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Chapter 1

Introduction

The Steiner problem has been studied for over three decades and has recieved atten-
tion recently due to its appearance in a number of applications. These include plan-
ning problems in transportation networks, in communication cable laying, building
systems, printL(l circuit hoards. VLSI and in geneties [HR92).

Consider the clementary problem of finding a point p in a triangle with vertices
a, b andc iﬂ;uch that it minimizes the sum of its distances pa + pb + pe. This
point is a unique point and is known as the steiner point and named after J. Steiner
who first stated it for the three point casc in the carly cighteenth century [BG89).
Figure 1.1a shows the points and 1.1h, the "Napolean™ (equilateral) triangles that are
constructed on the lines connecting these points. These triangles are circumseribed
in circles that provide the chords which intersect at the steiner point in Figure 1.2

If an angle of a triangle is > 27/3 then p is a vertex, otherwise p lies inside the
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Figure 1.1: (a) 3 points, (b) Equilateral triangles on the connecting lines

Figure 1.2: Determined Steiner Point
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triangle with lines connecting to all the other three points that have mutual angles

subtending at 27/3 [Mel61]. The distance to be minimized is Euclidean (L, metric)

2

-I)_“-' = ((J'p — Ty )2 + (.‘/p - .‘/a) ))

This can be generalized to n points in a plane, n > 3 and the problem then

becomes:

S, To find the construction for the shortest tree whose points contain these n points

- this is the Euclidean Steiner Tree Problem (EST).

Figure 1.3 shows a construction starting from points A and B to determine steiner

points for a set {A, B, C, D, E, F, G}. Z refers to one of these points and S to the

additional point. The steiner tree T can be constructed from a finite sequence of

such constructions and has the following characteristics [MclG1):

1. T has the n given points and additional & points s;.s2.....: S

2. T is not self-intersecting.

3. w(s;) = 3,1 < i<k where w(r) represents the degree of point r.

4. each s;, 1 €i < kis the S-point of the triangle {S;}.

5. 0<k<n-2
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Figure 1.3: A construction for the Euclidean Steiner Problem
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Figure 1.4a shows an arrangement of points (black), h. the shortest connection
possible with no additional points. On introducing a single point (white) there is no
change in length as shown in ¢, and d shows the change in length when two points
are inserted. However, if the arrangement is as in e, the minimal length is obtained.
On adding an additional point, no change is observed as in f, and in other cases
as in g, the length increases. Thus it is shown that while the minimum length is
desired, the number of additional points is also of importance.

The steiner problem when confined to a grid where lines can be horizoutal or
vertical only, is referred to as the Rectilinear Steiner Tree Problemi (RST) or the

Geometric Steiner Problem. The length is the Manhattan ( or the city-block ):
1)—(l- =I .l'p — 2y I + I ,‘/p — Yu I
!
The analogous conditions for validity are:
1. w(z) =3 ord
2.1 <w(:)<4.1<i<n
3.0<s<n=-2

This problem is common in printed circuit board technology and in VLSI In
both, the wire length between components to be connected is desired to be min-
imised. Figure 1.5 shows an example. In another application in cable or conduit

laying in building design, where the rectilinear measure is desired for installation
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Figure 1.4: Examples (a) The four points (b) Shortest connection with no additional
points (¢) One steiner point (d) Two steiner points (¢) Two steiner points with
different topology (f) Three steiner points (g) Three steiner points with different
topology
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Figure 1.5: An example of a Circuit Board

Figure 1.6: An example of cable/pipe system in a building

-1
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of these systems, like in figure 1.6, the difference in cost of a spanning tree of the
points and that of a steiner cost is substantial.

The above problem has been found to be in the class of NP problems [GJ77]
[GGJ77]. Thus it is desirable that suitable heuristics be researched for. It is the
purpose of this thesis to determine a fast and good approximate solution to the recti-
linear steiner tree problem. The rest of the thesis is organized as follows : Chapter 2
gives the literature survey on the Steiner Problem in Networks, which is a different
formulation of the general problem, the specific Rectilincar Steiner Tree Problem
and the Neural Network applications to optimization problems to date. Chapter 3
outlines the background of point orientations and clustering in the rectilinear grid.
Chapter 4 presents the algorithm and its time complexity, The algorithm is further
improved in its time complexity and its details are also illustrated. Chapter 6 gives
‘the proposed neural network representation and presents the results obtained. It also
discusses the problems encountered. Chapter 7 concludes the work and indicates

future work directions.



Chapter 2

Literature Survey

The literature survey first discusses the relation of the graphical approach to the
Rectilinear Steiner Tree Problem, and then in two parts, presents the rescarch to
date. In the last part we give the survey for the Neural Network applications to

optimization problems which are related to thiL problem.

Research on the Steiner Tree Problem has ¢ssentially followed two tracts. one ou
the Euclidean Problem and the other on the Rectlinear Problem. Each has special

aspects that require a different approach. The common problems are
1. How to determine the steiner points and how many are determined
2. To choose from these, those that contribute to the minimum cost.

In order to facilitate representation, the Graphical Steiner Tree Problem or the

o
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Steiner Problem in Networks (SPN) was formulated. This is the graph-theoretic ap-
proach to the steiner problem. Here the points which are given belong to a subgraph
of vertices, say Z, and the additional vertices to the set S, both composing a larger
set of vertices V in graph G. These arc then interconnected by ares whose length is
given by the cost function ¢ : E — R+ [Hak71]. The aim is then to minimize the

cost of the tree of that graph. More formally, to find:

miny,cy'-z C(T(Z uVv;))

where the minimum is taken over all subsets V5 C V' — Z and T(Z), and T(V)
represents the respective minimum weight spanning trec of G with respect to Z. This
problem is then a network optimization problem, frequently occuring in transport
planning as a choice problem [MW84]. Figure 2.1a shows an example and 2.1b its
solution.

Both the Euclidean and the Rectilincar problem can be mapped to this repre-
sentation. Earlier research had been directed at finding a solution using the above
representation and had been concerned with (2) of above only. The first part out-
lines these algorithms. Those that deal with (1) and (2) of the above are discussed

in the second part.

Hanaan [Han66], presented in the earliest of the papers on this subject, the
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(a)

(b)

Figure 2.1: (a) A Weighted Graph (I) Its Steiner Tree

11
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method to determine the steiner points in the Rectilinear metric. This is to extend
the parallels of the axis on each point in both dimensions and marking the intersee-
tion points. Such a vertex set generated for the set S, is of order n? and increases
the computation complexity considerably. Thus it is desired that fewer vertices be

generated. Recent rescarch concentrates on this and we mention this later.

2.1 The Steiner Problem in Networks

We present briefly the conventional exact algorithims, the henristies. and the recent

new methods that have been researched.

