ascribed to D™ f if n were
a fraction.Since that time the fractional calculus has drawn the attention of many
famous mathematicians, such as Euler, Laplace, Fourier, Abel, Liouville, Riemann,
and Laurent. But it was not until 1884 that the theory of generalized .operators
achieved a level in its devolepment suitable as a point of departure for the modern
mathematicians. By then the theory had been extended to include operators Dv,
where v could be rational or irrational, positive or negative, real or complex. Thus
the name fractional calculus became somewhat of a misnomer. A better description
might be differentiation and integration to an arbitrary order. However, we shall
adhere to tradition and refer to this theory as the fractional calculus.

In Chapter II, we briefly trace the historical development of the fractional calculus
from Euler to present, and in Chapter ITI we describe heuristic and mathematical ar-
guments that lead to the present definition of fractional integrals. The first argument
is the iterated integral; we begin with a consideration of the n-fold integral then we
reduce it to a single integral with a kernel, and finally by finding this kernel we reach
our definition.The second argument is the differential equations; we begin with the
n-th order derivative operator, we find the solution of D™y(z) = f(z) by finding the
Green’s function, then we write this solution as y(z) = D" f (z).The third argument

1



is the complex variables; we consider the n—th derivative of the Cauchy integral
formula, we generalize it to fractional order but with different contour.

We define the factional derivative of order v by the use of the fractional integrals

DI f(x) = Dz[D7"f(z)]

where n is the smallest integer greater than R(v) and u =n —v.
In this chapter, we also use Abel’s equation to define the left and right sided
versions of the fractional derivative.We present a new proof of the generalized Leibniz

rule for analytic functions f and g :

bad a4
D2(fg) =) (eDZ™*f)g®
k=0 k

At the end of this chapter, we present laws of exponents for: fractional integrals,
intergral of derivatives, derivatives of integrals and the law of exponent for fractional
derivative.

In Chapter IV, we generalize Taylor series expansion with integral remainder by

proving that for f with a summable derivative,

n—1

f@) = Y =2 j)), (D £)(a) + Ra(z), R(a) >0

J_—"L



where

Rn(z) = I7*" D3 f(z)

In Chapter V, we concentrate our work in the applications of the fractional cal-
culus : we define the order of contact between two functions, then we apply this
definition to a model for the turbulent boundary layer cross flow velocity component,
to show that the non integer models ”fill the gaps” between the integer models.

At the end of this chapter, we give an algorithm, the functional relations, which
enables us to write two functions in terms of each other, we present four examples:
two well-known examples; we write sin¢,¢ and e, ¢ in terms of each other and two
new: we write the relation between speed and distance and then we write the relation

between voltage and current in a simple electrical circuit.
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HISTORICAL SURVEY



2. Historical Survey

The question of extension is frequently of great interest to most researchers. Many
mathematical concepts and definitions were extended. A well-known example is the
extension of real numbers to complex numbers, and another is the extension of fac-
torials of integers to factorials of complex numbers. In generalized integration and
differentiation the question of the extension is: Can the derivative of integer order
d™y/dz™ be extended to rational or complex order?

Leibniz invented the notation we used for the derivative and in 1695 L'Hépital

asked him “What if n = 1/2?” Leibniz suggested an answer in 1697 in terms of

diz _ [dz
T - T

Euler in 1730 wrote “When n is a positive integer and p is a function of z, the ratio

ratios of differentials

of d™p to dz™ can always be expressed algebraically. So that ifn = 2 and p = z?, then
d*z® to dz? is 6z to 1. But what kind of ratio can then be made if n be a fraction?”

In 1812 Laplace defined a fractional derivative by means of an integral, and in
1819 the first mention of a derivative of arbitrary order appears in a text. Lacroix
developed an exercise generalizing from a case of integer order. Starting with y = z™,
for a positive integer m, Lacroix easily developed the nth derivative (See[8])

dy  ml! gmen [(m +1)
dz® = (m—mn)! " m—n+1)

™™ for m>n



Then he gave the example for y =z and n = %, and obtained

déy_2\/5
des VT

In 1822 Fourier was the next to mention derivatives of arbitrary order. His defi-

nition of fractional operations was obtained from his integral representation of f(x)

cosp(z — a) dp

(See [3])
f@ =5 [ fa)da [

-0 -0

but
Y
——cosp(z — &) =p"cos |{p(z — a) + N7

dz™

for integer n. Formally replacing n with arbitrary u in (2.5), he obtains the general-

ization
(o]

i@ =5 [ fe)de [

w
dz —oo —co

1
p“ cos [p(a: —a)+ -;uﬂ'] dp

In 1823, Abel’s integral equation was given as

K= /0 (@ — &) F () dt 2.1)

Abel wrote the right hand side of his equation (2.1) as

NG [ @z ] (@)

3
d™z



then he operated on both sides of the equation with d'/2/dz'/? to obtain

dz
dzz

K = /rf(z)

Mathematicians have described Abel’s solution as “elegant”. Abel’s solution had
attracted the attention of Liouville, who made the first major study of fractional
calculus. In 1832 he was successful in applying his definitions to problems in potential
theory. The starting point for his theoretical development was the known result for

derivatives of integer order (See[9])

which he extended in a natural way to derivatives of arbitrary order

He assumed that the arbitrary derivative of a function f(z) that may be expanded

in a series of the form

fl@) =) Cne™=, R(an)>0

n=0

av

D’f(z) =) _ Cuale™* (2.2)
n=0



The formula (2.2) is known as Liouville’s first formula for fractional derivatives. It
generalizes to an arbitrary v, but it has the disadvantage of being applicable only
to functions that may be expanded in a series form as given. To obtain his second

definition, Liouville started with definite integrals related to the gamma function.
o0
I =/ u*le™®du, a>0, >0
0
The change of variable zu =t yields

o0
=z / t*"le~tdt = z7°T(a)
0

or
a__1
© TT
Apply D” to both sides to get
_ (-1~ [*= . (-V)’T(a+v) _,_
DYz=® = utt e gy = %Y a>0 2.3
o s o) &9

but, as we see, Liouville’s definition is useful only for functions of the type z~% with
positive a.

The earliest work that ultimately led to what is now called the Riemann-Liouville
defintion appears to be the paper by N.Ya.Sonin in 1869. His starting point was

Cauchy’s integral formula. In 1868-1872, Letnikov extended Sonin’s paper. The nth



derivative of Cauchy’s integral formula is given by

n!

D™ f(z) = /c f&) e 2.4)

27 Jo (€ — Z)nH

In 1884 Laurent connected the theory of fractional calculus with the theory of the
operators D or d/dz etc. His starting point was also Cauchy’s integral formula. His

contour was an open circuit on a Riemann surface and he produced the definition

D" f(z) = F—(% [ “@— 8 (), R() >0 (2.5)

Usually we have ¢ = 0. A sufficient condition that the integral in (2.5) converge

is (See[14])

f (-i-) —0@), €>0

Integrable functions with this property are called “functions of Riemann class”. For
example, constants are of Riemann class, as is z% with a > —1.
If c in the last definition (2.5) is negative infinity, a sufficient condition that the

integral converge is that
fl—z)=0(z7""%), €>0, >0

Integrable functions with this propety are called “functions of Liouville class”. For
example, 7% with @ > v > 0 is of Liouville class, but a constant is not. However,

if a is between zero and —1, then, depending on the value of v, the two classes may



overlap.