2.1.1 Conventional Exact Algorithms

A sur\'e.\'f of the SPN appears in Winter [Win87]. An updated survey then given by
Richards and Hwang [HR92] discussed the complete steiner problem. We outline the

formulation of the exact algorithms which are all exponential in time complexity.

1. Spanning Tree Enumeration Algorithm (STEA)
The orignal simple formulation was by Hakimi [Hak71] which determines the
minimum tree by enumerating MST's of G indnced by subsets of Woof V' such
that ZC W C V.
In another formulation by Balakrishnan and Patel [BP87], all S-vertices are

linked by zero cost edges to an additional vertex 0, and any Z-vertex is labelled
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as 1 and also connected by the zero-cost edge to vertex 0. The minimum cost
tree is then that formed which includes vertex 1 and the Z-vertices and where
all S-vertices in that solution (adjacent to vertex 0) having degree 1. The
determination of the tree is through enumecration of spanning trees of this G
containing edge 0-1 in order of increasing cost with the first tree as the solution

having the above condition.

. Topology Enumeration Algorithm (TEA)

Hakimi [Hak71] defines another method with the following definition of a

psuedo-adjacent edge i-j as :

(a) when deg(i) = deg(j) = 1 and path p;; contains S-vertices only then only
one of them has degree greater than 2, while the remaining must have

degree 2. :

|
(b) either deg(i) = 1 or deg(j) = 1 and the path p,; contains S-vertices with

degree 2.

The algorithm recursively computes the minimum cost tree by determining

the psuedo-adjacency of i-j for all vertices in G.

. Dynamic Programming (DP)

Dreyfus and Wagner [DW72] present the principle of optimality for the prob-
lem and give a dynamic programming formulation of the problem. Y is the

non-empty subset of Z, i € V-Y and Ty-; is the Steiner Minimal Tree (SNIT)
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for Y U i. Ty(Y) is the union of two SMTs, one spanning X U ¢ and the other
Y-XU i, where ® C X C Y. The tree is obtained by minimizing over all

choices of X:

o(Ti(Y)) = mingcxcy {«(Tyui). + Ty -x i)}

where T;(Y") is the union of Tyy; and Tjy _ xu; for which ¢(T;(Y")) was attained.
With 7 € V, T;(Y') can be determined for every two-vertex subset Y of Z and
every i € Y. The possible configuration for ¢(7Ty-;) are :

(1) deg(i) > 1 then Ty; = T;(Y")

(i) deg(i) = 1. Ty-yi must be a union of a shortest path from 7 to some A € S
of degree at least 3 with Ti(Y") or a union of shortest path from ¢ to some

k € Y with Ty and the following cost minimization:

A Tyui) = min{e(Ti(Y)). mingey {din + ATe(Y))}}

. Branch and Bound (BB)

The formulation was developed by Shore ct al [SFG82] and is presented here.
Each set F;, a feasible solution, has an included edge set I.N; and an excluded
set OUT;, and when F; remains unfathomed, it is split into F; and Fj with I.\;
= IN;U{e}.OUT; = OUT,.IN, = IN,.OUT, = OUT, U {e} for some edge
e € E—~(IN;UOUT;). The subset F; is examined initially and when found
or determined that it is not in Fj, Fj is checked, and then backtracking to F.

The determination is through the bound checking, where an upper bound is
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the sum of edges in I N; and the tree spanning Z; in G;, and the lower bound
is the minimum cost edge k € Z; incident to &k in G; (oo if no edge exists).
The minimum is over all T; found in F; together with cdges in I.N; during this

search which gives the solution.

. Integer Programming (LP)

Here the problem is stated as a 0-1 Linear Programming problem and cast

into various forms as under:

(a) Set Covering Algorithm (SCA)
A partition W of V such that ZN1W # & aud ZNTT # & is a cut-set
and are enumerated Cj,...C,. Edges of G ey,... e, with the matrix A

=(a;;) are defined as :

1 if ej € C;
(l,'j =
0 otherwise
fori=1,2,....qandj=1.2....,m. The SCA is defined as :
minZ Cjj

j=1

subject to

rye{0.1}. j=12.....m

(b) Lagrangean Relaxation Algorithm (LRA) The problem is formu-

lated for Z; = Z and G; =G. Let Z; = Z — {1} : x;; be a binary variable
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for edge (ij) € E; for i,j,k, (i,j) € E,k € Z;; yf‘J denotes the amount of

commodity k on edge (i,j) in direction i to j. The problem is:

min Z Cijitij

(ij)er
subject to
zij 2 v+ o V(i,j) € E,Vk € 2,
YiijeE y’fj >1 Vk e Z,
Tintrer Yig = 1 Vk € Z,

Cijier Y — ner hi 20 Yhe Zy.¥ieV - {ik}
P11 < YijertijSn—1
ri; € {0,1} V(i.))e E
yf‘}ZO Vi.j:(i.j) € EVk € z;
Th;e first inequality is relaxed in the Lagrangean fashion with multipliers

uip (uip 20V jYe ELke Z)):

min 30 (cij= 3 wigedvii+ 3 30wyl + )

(iJj)eE keZy keZi(ijlek

which forms the lower bound on the minimization and is solved for the

optimal solution.

2.1.2 Heuristics

1. Minimum Path Heuristic (MPH)

Initially a tree T} of G having only a single vertex 7 of Z is made. & = 1 and
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. Average Distance Heuristic (ADH)

17

Z, = i. Additional vertices i € Z — Z;, arc determined by that being closest
to T} which forms Ty;. This is repeated until k = p and T}, is the solution.

Time takes O(pn®) and the solution is bounded by :

2
C(T;))/((TV) < 2 - 1_)

. Distance Network Heuristic (DNH)

First a MST is determined for Gz. This is improved upon by replacing cach
edge in T by the minimum corresponding edge in G (through V-Z). A MST
of Tz is then determined for G;. Thereafter, deletion of those V-Z vertices
having a degree of 1. The resulting tree is the solution. The complexity and
bound are exactly similar to the previous one.

|

AlistL = {T\.Ty,.... T} is composed, initially of Z-vertices. Using a function

f:V—>R:

' d(i.T») ifieT
fliy=
minag,<i {52 d(i. T;)/(r = 1)} otherwise
The vertices are labelled in non-decreasing order of their distance from i and
dii,Ty) < d(i.Ty) < ... £d(i,T};). Choosing p € V" and f(p) < f(i)Vi € V'

with d(p,T) < ... < d(p.T). then while p € Ty join T aud Ty by minimuin

edge in G. Hence two subtrees of L are selected and joined by the minimum
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cost path, and this is repeated until L just remains with a single tree spanning

all Z-vertices. The complexity of this is O(n®) with no bound given.

4. Other heuristics related to the LP problem
Here various improvements to the LP problem are suggested through removal

of redundant elements and inclusion of new lower bounds [Win87).

2.1.3 New Methods

Here we discuss briefly the new approaches in combinatorial optimization and how

they have been applied to the steiner problem.

1. Simulated Annealing

Using the approach from statistical mechanics, a simlated anncaling schedule
is followed to obtain a better solution from an initial solution. In [Dow91}.

this procedure is applied to SPN where the following are defined:

(a) Neighborhood Structure is the set of steiner trees in which all steiner

vertices have degree 2 or more.

(b) Pzchange Heuristic is the exchange of all paths with key paths that are
the paths existing in the optimal solution. The process is either 1-opt.
2-opt or generalized to k-opt where the constants represent the number of

paths considered at a time. In [Dow01], only the first two are considered
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experimentally.

(c) Objective Function is the cost function of that graph.

The exchange for the path is accepted if the cost is reduced depending on
the energy distribution defined on the cost function at that temperature. The
sequence is iterated until no further change is observed in the cost reduction.
The authors state that the algorithm produces results varying around 3% from

the optimum.

In another application [0G91], two simulated anncaling algorithms are com-
pared for performance when applied to the directed steiner tree. The first is the
static schedule SCA (Static Cooling Algorithm) which is performed depending
on the neighborhood size which is fixed at the begining of the algorith. An
increase in cost is accepted depending on the ratio of the accepted moves over
the generated moves. The temperature decrement is fixed and determines the
length of chains to be evaluated. The iterations terminate when the ratio is
less than a predetermined constant (after a number of trials). The sccond
algorithm is the Dynamic Cooling Algorithm (DCA) and uses a running ratio
which is the rauning average of the decrease of the cost function. Here when

the cost changes more at a certain temperature, more iterations are performed.
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The terminating stage is when no further change is possible. Both methods,
as stated by the authors, give good results at around 3% of optimum and at

only a few instances does the SCA give better reults than DCA.

2. Genetic Algorithm

Based on the dynamics of natural population genetics, this approach is an
adaptive search procedure and was first applied to the Euclidean Steiner Prob-
lem by Hesser et. al.[HMS89). The SPN problem appears in [KRSS93]. Here
the chromosome is encoded with the vertices of the graph and with the initial
population as the vertices of an MST. With the crossover parameter set at
0.5, the selcctim.l based on the roulctte and the mutation set at 0.02, the new
generations are produced that replaces the old. This gives better solution each
time and the teliminating condition was set at an upper bound on the number
of iterations or the optimal solution. whichever was carlier. Results give 70%

of the time optimal solutions and around 74 off the optimal in other cases.

2.2 Rectilinear Steiner Tree Problem

We outline here the literature survey on the Rectilinear Steiner problem and present
their various limitations where appropriate. For convenicnce. we represent the set
of points given to be Z with | Z |= n, and the additional (steiner) points S which

are to he determined. A topology constitutes an arrangement of points on the grid.
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MST refers to the Minimum Spanning Tree, RST refers to the Rectilinear Steiner

Tree.

In Hanaan [Han66], besides his dimension reduction method, he presented a way
to determince the steiner point for three points, namely that the coordinates of the
steiner point, if present, is the median of the ordinates of each dimension (in plane).
He also introduced the concept of the enclosing rectangle and derived the upper
bound for four and five points, which is the sum of the length and twice the width

of the enclosing rectangle.

Hwang [Hwa70] proves the ratio L,/L,, >

[N V]

, wWhere L, is the length of the
steiner tree and L,, is the length of the minimum rectilinear spanning tree. This
|
was in response to the Gilbert-Polak Conjecture in the Euclidean Pme [GPGS]. He
used the constraints of orientation of the points and the placement of this chain of
points in the enclosing rectangle. Another proof appears in [SalfJQ]: bhut mmnech sim-
pler. Here, the characterization of full topologies which have all n — 2 steiner points.
is considered and shown to reach the bound of % A generalization of the bound to

any dimension appeared separately in [Syn91].

A proof of the NP-completeness of the rectilincar steiner tree problem appears in

[GJ77]. The authors map the decision problem into the 3-XAT (exact 3-node cover
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problem) which is also NP-complete. Thus solutions to the problem will have to be

heuristic in nature and research has been directed towards obtaining good heuristics.

The earliest heuristic developed was by Lee, Bose and Hwang [LBH76]. which
has complexity O(n2). This algorithm, for the single net case, computes the recti-
linear steiner tree for 3 points and then inserts cach 3-point topology by the virtue
of being the shortest and being nearest to the current tree. The algorithm is greedy
in nature and Figure 2.2 shows where this algorithm omits the crucial steiner point

for the optimal tree.

Most other algorithms developed somehow use the rectilinear minimum spanning
tree algorithm which is either the Prim's or Kruskal's MST algorithm [HS78] with
the rectilinear metric used. Prim's algorithm has complexity O(n?) and KKruskal's
has O(eloge) where e is the number of edges. Hwang [Hwa794] gave an Q{nlogn)
algorithm to generate the rectilinear minimum spanning tree based on the deriva-
tion of the Voronoi Diagram in the rectilinear grid. Later in [Hwa79h]. he gave the
O(nlogn) algorithm to determine the rectilincar steiner tree. He used the strategy
of Lee, Bose & Hwang [LBH76} to improve the RMST by considering only the three
points lying on the edge of the RMST and determining the shortest edge of the three
points that could reduce the RMST length. We discuss later in chapter 4 about their

strategy.
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(a)

(b)

Figure 2.2: (a) Minimum Spauning Tree () Steiner Minimal Tree
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Smith, Lee & Liebman [SLL80] gave a different algorithm from Hwang [Hwa79h)
with a worst cast time complexity of O(nlogn). They used the dual of the Voronoi
Diagram, the Delaunay Triangulation along which the RNIST was constructed. They
then determined the steiner points on edges of the RMST by considering the nearest

traingle or nearest two triangles. We discuss this later too.

Komlos and Shing [IXS83] give a probabilistic algorithm such that with proba-
bility 1 - o(1), RST > ‘@ They partition the points into equal point quadrants
and apply the Dreyfus and Wagner [DW72] approach for the steiner point deter-

mination. Time complexity is O(t 3') where t is the number of points in a quadrant .

Hwang, Vijayanan and Wong [HVWO(] give two algoritluns. They define a sep-
arable MST as one having a non-overlaping staircase layout of the edges. After
computing this in O(n?) from the given se:t. of points, the first algorithm determines
a L-shaped arrangement for optimal steiner tree if the separable NIST exists. The
second algorithm places Z-shaped edges in polynomial time to obtain an optimal
solution from the separable MST with worst case time complexity of O(n x 19 ).

where /4, is the maximum length of the edge computed on the length of the grid.