If we let f(t) = e* with the real part of a positive, then

-y _azr

—oD; e* =aYe

If we assume that the law of exponents

D[D—u] — Dl—ll

holds, then if 0 < v <1, we have y =1 —v > 0 and

~oDEe™ = a*e®™, R(a) > 0.

For f(z) = z* and v > 0, we have

-v,.a __ F(a+1) a+v
oD = rarv D 0 2>
If0<v<l, then
v, G __ F(a'+1) a—v
oDz —[‘(a—u-f-l)z , a>-—1
For f(z) =1 and v = 1/2, we get
L 1
oD2(1) = W=

(2.6)

(2.7)



The twentieth century:

In the period 1900-1970 a modest amount of published work appeared on the
subject of the fractional calculus. The year 1974 saw the first international conference
on fractional calculus held at the University of New Haven, Connecticut which was
sponnsored by the National Science Foundation.

In the period 1975 to the present, about 400 papers have been published relating
to the fractional calculus. In 1980, Nishimoto published a four volume work devoted
primarily to applications of the fractional calculus to ordinary and partial differential
equations.

The fractional calculus finds use in many fields of science and engineering, in-
cluding fluid flow, rheology, diffusive transport akin to diffusion, electrical networks,

electromagnetic theory, and probability. (see[8])

10



CHAPTER 3

DEFINITIONS FOR
FRACTIONAL
ANALYSIS



3. Definitions for fractional analysis

3.1. Fractional integrals

The main objective in this section is to present arguments which should convince
the reader that the definition of the fractional integrals that we will use is a feasible
entity. We will present here with a complete proof three approaches that lead to the
definition of fractional integral which fulfill with our knowledge about the ordinary
one. The subject of notation can not be minimized. The concise notation of fractional
calculus adds to its elegance. Various authors have used different notation. The one
which we prefer was invented by Harold T. Davis. All information can be conveyed
by the symbols

dzf(z) = D7"f(z), v=0 (3.1)

denoting integration of arbitrary order along the z axis. The subscripts c and z denote
the limits of integration of a definite integral which defines fractional integration. The
adjoining of these subscripts becomes a vital part of the operator symbol to avoid
ambiguities in applications.

We now consider the mathematical problem of defining fractional integration and
differentiation. It is clear that the mathematicians mentioned so far were not merely
formalizing but were trying to solve a problem which they understood well but did
not explicitly formulate. Briefly, what they wanted is this:

For every function f(z) of a sufficiently wide class, and every number v, irrational,

11



fractional, or complex, a function

9(z) = D7 f(z) (32)

should be assigned subject to the following conditions.

el The operation .DZ must produce the same result as ordinary differentiation
when v is a positive integer, with a similar result for ordinary integration when v is
a negative integer.

¢2 The operation of order zero (v = 0) leaves the function unchanged.

o3 The fractional operators must be linear.
DZ%[af(z) + bg(z)] = a D" f(z) +b.D;"g(z)
¢4 The law of exponents for integration of arbitrary order holds.
eDz* D" f(z) = DZ*77 f(x)

A definition for fractional integration which fulfills these requirements is named in

honor of Riemann and Liouville and is given by

Definition 1. For v > 0 and continuous f, we define the fractional integral by:

D f@) == [ (z—t)F(t) de (33)
W) J.

Remark 1. For v = 0, we can show that the operator <D? leaves the function

12



unchanged, by taking the limit of .D;" f(z) as v — 0, but we cannot assume v = 0
directly because, even though we can consider I'(0) = oo, the integral in (3.3) will
diverge like:
1 T
D3f(x =—/ T —t)7 f(t) dt
@) =55 |, ( 0

So we can expan

)
£6) = f@) + G —o)f (@) 4.+ EZLL B

then

lim DZYf(z) = lim L/ (z —t)"1f(z) dt (the other terms will vanish)
v—0 v—0T'(v) Jq

i)
v—0 (v +1)

= f(z)
Remark 2. We can assume

'n) = for n=0,-1,-2,-3,....

Now we show some of the approaches which lead to this definition.

13



3.1.1. The iterated integrals

Let us start with the n-fold integral

D) = [ " dz, [ Yy - / " fyae (3.4)

The function f is assumed to be continuous in the interval [c, b] where b > z. We can

reduce this to a single integral of the form

/ keal,t) F(6) de

where the kernel k, = k,(z,t) is a function of z, t, and n. So we may write

D*f(@) = [ “k(z0)f(H)dt, R() >0 (35)

In fact, we just use the usual change of variables formula over a triangular region as

shown in Fig.1

/de/ G(xl,t)dt=fdt/ G(:z:l,t)d:z:l (3.6)
c c c t

In particular, if G = f(t), then (3.6) becomes

/:dzl /cnf(t)dt=[f(t)dt [d:q:[(x-t)f(t) dt (3.7)

14



We can continue in this way to find that

and hence
D2 (@) = 7y / " -t () dt (3.8)

The right hand side of (3.8) is meaningful for any number n whose real part is greater

than zero so,

Dy @) = 575 [e=ti@d ®6) >0

Xy

Vv

Figure (1)
Triangular region

15



3.1.2. Differential equations

We will show now how the theory of linear differential equations may be used to
arrive at our fundamental definition(3.3).

Suppose

L=D"+p(z)D* ' +... +pu(z)

is a linear differential operator whose coefficients p;(z) are continuous on some interval

Z. Then if f(z) is continuous on Z and ¢ € Z, we may write
Ly(z) = f(z), Dfy(c)=0, 0<k<n-—1

which is a linear differential system. The unique solution of this system for all z € Z

is given by

v@) = [ " H(z, &) F(6) de (3.9)

where H is the one sided Green’s function. To derive H, consider

{¢1(:L’), -y ¢n(x)}

which is the fundamental set of solutions of the homogeneous equation

Ly(z) =0

16



The Green’s function may be written explicitly as

h(@) (@) o dala)
AGEEEN( B XG

-1 n—1
H(z,6) = (Tva D) Dés(§) ... Den(8)

- -

D2¢,(§) D" ?¢y(€) ... D™ ?¢,(€)

where the Wronskian is the n x n determinant

W) =|D'¢;(€)|, 0<i<n—-1, 1<j<n

See [12].