The paper of Kahng and Robbins [KR92a] gives an on-line algorithm which in-
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troduces single steiner points where the reduction of the MST length is greatest.
The complexity is O(n?). The authors also present the performance bound of the
algorithm of < § where a 3 is expected in the optimal case.

An MST-based algorithm of Beasely [Bea92]. considers four adjacent vertices and
computes the optimal steiner tree for these points. These sets of 4 points are chosen
along the MST and their steiner points computed. Only those points that reduce
the overall cost of the tree after previous addition of the steiner point are included.
This process is repeated until there are no more improvements. It is clearly seen
that by computing along the MST,. the crucial steiner points hetween topologies as
stated in the earlier paragraph is omitted. However, they mention an improvement

of 10 - 12% in O(n%logn) worst case time and has also been run for 10000 vertices.

An enlightening paper by Kahng and Robbins [KR92D)] shows the topology where
the upper bound attainable by all MST-based approaches is close to 3 for large n.
They present an example, Figure 2.3a, where its best configuration that could be
obtained for all MST-based algorithms is as Figure 2.3b. Its optimal solution is
given as Figure 2.3c. They also generalize this to higher dimensions where the cost
of optimal steiner tree is at most ( 2d - 1) / d. They give a counter example to the
claim of optimality for separable MST of [HV'WO0]. given here as Fignre 2.4, Start-

ing out with a MST is a reason for non-optimality for the algorithms in [LBH76)
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and [Hwa79bh).

The algorithm by Richards [Ric89] gives a new method in the plane-sweep sense.
By starting from a furthest point at the bottom, up, left or right position in the
quadrant, steiner trees are computed and placed near to cach other and this pro-
gresses towards the other end. The complexity is reduced by discarding carlier
points by virtue of they being far or 'covered’ by the former points. This results
in a O(nlogn) time algorithm with much less average running time. It is seen that
the algorithm only uses the local constraints and thus may miss the global optimmm

solution. It gives around 5% improvement.

The work by Sarrafzadeh and Wong [SW92] considers the case for A-geometry
where orientations with angles of iw/\ are only allowed. They give a divide and
conquer approach which is exponential in the subproblem since thev choose an ar-
bitrary size of po:ims ( k=2, 4,8) for computing the exact steiner tree in the
rectilinear geometry (A = 2). They generalize this to any geometry and present an
upper bound on its length to the optimal. They give their results for the A = 2

geometry of a 10.7% improvement.

Other related work which uses the rectilinear problem as a subproblem is in Per-

formance Oriented Rectilinear Steiner Problem in circuit board technology. This
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considers in addition to minimizing the length, the timing delay in the point con-
nections, which are input separately and do not depend on the length but type of
connections. Lim, Cheng and Wu [LCW93] provide an algorithm that grows the
steiner tree an edge at a time along the Hanaan grid depending on a experimen-
tally determined score. Other work by Hong et. al [ca93] considers source-to-sink
connections with timing delay in addition to the wire length minimization. They
minimize length by a force directed approach along the axes that determines point

of growth. Both the papers used small sets of points.

2.3 Neural Network Applications

We give here the literature survey of Neural Network applications to Optimization

which are related to this problem. |

Hopfield and Tank [HT83] developed the first nceural network model for optimiza-
tion and applied it to the famous Travelling Salesman Problem(TSP). Thereafter.

an avalanche of neural network applications have followed.

Looi [L0oo92] presents a survey on various other applications of nenral networks
to NP problems. He also gives the update ou the various modified forms of the Hop-

field model which have been applied to the TSP and other neural models as well.
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Taligarni and Page [TP87] gave applications to constraint satisfaction problems of
the Non-attacking Queens and the Graph Isomorphism problent, the later requiring
some pre-processing. Ramajuan and Saddayapan [RS88] give a strategy to map
optimization problems to neural networks and formulate a number of graph prob-
lems that could be solved. Taligarni, Christ and Page [TCP91] give an application
of a three dimensional neural network to the Weapon-Target Assignment Problem.
A host of other applications appear in Takefuji's book [Tak92]. where hie and his
collegues have applied the Hopfield model, and variations of it using the McCulloch-
Pitts neurons and the McCulloch-Pitts hysterisis neurons. Most of these problems
are direct applications of the Hopfield network, where the constraints are directly
representable in the synaptic connections as modelled by the dynamic equations and
no pre-processing is required. This is also true for the graph problems cited car-
lier and the Maximum Clique problem as given by Jagorta [Jag92] and [Lin93]. Au
identical application and developed almost at the same time is of Burke [Bur92) that
solves for the Maximum Independent Set. which is the dual problem of Maximum

Clique in graph theory.

Particularly of interest are neural network applications to the problems in VLSL
While closely related to the rectilinear steiner problem, Circuit Partitioning seeks
to place circuit modules/components such that the external wires connecting these

have minimal length. Yih and Mazumder [Y'M89] consider the connections for two



123

30

components where the partitioning is of nearly equal size. The net produces suitable
results. Shen, Gan and Yao [SGY92] give a Self-Organizing Feature NMap using fuzzy

values for partitioning. This approach gives better results.

Module Orientation concerns the placing of components on the surface of the
chip including any rotations that could be made such that the wire length between
the components is minimised. Hadas and Lin [LL89] present the orientation aud
rotation problem separately and get good results. Rao and Patnik [RP92] describe

a similar approach but consider also the component (cell) overlap and area of com-

ponent.

Channel Routing considers the intercouncctions of poiuts (terminals) ou oppo-
site sides of rectangular channels where the wire length has to be minimised. This
is a 2-point case and Shih and Feng [SF91] proposed a method which use the con-
flict graph (consisting of horizontal and vertical segments which are permitted) for
constraint mapping. With a similar idea. Shih. Chang and Feng [SCF91] present
their version considering in addition the wire overlap that could result hetween the

rows/columns of components on the grid.

The only work which takes the global wire length into consideration is this prob-

lem and the first approach has heen given by Kahng [Kal91]. He uses an clastic-net
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method, where the points on the border of the enclosing rectangle are gradually
deleted in a parallel fashion until the bare skeleton remains. This is the resultant
steiner tree and the procedure is analogous to the bubble shrinking principle. He
reports around 10% improvement with no details on how his dynamical equations

are modelled and his termination procedure, but mentions a time of around 7000

iterations by his simulation.
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Chapter 3

The Clustering-Based Algorithm

It was mentioned earlier that determination of steiner points constitute a major
part of computation of the algorithms researched so far. We cousider the case of
minimizing the generation of steiner points. Some definitions arve presented first.

All distance measures are in the L; metric.

3.1 Point Orientations

Definition:
The Minimum Enclosing Rectangle (MER) with respect to a point is a rectangle
composed from a point and its two nearest neighbours. A steiner point. if it exists.

in a MER composed from (xy,1;). (2. y2). (v3. y3) is the point having the coordi-

32
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nates median (xy, 22, 13), median (y;, y2, y3).

Definition:
A degenerate MER (Bounding Box) is a rectangle formed with 2 end-points of
a line.

See Figure 3.1 for illustrations.

Lemma 1. In a MER, at least one point must be at the corner.

Proof Only two points are necessary to define a rectangle. and the nearest two
points located at its opposite corner define the minimum rectangle so formed. In
case there are three points, two points define the two borders of the rectangle and
the third must define the other two sides which is possible only by being at the
other corner of that MER. Four orthagonal points define a MER by each being at

its corner.

Lemma 2. Any other point. say x, on the MER (p. q.r) with respect to « point

p, must lie on the opposite corner to this point defined by the region outspan as

d(p, x) > max{d(p.q).d(p,r)} .
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{a)

Figure 3.1: (a) MER, (b) Degenerate MER, (c) outspan of MER

(4): X:(0.4).(2.2),(2,6).{4.0),(4,4).(4,8),(6.2),(6.6),(8,4)

Y:(4,01,(2,2),(6.2).,(0.4).(4,4),(8.4),(2,6) .{6.6).(4.8)

10

-«— inspan

(c)

outspan

1"

Figure 3.2: Equidistant points in a cluster
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Proof If a fourth point is introduced in the interior of the MER, it is always
possible to shrink the borders of the MER by leaving out a non-corner point of the
previously defining border to form a new border defining a smaller MER. If the point
is placed on any border of the MER, the same applies, except when . is placed in
the region d(p, z) > max{d(p, ¢), d(p,7)} where it does not form a neighbour to the

point p. Figure 3.1c shows the outspan so defined.

Definition: A Cluster is a collection of MERs, a degenerate MER or a set of

collinear lines.

We first consider the case of computing steiner points in the cluster aud later
give details for this cluster determination. We have the following cases for the

construction of a MER of a point
1. A single nearest point and one or more nearer equidistant points
2. Two or more near equidistant points

In both cases, many MERs will be generated. For the casc (1), the MER is con-
structed by having this point with the nearest ncighbour, as a pair, and the third
point being one of the equidistant points. Additional MERs are constructed using
the same pair and each of the equidistant points in turn. for all such points deter-

mined. For the case (2), we have to choose a pair of points from the equidistant
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points, with this point such that a MER is formed. An exhaustive enumeration
would lead to a quadratic complexity in the size of the cluster. We consider choos-
ing a pair in succession after the equidistant points are sorted in the X-ordinate as
major and then Y-ordinate as minor, and separately in Y-ordinate major and then
X-ordinate minor. We present the scenario for the 8 cquidistant points in a cluster

in Figure 3.2.

Lemma 3. Given a set of equidistant points. in « cluster. from a point in
question, all steiner points can be located with respect to this point by sorting the
equidistant points in the X-ordinate as major. then Y-ordinate as minor. and scpa-
rately sorting in Y-ordinate as major and X-ordinate as minor and constructing the

MERs with this point and two points in succession from this two lists.
{

l

Proof By sorting in the X-ordinate as major and Y-ordinate as minor. points close
to each other are aligned on th:c X-axis such that by choosing the pair of poiuts in
succession, the MER so formed locates the steiner point. The same is true for the
points sorted in the Y-ordinate as major and then X-ordinate as minor which would

allign points on the Y-axis.

We refer to the given points as Z-points, black iu the figures. and the additional

points as S-points, white in the figures.
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It is seen that when the MERs are constructed with respect to each point. they
would overlap in either one Z-point, or two Z-points. We counsider each in turn. For
the one Z-point overlap, simple cases are shown in Figure 3.3a and b that compose
MERs joining at either the corner point or at the boundary. For the two Z-points
case, examples in Figures 3.3c and d, 3.4 and 3.5 - 3.6 show the various orientations of
the MERs. In 3.3c a unique steiner point is created, while in 3.3d. an additional point
is found. In Figure 3.4, when MERs are constructed from equidistant points, four
steiner points are generated. However, only two are actually used in the construction
of the minimum length tree as shown in the figures at the bottom, and these can
be any two along the vertical or horizontal. In Figure 3.5, MERs constructed with
respect to each point do not generate all the necessary steiner poiuts, Further MER
generation, this time with the two steiner points and a Z-point composing the inner
enclosing rectangle, generates the additional steiner point.

We examine how this additional steiner points can be found. It is seen that when
a MST is composed after the construction of the NMERs. for the case (1) from above.
Figures 3.3 a and b. and the case of Figure 3.3 ¢, complete solutions are obtained
i.e steiner points will have degree 3. In Figure 3.3d, only one of the steiner points as
selected by the MST algorithm will have degree 3, being chosen arbitrarily, and the
other will have degree 2. In case of Figure 3.4, two steiner points will be required.
and will be definitely chosen by the MST algorithni. these being on the same side

of the smaller enclosing rectangle so formed. In Figure 3.5. two cases result. and we
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(b)

(a)

Figure 3.3: Overlapping MERs (a) On Z-points (b) With Z-poiuts on boundary (¢)
Unique solution by MER, (d) Steiner points of degree 3 and 2
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show these as Figures 3.6d and e respectively.

Our procedure for the additional steiner points determination (MST improve-
ment) checks for degree 2 vertices of Z that have edges to steiner points only or the
points connecting to the degree 3 steiner vertices and determines if a smaller MER
can be formed that generates a new steiner point. \We show this MER so forined
respectively for Figures 3.5 a-d. For (a), point 2 has degree 2 and connects to 5 and
6, both steiner vertices. The MER formed from 2, 6 and 5 gencrates the additional
steiner point, Figure 3.6 a. For (b), 5 and 6 arc both degree 3 steiner poiuts and
taking (2, 6, 1) and (5. 3: 4) respeetively for the MERs generates two additional
steiner points, Figure 3.6 b and Figure 3.6 ¢ . Here, once again. only two steiner
points at one side of the smaller rectangle will be selected by the MST algorithm,
either as Figure 3.6d or e."An improvement can thus be obtained by enforcing such

a procedure in every cluster.

Theorem 1.  The construction of the MERs with repect to cvery point in a
cluster and their improvements determine all the locations of the steiner points.
Proof We prove by induction. For the threc-point case the stciner point is located
from the definition of the MER. If we consider an arrangement of points in a cluster
and add one more point, a pair or a MER, we show that the necessary steiner points

are easily located and this would then work for any number of points inserted. For
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Figure 3.4: Two steiner points of degree 3
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the single point case, this can be done by inserting a point in the interior of an
existing MER, on the boundary, or outside. In the first case a smaller MER is
formed excluding the further point, and another MER forms to incorporate this
excluded point (which may or maynot generate a steiner point). In the second case,
if the point is placed on the outspan, by lemma 2, no change takes place, hut if
placed ouside it ( nearer to the corner point ) a smaller MER results, with the
excluded point forming its own MER. In the last case, a MER may be formed at
the cluster boundary or just an edge added with no steiner points determined.