In particular, suppose that L = D™, then the set of fundamental solutions of the

homogeneous equation is

{1,z,2%...,z" '}

and the one sided Green’s function is

1 =z z* ... z*1t

1 & & ... ¢t
H@8=%%g-o 1 2 ... (n—1)¢&2 (3.10)

0 0 0 0 (n-1)k

17



and the Wronskian is

1 f 62 o En—l
0 1 2 ... (n—-1)¢2

n—1

WE)=lo 0 2 .. m=-Dn-23|=][=C-1n @1)
k=0

0 0 0 0 (-1

which is independent of £&. We have used the symbol m! defined recursively by

ml=ml(m-1), =1 (3.12)

for nonnegative integers.
So H(z,&) may be written as a polynomial of degree n — 1 in = whose leading

coefficient is

(—l)n—l _y\ntlr,, _ 1
(n—-1N (1™ -2 = (n—1)!
The Green’s function has the usual property
gk
%H(l‘,f) [;,_—=5=0 fOF‘ k=0,1,,.-,n—2

Hence £ is a zero of multiplicity n — 1, and therefore

H(z,§) = ﬁ(ﬂf -t

18



We get

y(z) = (—n—_lT), / “(o— & (e de

Since f is the nth derivative of y, we may interpret this equation as

y(z) = D f(z) =ﬁ7 / (@ — )™ (E) de (3.13)

This is meaningful even if n is not a positive integer, provided that R(n) > 0

19



3.1.3. Complex variables

Let f(z) be a single valued analytic function on an open region A of the complex
plane. On a region interior to A bounded by a closed smooth curve C, we have the

Cauchy integral formula

L[5 4 (3.14)

2mi Jo(— 2

f(z) =

for any point z inside C. So, we can find

D*f(z) = ;rli /c @ f (g))n —d¢ (3.15)

Our goal now is to deduce our definition (3.3) from this formula.

Note that if n is an arbitrary number, say v, we may replace n! by T'(v +1). If v
is not an integer, the point z will now be a branch point not a pole of the integrand.
So we need a different contour. We make a branch cut along the z axis from the
point z to negative infinity and we assume that z is a positive real number z.

Now we suggest to define

L“” f© “Eiﬁ fQ 4

C—=)=* C—o)
Then we can write

i LEZ+D €9 FQ

Dz f(x) = Jm = A ma’c
_ o D(—v+1) [ Q)
o P—I»% 2t /z: (€ —z)—v+t ¢

20



Im

Figure (2)
The Loop £

The loop £, shown in Fig.2, is the union of L; , Ly and v, where v is a circle
of raduis r with center at z and L, , L, are the line segment [¢,z — 7], these line

segments coincide with a portion of the real axis in the ¢ -plane but are on different

21



sheets of the Riemann surface for ({ — z)”!. For purposes of visualization we have

drawn them as distinct.

If (¢ — z) is a positive number, we define In(z — () as a real number . Thus on v
(€ —=2)""" =exp((v — 1)(In(z — ¢) +i6)
The argument 6 is = on L, so, on L,
(¢ —2)*" = exp((v — 1)(In(z — ¢) +ir))
and on L, the argument 4 is — so, on L»
(€ — =)™ = exp((v — 1)(In(z —¢) —iw))

Now the loop integral can be written

/“") FQ 4o — gitovenr /“ _f®)

(C —_ :L‘) —-v+1 (.’L‘ t —v1
f(g) —t - T ¢ f(t)
et e | gt

where t = R(¢). As r approaches zero we have

f(¢
[

22



This is because

s W= [ e g re)ireds)
v -

and

/(C—:z:)”‘lf(()dql 51’5""/7r |f(z+7e”)|d6 -0 as r—0
v -7

SO we get

/c (————d(—r[( T _ =i "'1)]/ -G_———dt asr—0

C —_ x)‘”‘f‘l —t —v+l

or

IR | -

2mi (z — )+t
_ (oltsinty ey /T £t
(:II — t —v+1 dt
and because of the reflection formula (See [8] )
(=)tsin(—v+1)7r 1
T T (v —-1) (3.16)

we lead to the definition
- _ 1 -
cD:: f(x) - (I/-l)'. [(l‘ t) If(t)dt
See(8],[9]

23



3.2. Leibniz’s formula for fractional integrals

A Leibniz-type formula expresses the result of operating on the product of two func-
tions as a sum of products of operations performed on each function. The classical

Leibniz rule or formula of elementary calculus is

n

D(f@e@) =% | " | Dr @ *fa) (317)

k=0 k

where f and g are assumed to be n-fold differentiable on some interval. Now we wish

to extend this to fractional operators.

Theorem 1. Let f be continuous on [0, X], and let g be analytic at [0, X]. Then

forv>0and0<z< X,

D (f@e@) =S| | bR e@NeDr* f(2)] (3.18)
20\ g

Proof:

since v > 0, f is continuous on [0, X] and g is analytic at all points of this interval,

we can consider the fractional integral of their product. So, we have

oDZ*(f(z) g(z)) =(7:11—)! f FOUE) @ —)-de (3.9)

24



We can write the series expansion for g(£) around ¢ as
o0 =2 T - =g+ S0 20 )
Now substitute (3.20) in (3.19 ) to get
oDE(f(&) o(a)) = 9@ D &)+ [ =) g(—n’*—”‘,ﬁ#<x—c>k*ds

Since f is continuous on [0, X] and v > 0,

(z—8)"f(&) (3.21)

is bounded on [0, z].

Hence we may interchange the order of summation and integration to get

oDZ(f(2) () = Y- (-1 S o DE @) lo Dz (o)
k=0

=S| 77 | ets@ion 4 Fia)] (3.22)
k=0 k

In (3.22) we use of the identity

vl _ (1) T(n+v)
o n!T'(v)

25



3.3. Fractional derivatives

If D = d/dz is the differentiation operator, and if n is a positive integer, the meaning
of D™ f(x),the nth derivative of f(z) (provided that it exists) is well-known. However,
if n is not a positive integer, we see that while we may ascribe a meaning to D™ for
Re v > 0, we have yet to assign a meaning to the symbol D for Re v > 0. We shall

undertake this task in the present section.

Definition 2. Suppose that R(v) > 0 and let n be the smallest integer which is

greater than R(v). Define u = n — v. This means that

O<Ru)<1

so, we define the fractional derivative of f(z) of order v as

D7 f(z) = Dz[Dz"f(z)] (if it exists) (3.24)

Then we can write

Dsf(z) = D"[ / (=~ ) F(t)de]
- =T / (= e
= oy [ @9
D@ = o | -0 o (325)

27



Remark 3. Ifv is a positive integer,say p,and f has p continuous derivatives then

n=p+1landu=1,so

D*f(z) = 0 | " F(Q)dC = DP (=)

we see that this definition agrees with the usual definition of the ordinary derivative.

For example, with ¢ =0

- ()t -
O - n Uplt] — | MY ptu-n
oDZzt = oDZ[o D7 ¥z I:(#+u_n)!z

which means that we could write

()t .
b n—u
oDzz = u)!:z:

However, there are questions about when the fractional derivative exists?

The fractional integral

Dz @) = = " — b)) dt (3.26)

exists if R(v) > 0 and f is continuous. But this is not sufficient to guarantee the exis-
tence of the fractional derivative. For example, if f is continuous but not differetiable

we would be led to a contradiction.
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For example, let f be continuous but not differentiable and let » = 1. Then

oDI'f(z) = /: flz)dt

Now if v = 1, then n =2 (since u =n — v) and formally, by(3.24 )
DLf(@) = DLD; f(z)) = D2 [ f(t)dt =. D.f(z)

but by hypothesis, f(z) is not differentiable.