Now we consider for two points. When hoth are inserted in the interior of a
MER, smaller MERs will result which may be overlapping in one Z-vertex. 2 Z-
vertices or could be joined by a direct line. If hoth are inserted on the houndaries
of a MER, then the same applies, or if placed on the outspan, oue followed by the
other, the later being placed in the firsts’ outspan, no change results in the NMER
with respect to that point. If placed outside or adjacent to the cluster boundary. a
new MER forms with the closest point on th:e cluster boundary. or joins through a
collinear line. In case the two points are inserted so that they become cocireular to
two points on the periphery of a cluster. the \IST improvement will determine the
steiner points.

Finally, for the 3-point insertion, if alrcady forming a MER, or collinear, then
these join by a Z-vertex. If inserted separately, then cither the single point case

arises or the previous case for two points, or both in citlier order. In the case that
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the three points are equidistant to each other and to a point or points on the pe-
riphery of the cluster, then by lemma 3, the steiner points can be determined. Thus
for any number of points inserted, this would generate steiner points in the cluster

and this completes the proof. A

The above can be alternatively verified by considering the overlapping MERs
meeting at a Z-point or at the border of the MER. In both, the shortest edge con-
sists of that from the steiner point to the Z-point where the join ocenrs or if at the
boundary, the nearest point on the touching boundary. In the case where the short-
est edge is from the steiner point to another steiner point in an overlapping MER.
the MST improvement determines the shortest edge for this connection. Thus in a
cluster, the minimum tree can be obtained by connecting the steiner points gener-

ated with the given Z points.

3.2 Cluster Generation

The determination of the cluster is now examined. Here unlike most clustering
algorithms which require the determination of the center of clusters. their deviation
from these or their approximates, we choose a 'nearness’ distance metric. This is

an agglomerative algorithm where, points lying within or on the boundary of this
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measure from any other point, lie in the same cluster. Examples of such measures
are the Nearest-Neighbour, which partitions the points such that cach point has its
nearest neighbour in the same cluster, and the Mutual Nearest Neighbours. where
points belong to the same cluster if and only if its nearest neighbour has its nearest
neighbour as this point [Mur83). A measure we define is the Nearest-Two Neighbour.
This measure is the average of the length of the steiner tree in one MER with respect
to each point i.e the average of the ciosest two points from every point. However. our
algorithm is general enough, and a metric can also be experimentally be determined
or be dependent on the distribution of points if known « priori. The rcason for
such an exercise is to locate steiner points that lie inbetween the clusters as that of
Figure 2.2 and which most algorithms bypass. To determine these points we use an
analogous construction to the MER, but this time inbetween the clusters. Using a
greedy approach :

Determine for every point in a cluster, two nearest different clusters. Compute
its MST length by taking the two lines ending in different clusters. We do so for all
such points in the cluster, since it is not known which cluster is nearest to which
point in the cluster, and then determine the minimal such MST. We also compute
the minimum length edge from different points to different two closest clusters aud
compare this sum with the minimal lengths of MSTs found previously. If the former
is smaller or equal to the later, we do not generate the MER, otherwise the steiner

point is determined through the MER construction. In case there are multiple
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such minimal MSTs, their respective MERs are computed and their steiner points

determined.

We examine in detail the point connections that are possible hetween the clusters.

1. Z-Z connection. For the two cluster case, there is a point to point connec-
tion and since this would be the shortest edge when chosen, it can be in any

orientation. See Figure 3.7.

When there are three clusters and all connecting with Z-vertices. then the
MER can be constructed with each point in a different cluster to locate the
steiner point. There will be cases where more than one point from a nearby
cluster is closest to the point from another cluster (due to orientation of the
points in that cluster), and these would generate additional points. Taking
the case for four clusters, a case shown iiu Figure 3.7 does not locate all the
steiner points, and hence like before, a MST improvement would be necessary.
The case is similar to generating MERs for additional steiner points and would
work for any orientation. Thus, this could be generalized to more than four

clusters.

2. 8-Z connection. In the two cluster case. the ouly possible case is the direet
connection since the S-point in one cluster would be already of degree 3 and
an edge could only be added. if coming from a Z-point, in a direct line of

approach to this S-point where no edge exists. See Figure 3.8a. For the three
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cluster case, considering each cluster in turn and constructing the MER if
the condition is met, or multiple MERs in case there are equidistant points
produces the desired steiner points. A case is shown in Figure 3.8b. Here also,
the solution determined by the MST algorithm would select only one steiner
point with degree 3, two steiner points with degree 2 and one with degrec 1.
A case where the MST length between clusters is less thau the steiner length,
such as in Figure 3.8¢c, no MERs are constructed by the greedy procedure -
thus the MST algorithm will determine the optimal length in this case. In
cases where more than one point is closest, aclclitiéual steiner points would
be generated and it is left to the final MST algorithm to determine suitable

connections. The same can be applied to the four cluster case and larger.

. S-S connection. For the S-S connections in two clusters, Figure 3.9a shows

that such a case will always have a similar length line from the Z-point to either
a Z-point or a steiner point and forms the case for the Z-S connection. The
three cluster case is given in Figure 3.9b, where duc to equidistant points. many
steiner points are generated. Here, it is scen that ouly one will have degree 3
when the MST algorithm is finally executed, the rest having degree 2. Figure
3.9c shows the case for four clusters which has the same characteristics. and

thus can be generalized for larger number of clusters.

It is seen in the above configurations that points that could he connected hetween
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clusters have steiner points introduced by either the MER construction or after the
MST improvement. The final MST algorithm then chooses sufficient munber of

points that would have degree 3 in the final topology. The steiner points with

degree 2 are then eliminated.
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Chapter 4

Complexity Analysis and

Improvements

In this chapter. we first give the complexity analysis of the algoritlin and then
discuss how we can improve the time complexity while outlinitig the shortcomings

of the previous algorithms that have used such procedures.

4.1 Complexity Analysis

We first give the psuedocode for the main algorithm :
CLUSTERING-BASED ALGORITHM

NEAREST_NEIGHBOUR-METRIC()
CLUSTER()

CoMPUTE-MERS()
GREEDY_CLUSTER()

the & DO =



L 2%}

5. MST_IMPROV()
6. MST._FmNaL()

The input is given as a set V of N points and is labelled by positive numbers in

increasing order of input. All distance measures are in the L; metric. We analyze

each procedure in turn :

NEAREST-NEIGHBOUR-METRIC()

1. sum =0
2. for Vi e Vdo
2.1. find a nearest point in th L; metric from the set 1" = {i}

and accumulate the sum
3. compute the average d = [sum/N\]

Computing the Nearest Neighbour or the Nearest-Two Neighour requires exam-
ining all the points in the set, for each point in question. Time complexity is O(n?)
and space O(1).

CLUSTER()

assign point 1 to cluster 1 and make I\ = 1
assign 1 to Marked_counter

for all points within or at distance d from 1. put them in a queue
4.  while queue # 0 do

Eadi o

4.1. pick Q € queue
4.2. mark Q and increment Marked_counter
4.3. determine all unmarked points within or at distaice d from
and not already in qucue
44. insert in queue if any
5. if Marked_counter # N
5.1. pick an unmarked point and determine all points within or at distance d

form this point



123

5.2 if none determined increment K and assign K to this point
5.3. else assign the current cluster number K to it
and insert the points in queue
5.4. mark this point
5.5. goto step 4.
6. else return

Lines 1-2 take constant time. Line 3 takes O(n) time. The liues in loop of 4
take constant time, except 4.3 which requires a scan of all points. Line 5 block takes
also constant time with exception of 5.1 that may require a scan of all points. In
the worst case, if points are at an increasing distance from cach other and placed
at opposite extremes of the point set in succession. then 5.5 will branch to 4 for
a factor of n points, giving the bound of O(n?). Space complexity for quene and
counters is O(n).

COMPUTE_MERS()

1. for Vie Vdo

1.1 determine nearest two points. and all such points if equidistant and
in the same cluster.
1.2, if there are more than two points, then copy these and sort in

major X, minor Y, and the other copy in major Y. minor X and take
two points in succession to form an MER with /, and obtain steiner
points if any generated

1.3. else construct MER with ¢ and obtain steiner points

Line 1.1 scans the entire set in O(n) time and sorting O(n logn) if many cquidis-
tant points, but constant time if only two points are determined. This is repeated

for all points in the set thus taking a time of O(n?) worst case. If a factor of the

points generate equidistant points, like in a 'star’, then only the inverse factor of
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that points would have such a case, thus binding the time complexity to O(nlogn).
Space complexity is at most O(n) for storing the equidistant points.
GREEDY_CLUSTER()

1. foreachI=1..K do
1.1. for each j € I do
1.1.1. locate two closest clusters and compute the MST formed by
the two points each from different cluster with j.
If there are equidistant points store them in a list

1.2 determine the closest two clusters from p, ¢ € I with p # ¢ and
compute the sum of their lengths

1.3. compute RST of the points in step 1.1.1, and for all in the list if many

14. if RST < MST accept the steiner point, otherwise discard it

The greedy procedure locates steiner points from closest two points for a poiut
in each cluster only if the length of the connections with the point is less than the
external MST length of the three clusters. Due to the nested loops it takes O(n?)
in the worst case. Space complexiity is a constant since not many clusters have
equidistant points.

MsT_IMPROV()

use Prim’s MST algorithm on a point set < 2N

locate degree 2 points and compute MERs

locate degree 3 steiner points and compute MERs
update MST

he 2N =

Prim’s algorithm takes O(n?) time with space complexity of O(#?). All the other

computations fall under this hound.
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MsT_FINAL()
1. compute the final MST
2. locate degree 2 steiner points and eliminate them from the adjacency list

The final MST computation and the removal of steiner poinuts of degree 2 also

fall under the time bound of O(n2).

Thus the overall complexity of this algorithm is O(n?). The space complexity is

overall O(n?).

4.2 The Delaunay Triangulation and its Usage

The computation of the Nearest Neighbours is a common problem in Computational
Geometry and falls under the general case of All Nearest Neighbours as a proxim-i
ity problem. The powerful algorithm of the Voronoi Diagram forms the basis for
all proximity problems and in this case, the Delaunay Triangulation which is the:
dual of the Voronoi Diagram, has been employed by previous researchers [Hwa79h).
[SLL80]. This structure gives an improved algorithm for the MST, reducing the
time complexity to O(n). However, this is due to preprocessing. which falls under
an upper bound on the construction of the structure itself. A construction is shown
in Figure 4.1.

Hwang [Hwa79a] gave the first algorithm which uses the Voronoi Diagram in the
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> Delaunay Triangulation
(a) The Voronoi Diagram (b) The Delaunay
Figure 4.1: (a

c

-~1



143

o8
L, metric. He however uses the structure to compute the rectilinear MST (RMST)
first, then resorts to improving the edge lengths by considering the triple of points
along the RMST edge to determine the steiner points. Another work of Smith,
Lee and Liebmann [SLL80] begins with the Delaunay Triangulation, computes the
RMST and and also resorts to improve the construction by picking on the triangles
with the shortest edge, and further, by a pair of triangles if any other improvement
is possible.

We note that by starting out with a RMST, the chances of obtaining the shortest
edge in the final solution is reduced, particularly if there are edges with equidistant
lengths. The RMST algorithm being greedy in nature. sufers from heing mislead as
indicated by Kahng [KR92Db). We show the cases in Figure 2.2.

We use the Delaunay Triangulation procedure to improve our time complexity.
Most of the time in our algorithm is used in locating the Nearest Neighbours, and
we utilise the structure of the triangulation to restrict our search procedure. We
present the ne:w algorithm as:

NEW.CB_.ALGORITHM
DELAUNAY_TRIANGULATION()

NEAREST-NEIGHBOUR-METRIC( )
CLUSTER()

COMPUTE_MERS()
GREEDY_CLUSTER()
MST_IMPROV()

MST_FINAL()

N otk
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We consider the details in turn :
DELAUNAY_TRIANGULATION() computes the triangulation of the point set in the Ly
metric using the algorithm of Lee and Schachter [LB80]. It takes as input the point
list and constructs a double-linked list for each point as DT(v;) in the point set
v € V, which is the set of points having an edge to v; in the triangulation. The
output is this set of double-linked lists. The algorithm is recursive and has time

complexity O(nlogn) and space complexity of O(n).

The NEAREST_NEIGHBOUR-METRIC() takes linear time since we only have to ex-
amine the linked list once. The Nearest Neighbour (or Nearest Two Neighbours) are
determined passing through each points list DT(v;), in one scan while determining

the nearest neighbour(s) and in the end computing its average over the N points.
I

Space use is of O(1). |

In CLUSTER(), we have the same procedure as our previous algorithm: but instead
of scanning all the point set we only look for the points in cach points” linked list for
the points not exceeding the distance d to determine the next point. However. while
we do this, we also use a list to mark points already processed and also when delet-
ing from the queue, we maintain a cluster label list with respect to cluster number.
since it is known that the average number of neighbours is six [PS83] to a point, a

result of Euler, the queue length is a constant and hence overall time complexity is
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linear. Space complexity additionally turns out to be linear too.