Here, we show that if f has n continuous derivatives, then the fractional derivative

exists.

Theorem 2. If f hasn continuous derivatives, then the fractional derivative of order

v exists, where n is the smallest integer greater than R(v).

Proof:

We make a change of variable in the fractional integral (3.26) by writing

t=x—y* /\=—i-

Then we get

T (z—c)¥
D) = gy [ et = [T -
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We can calculate .D2[.D;” f(z)] as follows

n—L DL
DELDZF(@)] = 3 2o D=

]. (Z—C)” an
+W A Fyee —flz—y )d’l
exists for positive £ > ¢, since the usual derivative D f(z) has been assumed to be

continuous.

Remark 4. In order to get derivatives, you cannot change —v in the definition of
fractional integral by j1 > 0 because the fractional integral .D;" f(z) is defined only
for —v where v > 0. To find derivatives, you must follow the definition of fractional

derivatives.

Remark 5. To show that the operator DS leaves the function unchanged, we can
take the limit of D7 f(x) as v — 0, but we cannot assume v = 0 because, in spite
we can consider I'(0) = oo, the integral in the definition will diverge when.v = 0 as
this

1 z -1
DL (=) = 55 /0 (z — )~ () de

So we can expan

n pn)
FO) = f@) + E—2) f (@) + o + & -r)n!f (=)
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By change of variables in the integral we get the beta function ( See [1}) and the

formula as follows:

DIz —a)™ =

1 d /f t
(—a)tdz J, (t—a)#(z—1t)=
Ifwelet T =t—a then

dT
(—a)ldz J, TH(z—a-—-T)=

DS(x~a)™H =

Also,if we let 7= -L then

T-a

Die-a)* =t (o o

(:z: a)Fters(l — )=

=G [ e o)

= ( L)| d:lf[(:c _'a')1 p—a] B(—ﬂ -1, -a- 1)
_ —pma L (=g + I(—a +1)
= = a)'(l u—a)(z—a) Ty
and finally
Dz —a)yr = __ 1 (3.30)

Ch— )@= =

We notice that the derivative is zero if u =1 —
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3.4. Abel’s equation

We give a discussion here of Abel’s equation which leads to the result that the def-
inition (3.24) agrees for nonnegative integer v with the usual derivative. Rigourous
proof of this, requires the idea of functions which are “absolutely continuous” on an
interval. This means that for any e > 0 there exists a § > 0 such that for any finite
set of pairwise nonintersecting intervals [a, bi] inside the given interval, such that

the sum of the lengths of these intervals is less than §, we have

D1 F(be) — flax) I< €
P

Note that the space of absolutely continuous functions contains the usual Lipschitz
space as we will see in the next chapter.
Abel’s integral equation can be written (see[8])

1 = p(t)dt
(a=1)J, (z—t)-=

=flz), z>a,0<a<l (3.31)

If the equation has a solution ¢ it may be found as follows:

Change = to ¢ and ¢ to s, multiply by (z —¢)~* and integrate (3.31) to get

f (x —t)= / (ff?)cﬁa =(a—-1)! :é% (3.32)
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We can interchange the order of integration on the left side of (3.32) to get

/ch(s)ds/z — dt —(a—1) “ f@)dt

a(t — s)l—a @ (ZD — t)a

The inside integral on the left can be evaluated using the change of variable:

t=s+71(z—s)

and the definition of the beta function to get

= dt _ 1 dr(z —s)
/s (-t -9t /0 (1 =7)(z = s)eri=—=(z — s)'~
/1 ™1 -7)"%dr = Bla,—a+1)= Lol(a+ 1)
0

I(1)
= (a—1)(-a)!
so, if we substitute this in (3.33) we get
T

then,

= 1 [T fe)dt
/ Pl =31 ), w-9=

take the derivative to get

1 d [* fO)dt
o) = oz ), w-5°
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By a similar way we could consider the Abel equation in the form (See[8))

b
(a_l_ 1)!/ (ti(a)dlt_a =f(z), z<b O<a<l (3.35)

and get the solution

1 d /" f(t) dt

o(z) = (—a)ldz J, (¢t —2x2)=

(3.36)

The definition of functions which are absolutely continuous on an interval appears

when we consider the conditions which allow a solution of Abel’s equation. We define

1 [T f(t)dt
(—a)tJe (z—1t)=

fi—e(z) = (3.37)

It can be shown that the Abel equation (3.31) has a unique solution as given by (3.34)

if and only if f1_, is absolutely continuous on (a,b) and is equal to zero at z = a.
See [9].

In fact, as a special case, if f is absolutely continuous, so is fi_.. We can substitute

f&) = @+ [ ' f(s)ds

into the definition of f;_, and get

— f(a) z_al-a '.S‘
firal) = (e - g [ [ ) (3:38)
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We can change the order of integration in (3.38) to see that

(L2 - ([ )

- [ e [[E L e,

which means that

1 l—c ‘ ! _ $\l—
fiale) = gy [Fe -+ [0 -0a] (39

This means that we may write the solution of Abel’s equation in the form

1 [f(a) N ”M] (3.40)

o) = i @—ar ' ), oo

In the same way, for the other version of Abel’s equation which we gave (3.35), we

get the solution in the form

L[ f®) [ fs)ds
@) = o [(b o= ). G- x)a]

and so it is that we can write the fractional derivatives as

@ p_ 1L f(a) ® fi(g)dt
1 fo) [P f)dt
N (342)
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As we have introduced, from this discussion, we conclude that Abel’s equation in

(3.31) can be written as

oDz%p(t) = f(x)

and the solution we get is

o(t) =2 Dz f(z)

As a special case, when a = 1, we get from (3.31) that

Do) = | " o(t)dz = f(z)

and this agrees with the usual derivative.
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3.5. The generalized Leibniz rule

In this section we will introduce a useful formula for ,D%f(z) where f is an analytic
function on (a,b) as stated in (3.23) .Then we will use this formula to reach the
generalized Leibniz rule for finding ,DZ(fg) where f and g are analytic functions.

If the series

f(:l,‘) = an(x)

n>0
for f. continuous on (a,b), is uniformly convergent on the interval, then termwise
fractional integration can be done and the new series will also be uniformly convergent
on the interval. The proof is done by estimates of the absolute value of the fractional
integral of f and partial sums of the series and we can use the uniform convergence
of the series. (See [13]).
If the fractional derivatives exist, then term by term fractional differentiation is
meaningful also. To see this we reduce it to the integration case. The following result

can be proved by taking the cases of differentiation and integration separately.

Theorem 4. If f(z) is an analytic function on the interval (a,b), then, for any «,

e (z —a)* =

o = (n)
«DZf(z) Zo a7 (3.43)
n= n
around z in the interval.
Proof
For negative o, let « = —v where v > 0,we can use the integral definition and
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the power series expansion of f(t) around z and the termwise integration which is

possible as follows.

Since f is analytic we can write (around z in the interval )

HOEDY (_1)n£:. — " o ) (3.44)
and
D f(z) = F—(% / “(@— £t F(e)de (3.45)

If we subsitute (3.44 ) in (3.45 ) we get

D2 @) = 5y [ =0 T O e

F(V) Zf(n)( ( 1) f(x ”—1(1.‘ ndt

= F—(V-Zf("-)( )( / (:L‘ tu-l-n—]. dt

L O sy (D (@ —8)
= mgf( )(z) —

n+v

and use the identity (See[8])

vl _ (=) T(n+v)
- n!C'(v)

(3.46)
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to get

(n+v)!

Df@) =3 | EZ ey
n

The case a =0 is

(= <] O T —
D@ = 3| | El e

n=0 n ( )
- Z o)
= f(z)
For positive o we write
a=ja + {a}

to indicate the integer and fractional parts of & with the right side, e.g.

o[ e {T) -l
3 |3 3/ 73
Then
fa]+1
DSf(z) = (&_x’) D1 (1) (3.47)

and the right side of (3.47) is

d ) [o]+1 oo {a} -1 (z — )" {aHL f) ()

dz (I —{a}+n)t (348)

n=0 n
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Carrying out term by term differentiation, (3.48) becomes

© [ {a}-1 d \ e+t (z — a)—{ab+L ) ()
>, (=)

dx (L —{a} +n)!

n=0 n

then the usual Leibniz rule (3.17) gives

o @ | {a}-1 o] +1 T — )Ptk flntk) (o
S (z —a) (z)

b b n k& (n—a+k)!

Now use a new variable for summation: j = n + k. and (3.49) becomes

o ([ -1\ [+ ) @ aperor
212 ]

j=0 n=0 n ]’ —_7n

By “convolution” of the binomial coefficients, See [4]

2 ()G2)-(59)

we get the desired expression (3.43).

Example 1. If the function f(z) has an expansion of the form

fl@)=(@—a)*)_calz—a)
n=0

(3.49)

(3.50)

(3.51)

(3.52)



in a neighbourhood of x = a, then its fractional derivative is given by

oDz f(z) = (z — a)*"%g(z)

where

9(z) = Zf""“ (z —a)"

n—a+ p)!
To see this, write f(z) as

&) =3 cala —ay**
n=0

take term by term differentiation to get

oD21(E) = Y e oo

=(z— a)#—az cn(na':-ﬂ;)c (z —a)" (3.53)

The radius of convergence is not changed by differentiation.

As we will see in the next chapter, we must be careful not to take a derivative of
integer order before taking a derivative of fractional order. In the case of analytic f

we have

oDf DEf = .D3*f, B<1



Now the generalized Leibniz rule for analytic functions f and g is given

by the following theorem:

Theorem 5. For any two analytic functions f and g

i (44
DI(fg) =) («Dg7*f)g®) (3.54)
k=0 k

for all real values of «

Proof
We will use our rule for derivatives (and integrals) of analytic functions and

then use the usual Leibniz rule and reverse the order of summation. The left side of

(3.54) is

ad — n)k—a
If I e et (3.55)

k=0 k

by (3.17) this becomes

o« (a4 (27 _ a)k—a k

k )
> ot > [gD1LF*]

k=0 k j=0 j

we can use the permutation

DN

k=0 j=0  j=0 k=5
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to get

oo a k (x _ a)k—a

) z (k—3)
Zg —r
= =\, (k—a)!
letl=k—7 toget
g (+j—a)
=0 =0 \ |45
Now we can use
« l+7 e’ a—j
[+7 J J l
to get
oo [e5] ( - \ l+f—x
Sy « T e
((+7—a)

(:L‘ _ a)[-!'j—-a
(+7—a)l

when we apply (3.43) to the order o — j we get

i a—7 (z — a)H-j—o:

O _ pe—i
Gti—a) —=D7f

=0 I

so, we get the expression given in (3.54).
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In fact, if B is non-integer and « is not a negative integer, it can be shown that

ad a
D2(fg) =) (oD F)( D2 g) (3.58)
k=-0o |\ k48

See [10], [14]
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3.6. Integral of derivatives and derivatives of integrals

In this section we will show laws of exponents for :
(1) fractional integrals.
(2) integral of derivatives
(3) derivatives of integrals

We will state each law as a theorem as follows:

Theorem 6. Let f be continuous on J, and let y,v > 0.Then for all t in J,

D~[D*f(t)] = D~#*+) f(t) = D=[D~* f(t)] (3.59)

Proof

By definition of the fractional integral,

DD $6)] = 5 / (-2 s f (z — y)*~* f(y)dyldz

Dirichlet’s Formula.(See[8]),

/ c(t —z)""'dx / z(-'v —y)* " f(y)dy = B(u, v) / t(t -y fly)dy  (3.60)
Q 0 0

can be used to get

D~[D*f(#)] = [1(”—)1[\([53(#, v) /0 (£ —4)"** 1 fy)dy
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l

1 t e
T /0 (t —y)" ™ f(y)dy

= D EIf(y

In a similar way we can show that D~#[D~" f(t)] = D~#+¥) f(¢t)

Definition 3. We consider functions which are piecewise continuous on (0,00) and

integrable on any finite subinterval of [0, c0). Call these “functions of class C”.

Theorem 7. If f is continuous for non-negative = and Df is of class C, then for

v > 0 we have

oD (D ()] = D5 fla) — L e

Proof

Choose € > 0 and n > 0. Then for
n<é<zc-—e

the functions

f&), (z-&"*

are continuously differentiable.So, if we calculate
[ e-erwsea
n

—v [ -9 @ de+e flo—e) - (e~ Fm)

n
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and take the limits as € and 7 go to zero and divide by v! then we get the result in

(3.61).

Theorem 8. If Df is continuous on J, then fort > 0,

D[oD;*f(z)] = oDZ*[Df ()] +-§%x"-1 (3.63)

Proof

If we make the change of variable £ =z — y* where A = 1/v in

oDZ* f(z) = %V) /0 “(@ - € £(€) de

we get

Df(@) = [ o=y

Then for positive = we have

DLz Sl = 5z | O+ [~ Zfte - as]

Changing the variable back, x — y* = £ gives the result in (3.63).
To generalize theorem 8, let p > 1 be a positive integer and v > 0. If D?f is
continuous on [0,00) then we can differentiate (3.63) again to get

D?[oD;*f(z)] = D{oD=[Df (&)} + F(ﬁ(—ﬂ)nx"-z



The expression in curly brackets is given by (3.63) when we replace f by Df, so we

get ,
D[oD;"f@)] = oD D (@) + e+ BT ey
and we can repeat this to get
DP[oD™ f(z)] = o DZ*[D" f()] + Qp(z, v — p) (3.65)
where
Pl nk
Qp(z, 1) Z Gl O (3.66)
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3.7. Functions of class

If we compare the fractional derivative and the fractional integral of some types of
functions, we will find that the fractional derivative of order 12 may be obtained from
the fractional integral of order v by replacing v by —pu. That is, if D™ f(t) is the

fractional integral of f of order v, then the fractional derivative

DEf(t) = D™ F)]lo=-p. (3.67)

However, this conclusion is not necessarily true for all functions of class C in

definition 1. All functions that have this property are of the form

t*u(t)

or

Ml t)u(t),

where A > —1 and u(t) is an entire function. We denote the class of these functions by
C. We can observe that if f is of class C then f has fractional derivative and fractional
integral of any order. For example, t* with A > —1 , polymomials, exponentials and
the sine and cosine functions all belong to C. For example,

By (2.6) we find

F(’\ + l) A+

s vy LA

t>0
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and by (2.7)

_ TOA+1)
D“f\—mt’\“ y t>0

Now, for every f € [, u < A+ 1 and v is arbitrary, the law of exponents holds

for fractional derivative. We will show this by the following theorem:

Theorem 9. Forevery f €C, u < A+ 1 and v is arbitrary, the law of exponents:
D¥[D*f(¢)] = D**™f(¢) (3.68)

holds for fractional derivative.

Proof: For

f(&) =t u(t)

where
oo
pe) =) ant™
n=0

we get from (3.53) that

Cln+A+1)
(n+A+1—u)

Df(t) =t* ;amr
Since by hypothesis u < A + 1, it follows that A —u > —1 and hence D*f(t) € €

Fn+A+1) . Cln+A+1—u)
Tn+A+1—u) T+A+1—u—0)

tn.-{-k—u—rq

DD @] = e
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— i a, C(n+A+1) gtA—(u-tv)
e "T(n+A+1—(u+v))

= D"*f(t)

But for

f(&) =t (nt)u(t)

we remark here that , for ¢ > 0, (see [8])

D) = (i(i :B Pt +U+ 1) (A — o+ 1)
where
o) = DI

T(Z)

then the same arguments as above may be used to reach the law (3.68) .
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CHAPTER 4

TAYLOR SERIES AND
SOME GEOMETRIC
CONSIDERATIONS



4. Taylor Series and Some Geometrical Considerations

4.1. A generalization of Taylor polynomials with remainder

The usual statement of Taylor’s theorem with integral remainder is given here so that
we can consider how we could adapt this in the case of fractional derivatives. If the
derivative of order n + 1 of f is continuous on an interval containing c and z, and if

P,(z) is the nth Taylor polynomial, then the remainder

Rn(z) = f(z) — Palz) (4.1)

is given by

Ra(@) = o [ @) ds (42)

We can get something like this in the case of fractional calculus if we make some
restrictions on the class of functions allowed. We extend the notion of absolutely
continuous functions. We remind the reader that we define a Lipschitz space as
follows. A function f defined on a finite interval I = [a,b] satisfies a Lipschitz

condition if

| f(z1) — fz2) ISA| 21— 20 | (4.3)

for any 1, z; in I and where A is a constant. The Lipschitz space is contained in the

space of absolutely continuous functions. But the absolutely continuous functions are

a larger set of functions.
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For example,

f(z) = (z —a)?

is absolutely continuous. But it is not Lipschitz for 0 < v < 1 since the condition in

(4.3) does not hold for, say, z» =a and z; =2a

To see this, for these two values of z; and z» we find

| f(z1) = flz2) =126~ a)" ~ (22— a)| =@" = aa™'*"

1

= IIL']_ - l’gl al—

but if

zy —z2 — 0 then @ — 0 then there is no A satisfiese (4.3).
It is known that an easy characterization of absolutely continuous functions (AC)
is this:

T b
f(z) € AC & flz) =c+ / o(t)dt, where / lo() | dt<oo  (44)

That is, the space of indefinite integrals of the space of Lebesgue summable functions

L;. See [13].
We denote by .AC™ the space of functions f(z) on I which have continuous deriv-

atives up to order n — 1 and with f(*1)(z) € AC. Now we require that R(a) > 0
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and we say that f € £, has a “summable fractional derivative” ,DZf if

D" f € AC*, where n=[R(a)]+1 (4.5)
In fact, if
ar a—n
gy R (4.6)

exists in the usual sense, that is, the fractional integral

od2™f = D" f (4.7)

is differentiable n times at every point, then f has a summable fractional derivative,

We can see this by

& Denf—, DEmRE = DEFe L
dzn

Now we want to show that we have

oDz alzp(z) = p(z) for R(a) >0

for any £; function ¢ by the following lemma.

Lemma 1. For any £; function ¢.

oDz oL7p(2) = p(z) for R(a) >0 (4.8)
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Proof:

oDz GIS‘P(:B) = (a-D;:L oLy % )algo(z) =

p(s) ds
(a— l)'(n a —1)dz f (z — t)"‘"""’l s (t—s)t—=

Interchange the order of integration to get

o e sy 1 " [* = 1
Dz elel@) = i —a—Did / “D(s)/s (t—s)a(z — pa-mridids

(4.9)
Let us now evaluate the inner integral in (4.9)
1
, (t—s)=%(z — t)a—n+l dt
if we make T' =t — s we get
l T—§ dT
s (t _ S) I—Ct(x — t)a—n+1 dt - /0 Tl—a(x T — S)a—n—{-], (4'10)

now make T" = (z — s)7 to get

1 _ (z — s)dr
s (E—s)m(z —t)>ntt a= /o (z — s)i-erl—a(1 — r)e—rntl(g — 5)>

_ (z—s) [T dr
- (:L’— s)2—n o Tl—a(l _ T)a—n-i—l

1
— (:l: _ s)n—l / ,ra—l (1 _ ,r)n—a-l d‘r
0
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But in general, for f with a summable derivative, by (3.65)

n—-l

12 D2f(z) = f(z) - Z ) (4.13)

where

fr-a(z) = I27%f, n=[R(a)] +1

For 0 < R(e) < 1, we have

12 D2f(z) = flz) (—L‘))( — gt (4.14)

The extra terms that appear when the order of differentiation and integration is re-
versed originate from the characterization we gave for AC™ in (4.4) and the definition

in (4.5).

Example 2. This is a simple example for which we can verify our expression for
differentiation followed by integration for a function with a summable derivative. Let

o = 1, and our function is
©o Ik-%
f) =3 (G (4.15)
k=0 2/"

Which will have a nontrivial summable derivative because of our choice of a.. We

calculate

filz) = o2 f(z) = Z% ="
k=0

oa a:""l
D}f(z) = Z(k =<
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(]

I,,—% D,%T T T T
0 0 f() Z(k 2)' f() (

Nlr-ﬂ
~—r

The extra term is
fr (0)
T (2)

We can rewrite the formula (4.13) as something which resembles the Taylor ex-

va"

pansion with integral remainder as in the following lemma:

Lemma 2. For f with a summable derivative,

n—1
flz) = Z ( ( D2 f)(a) + Ru(z), R(a) >0 (4.16)

]_—ﬂ.

where

Ry (z) = IZ7" D3 f(x)
Proof
Let n=R(a)]+1 , f=a+n and m=[R(B)]+1 then

=[R(@)]+n+1=2n

apply this value of m to (4.13) to get

m—1

L2oDEf@) = £2) = 3 = R el © (417)
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since m =[Re ] +1 we get

Ru(z) = IZ*" D2 f(z) = f(z) — Z &N (a)

(a-{—-n k— ) e

let 7=n—k—1 then

( n-+j
Ru(z) = f(z) J_Z-n —m—fnfa a) (4.18)
but
fr—a(z) = "7 f(z)] (4.19)
s0
nra(a) = D™ D" f(a) = D** f(a) (4.20)
subsitute (4.20) in (4.18) to get
n—1 a
o= E o2 peif(a) + Rule) (421)
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4.2. More on Taylor Expansion

In the previous section, we gave a generalization of Taylor polynomial to involve
fractional derivative. The systematic method of obtaining a generalization of Taylor
series for fractional derivative is to study the behavior of the remainder term (4.2).
We are not going to elaborate on this point. Instead, we give an example of a formal
Taylor series with ﬁ:actionai derivatives, proposed by Riemann in 1876, which is valid

for a certain class of functions.

hm+a m+cz
fla+h) = ,g_:w ey e @) (4.22)
We illustrate this formula with the function f(z) = 1 and choose ¢ =0 and a = 3.
But first, it may be shown by induction that
1 1 m 2m+1
(m + 5)' (-—m - 5)' = (—1)"r 5 (4.23)
and
1 1y, me1_2m—1

So we check that
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m2>0
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T\ 55 h 2m +1

(st o 2

arctan \/— +arccoty/— ] =1
T z
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CHAPTER 5

APPLICATIONS



5. Applications

In this chapter, we consider some approaches and arguments used by recent re-
searchers in their attempts to use the fractional calculus as a tool to grapple with
physical problems.

In this chapter we concentrate our work in the applications of the fractional cal-
culus: we define the order of contact between two functions, then we apply this
definition to a model for the turbulent boundary layer cross flow velocity component,
to show that the non integer models "fill the gaps” between the integer models.

At the end of this chapter we give an algorithm, the functional relations, which
enables us to write two functions in terms of each other, we present four examples:
two well-known examples; we write sint, ¢ and e, ¢ in terms of each other and two
new: we write the relation between speed and distance and then we write the relation

between voltage and current in a simple circuit.See:[3],[8].

5.1. Order of contact

In this section we will introduce the definition of the order of contact between two
functions. Then we will apply this definition to a model for the turbulent boundary

layer cross flow velocity component.
Suppose two curves in the plane, y = f(z) and y = g(z) intersect at a point x.

We say that they have “contact of order n 4 1" at this point if

fP00) =9¢®(x) for k=0,1,2,...,n,n+1 but fO(y) £ g™D(x) (5.1)

63



This is sometimes called “n + 2 point of contact”. The idea is that an ordinary
intersection of two curves means contact at one point. If they also have the same
slope at this point, then they can be said to meet at two points. The infinitesimal
approximations of the curves could illustrate this. For example, consider y = 22 — ¢
and y = 0 near z = 0. At this point the curves ¥y = z> and ¥ = 0 have two point
contact.

When we approximate a function by a Taylor series expansion around a point
we can truncate the function at terms of degree n to get a polynomial which has
n + 1 point contact with the original function at this point. Our last definition of
a Taylor type of expansion (4.16) could be used and it will easily be seen that the
truncated series gives an approximating function which has an order of contact, in
the generalized sense, for any number less than or equal to the highest degree of z

which appears in the expansion.



5.1.1. The turbulent boundary layer flows problem

As shown in Figure(3) a typical hodograph representation of the cross flow velocity

profile. For example, flow in a curved channel,

y =1(x)
A
linear
region
tan’'B tan'A
> X
0 1

Figure (3)

The cross flow velocity profile

The following conditions are available from physical flow considerations and ex-

perimental evidence:

f(0) =f(1) =0; f(0)=b; f(1)=—a (5.2)

We want polynomials that satisfy these conditions and which approximate the
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straight line y = bz near z = 0. Just how close the approximation is depends on a

parameter n. We write

9(z) = f(z) — bz (5.3)

and we add the condition that
g®0) =0, for k=0,1,...,n+1 (5.4)

So we are describing n + 2 point contact, at least, for the curves y = f(z) and

y = bz. Such polynomials are given by
y=b(z— (n+2)z"*? + (n + 1)) +a (22 — z"*°) (5.5)

for non-negative integer n.
For 0 < £ < 1 we find that

lim g(z) =0

n—o0

To see this

lim g(z) = lim[f(z) —ba] =

n—oo

Lim b (z — (n+2)z™*2 + (n + 1)z™*%) +a (z™2 — 2"*3) — ba]

since 0 < £ < 1 we have

lim z" =0

n—00
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SO,

lim g(z) =bzr — bz =0

n—o0

and this could be illustrated as in this figure:
The figure illustrates the situation, for the values of n =2, n = 3, n =4 with

a=>b=1 as an example:

0 '
0 0.2 0'4}(0'6 0.8 1

. Figure (4)

Polynomials that approximate y = bz

Yo =225 -3z +z
y3 =3z% —4z5 + ¢
ys =4z" — 528 +
However, if we follow the usual notion of “contact” we are restricted to integer

values of n. If we allow non-integer values for n, then we need to modify our function
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f(z) and the conditions which give the closeness of the fit to y = bz become

oD2Mg(0) =0 forall 0<a<n

Not only does fractional differentiation permit us to exactly describe the condi-
tions on the model when n is other than integer, but also the model provides an
interesting picture of the effect of the extention of differentiation to noninteger val-
ues. As shown in Figure 5, non integer models "fill the gaps” between the integer
models. The figure illustrates the situation, for the values of n =2, n =25, n =3

witha=b=1 ésanexample:

y:

25

Yz

0
0 0.2 0’4)(0’6 0.8 1

Figure (5). Generalized polynomials that approximate y = bz

Yo =22° -3zt +z
Y25 =2.5255 — 35245 4
y3 =325 —4z5 +
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5.2. A Functional Relation

By the use of the fractional derivatives we give an algorithmic method for finding
a relation between two functions. This algorithm produces results that must be
checked. The situation is not much different from what we do in solving an equation
like

\/:m =1l—-x

We square both sides and solve the quadratic to get two answers, but only one of
them is correct. In this algorithm there are some assumptions to be made about
interchanging the order of summation and integration, but rather than justifying the
assumptions we can proceed formally and then check the answer.

Now assume that the Laplace transform of X(¢) exists, then the Laplace transform

of the fractional integral is

L[D™X(¢)]

c[ﬁl— / "t =0 IX(Q) de]
~ 5yt (LX)

= s Vz(s), v>0 (5.6)
and the Laplace transform of the fractional derivative is

LID*X(E)] = LD™D "X

= g™ [:[D—(m—u) X(t Z m—k—1 Dk —(m—v) X(t)lt=0
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m—1

— sm[s —(m~—v) :L’( S)] _ Z gmk—1 ch-(m.—u) X(O)

k=0
m—L
= s'z(s) — Z sm—k=1 pk-(m=v) x(0) (5.7)
k=0

wherem —1<v<m, for m=1,23,..

In particular, if X(t) is of class C then

DE-tm=)x(0) =0, k=1,2,..

3
l
[l

and hence

L[D"X(t)] = sz(s) (5.8)

Example 3. Suppose we have a function which can be written in the form

[ <]
X(@t)=t*> ant", p>-1

n=0

Then its fractional derivative is given by

(tut
n+p—a)

(DEX)(E) =t " an
n=0
If X is of exponential order then its Laplace transform given by

I & 1
T o) (5.9)
n=0

2(s) = =
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and

LDFX(t)] = ian m+p)! (n+p—a)

(n + u— a)' ghtp—atl

_ QZ an(n +p)!

sntputl

Z an(n +#)'

sl-‘+1

= s%z(s) (5.10)

However, for the purpose of the algorithm we use a function which is equal to X
for ¢ > 0 and with vanishing derivatives at ¢ = 0 for the values of v.
The problem of this section is that: we are given two functions, X(¢) and Y (¢)

and we want to find a functional relation of the form
Y (t) = o(X(2)) (5.11)
Now we suppose that we can write
Y(t) = /_ : Gla) oD=X(t) da (5.12)

So if we could determine the kernel G(a) we would have the functional relationship.

Suppose that we take the Laplace transform of this equation. We get

y(s) = / = 5%z(s)G(a) dex (5.13)
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which means that

yis) _ ™ a)s*do
) = _mG( )s*d (5.14)

In principle we might make the substitution s = e ™™ and the integral would be a
Fourier transform which we could invert. But we will not find it necessary to do this

in the examples we give. The explicit form of G(a) will be clear.
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5.3. Examples

Example 1
Consider
X(t)=t, Y(t)=¢

From (5.14) we get

2

e s
/ G(a)s*da =
—00 s

T s>1 (5.15)

If we express the right side of (5.15) by using long division, we get the series

1 1
s+l+—-+—+...
S §*

So we can use

G(a) = 6(a — 1) +6(a) + 8(a + 1) + (e + 2) + Z §(a +n) (5.16)

n=-—1

a series with terms involving the Dirac delta function. Substituting this in the func-

tional relation (5.12) gives

Z §(c +n) oDE(t) da

O n=—1

o 2 t3
=Y 0D"‘(t)—1+t+ TR (5.17)
n=-—1
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Then we calculate

z(s) _ s°+1

— = plfcl—V —1l—v
2(5) V= (s ™ +s77Y) (5.22)
So
Gla) =v(d(a+v—1)+8(a+1+Vv)) (5.23)
and this implies
t' = I/'( oD:],_'.-u + QD;I—V) sint (5.24)

If we want to extend this for » > —1 we have to take care at the integer values of v.
We can do this by using the result (3.65) for exponents.

In (5.24), if v is an integer, say n, then we may write

t* =nl(oDi ™+ ¢D,”1™")sint

t* =nl(oDF*? oD + oDp*? oD% *")sint

and then let n=v

t = vl(oD2? (D71 + oD¥*2 D73 %) sint (5.25)
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Example 3

The motivation and use of the functional relation algorithm is the establishment of
functional relations between observed quantities. This simple example can illustrate
this in a case where, again, we already know the answer. If our observations are of

speed and distance as functions of time, we might have

3
X(t) = vot?, and Y(t) = uo% (5.26)
Taking the Laplace transforms we easily get
y(s) 1 _ / ® « ,
2@ s ) G(a)s® da (5.27)
This implies that G(a) = §(a + 1) which means that
t
Y(t) = / X(r) dr (5.28)
0
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Example 4

We could model the operation of a circuit with resistance and inductance in a

situation where the laboratory data is

v(t) = wH(E), I(t)= 21— E)H()

(5.29)

where H(t) is the Heaviside step function. The constants R and L are resistance and

inductance. The data in (5.29) represents voltage and current measurements and we

want to find voltage as a function of current.

The Laplace transforms give

u(s):uoé, is):-’fg[i— ! }

Rls s—i—%

Then

/ Gla)s*da=Ls+R

and we can use

G(a) = Lé(a —1) + Ré(a)

and we get the relation

v(t) = LD, LRO- (1 - e“%‘) H (t)) +vg (l - e'%t) H(t)

or

v(t) = L— +RI
7

(5.30)

(5.31)

(5.32)

(5.33)



The figure below shows a simple electrical circuit.

Figure (6 )
Simple Circuit
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6. Appendix

6.1. The Gamma Function

The gamma. function, denoted by TI'(s) is defined by

[(s) = / t*~le~tdt.
0
It is the Mellin transform of e~* where s € C. T'(s) is regular on 0 < Res < oo or
we can say I'(s) is analytic in the right half plane. We also have
F(s+1)= —/ t’de™* = s I'(s) .
0
So we can say that I'(s) has meromorphic extention to the complex field C, with

simple poles at s =0, -1, -2, -3, ...

How can we find I'(3) ?

L 2 * —s _—1 * -, —L e —(s+r),.—% —L
NG e ’s"zds e'rTidr = e~ “Htr—2s 3 dsdr.
2 0 0 0
We replace s by z* and r by y? and change to the polar coordinates to get

[1‘(§)12 = / / e+ N drdy = 4 / : / e~ pdpd = T
0 1] 0 0
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Therefore

I(3) = Vi

For positive integer k,
Ck)=(-1)Ck-1)=(k—-1)

hence

D) = 5T(5) = Vr/2

-3, -2 -1 -2 -1, 4
—) = (—)'(—=) = (—)(2)['(—) = =7
[(5) = (GO = (D) = 3v7
Some usefull identities

I(z) (1 —2) =n/sinzw

VT [(22) =251 T(2)[(z + -;')
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The graph of [I'(z)

401!

20

.Y N
-

-601

-80]

Figure(7)

The graph of TI'(z)

Few values of I'(z), 0 < z < 1, can be shown in this table (See[5])

x 01 02 03 04 05 06 07 08 0.9

L(z) 9.5 459 299 222 /& 149 130 116 1.07
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6.2. The Beta Function

The Beta function, or Eulerian integral of the first kind, is defined by the Euler
integral

1
B(z,y) = /0 =YL —t)""'dt, Re(z)>0, Re(y)> 0,

and is related to The Gamma function through

B(s,y) — DB

T Lz +vy)

This allows us to extend the definition of Beta function to any pair of argument where

the ratio is defined.

For two equal arguments
%—B(:c,:z:) = B(l,:c)

and
(==
B(z,—z) = “

0 otherwise

z=0,FL,F2,F3, ...

Look at these special cases

11

11
B(iri) =T
33
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where

1 1
U=—=(1+—7=)=0.8472130848
21+ )

If one (or both) of the arguments is positive integer the recipocal of the Beta function

is given by

1 - n+zr—1
B(z,n) n—1

See[1].
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