For CompPuTE-MERS(), we again use the linked list DT(v;) to determine the
nearest two neighbours, and all such neighbours, provided they are in the same
cluter in order to compute the MERs. We store the new steiner points in the same
double-linked list, while updating the cluster labels. The time complexity is thus
linear. Since a maximum of n — 2 steiner points can be obtained, additional lincar

space is used.

In GRrEEDY_CLUSTER(), we begin at the cluster label list and for cach point in
the same cluster, we determine two closest different clusters from the adjaceney list
and compute its sum. We do so for all such points in the cluster. and then find the
minimal such sum. Then the list is searched again, this time for the closest cluster
different from this cluster number and also for the next closer cluster number but
not from the same point as the closest one. We then determine if the RNST length
from this set of points is larger than the steiner tree length from the MER construce-
tion with the previous set of points. If this is so, then the steiner point generated
is inserted in the first point of the previous set. If there were many such minimal
sums, they are first checked in the respective adjacency lists of the point sets before
insertion so as to avoid duplication. In each scan there are only a constant number

of comparisons, and hence the time complexity is lincar. Space complexity is lincar
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since a factor of the point set may determine steiner points.

MST._IMPROV() generates a degree list which is updated when an edge is joined to
form a tree. Thisis done as the MST is constructed using the algorithm of Cheriton
and Tarjan [CT76], which uses a queue to store singleton trees initially which are
then combined at each stage depending on their established priority. Then the MST
improvement is done where the MERs are composed in one scan with the steiner
points of degree 3 or with those of Z-points and steiner points and inserted in the
respective linked list. The time bound is of O(n logn) for the MST construction and

its improvement. Space complexity may result in worst case O(n).

The final MsT_FinaL() algorithm first computes the NMST. the second time.
and also maintains the adjacency list. It then deletes steiner points of degree 2 by
examining the degree list for such cases. The algorithm results in the worst case

time complexity: of O(nlogn). Space has linear complexity.

From the above, it is seen that the overall time complexity of the algorithm
is bounded by the complexity of the Delannay Triangulation construction and the

MST construction, and is thus O(nlogn). The space complexity turns out to be

O(n).
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Chapter 5

Computational Results and

Limitations

5.1 Computational Results

To test the algorithm, we generated random points uniformly distributed on a M
x M grid. The algorithm is coded in C and run on a NeXT Computer with 16Mb
main memory and a 68030 Motorola microprocessor. The Clustering metric chosen
were the Nearest-Two Neighbours. whose results are given in Table 5.1, and the
Nearest-Neighbour metric. given in Table 3.2. In both d is the average distance
metric and K the number of clusters determined. We present the results of our runs
separately. They were tested for the same problems. Each row gives the results for

the average values made for 500 samples.

62
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No. of Points | Grid [ dywy | Kowy | 22T 9 | maximum | minimum
10 50 X 50 15 3 9.09 19.87 0.00
20 " 10 9 8.97 16.59 2.34
40 » 7 15 8.91 14.42 $.44
60 " 6 26 8.71 13.04 4.86
80 ” ) 27 8.56 11.61 5.12
100 ” 4 43 8.46 12.03 4.76
10 100 X 100 | 28 4 8.99 19.56 0.71
20 " 19 12 9.14 15.38 3.17
40 " 13 17 9.09 13.78 4.41
60 B 11 27 9.09 11.57 2.90
80 " 9 37 9.09 12.52 5.07
100 " 8 43 8.95 12.31 9.0
250 " ) 107 8.81 10.84 6.85
500 ” 4 158 8.10 9.77 6.48

Table 5.1: Results of Nearest-Two Neighbour metric

No. of Points | Grid dvy | Kyy | #5250 % T'maximum | minimum
10 a0 X 50 10 d 19.22 19.87 0.92
20 B 8 11 9.12 15.70 2.78
40 " 5 24 9.10 14.42 4.69
60 » 4 33 8.94 13.06 4.89
80 " 5 44 "8.82 11.86 0.88
100 N 3 53 8.79 12.36 5.70
10 100X 100 | 26 ) 9.00 20.00 1.80
20 h 15 9 9.31 15.65 2.22
40 11 24 9.18 13.78 3.80
60 9 35 9.22 13.45 2.86
80 B 7 48 9.25 13.01 5.49
100 ® 6 a8 9.12 12.39 5.86
250 ” 4 142 9.02 11.07 7.06
500 " 3 256 8.63 9.94 7.03

Table 5.2: Results of Nearest Neighbour metric
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Authors Complexity | No. of points | 25T 0
Branch & Bound exponential < 225 11.9

L & Z shaped MST O(n x18,.) 100 10.2
Hierarchical-ST O(f(k)logn) 100 9.1-10.2
Kruskal-based O(n?) - 8.5
Iterated Steiner O(n®) < 40 10.9
D.Richards O(nlogn) 10 - 500 < 3.3
Delanuay Triang. O(n logn) < 40 < 8.6
Clustering-Based(OQurs) | O(n logn) 10 - 500 8.63 - 9.31

Table 5.3: Comparison of worst-case time complexity and average ratios from dif-
ferent authors

45

a0l R - )
35t
30
25
20
15
10
5-/
0

0 50 100 150 200 250 300 350 400 450 500

Figure 5.1: Time(secs) Vs. Number of Points for the O(n?) algorithm (on NeXT)
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We compare the results to those in literature in Table 5.3. Our algorithm has
matched the previous O(nlogn) worst-case bound algorithms with better average
ratios then theirs. Figure 5.1 shows the running time in seconds against number of

points for the O(n?) algorithm on the NeXT machine.

5.2 Limitations

It is noted that the algorithm still resorts to the RMST procedure for connecting
the determined steiner points. Although reducing the greedy effect. it does not
completely remove it. This is particularly the case when equidistant points are
encountered. Figure 5.2a shows the case in point. Steiner points are determined
through the sorting procedure and then the MER construction of successive pair of
points with respect to point (2,2).

It is noted that the choice of the starting linc matters. and in Figures 3.21 awd
¢ show suboptimal solutions, while d shows the optimal required. This is due to no
priority given to the selection of point connections in the final RMST construction

procedure. However, such occurances are rare in random points and thus the results

do indicate so.
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Figure 5.2: Effect of the greedy procedure on equidistant steiner points
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Chapter 6

A Neural Model for the Steiner

Problem in Graphs

In this chapter we attempt to formulate the Steiner Problem in Networks for a neural
|

network implementation. We first give an int.r()(lu('ti()u!t() the Hopficld model and

give our problem representation for it. We then present the results and the problems

encountered.

6.1 The Hopfield Model

This is a general class of a neural model where neurons are fully connected and have
a threshold function. Figure 6.1a shows such a single layer network. To use this

in optimization, an energy function is derived which corresponds to the objective

67
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function of the entities in the problem and also accounts for the constraints of
the problem. These constraints are constructed such that when they act upon the
inputs to the problem in a dynamic fashion, the output so generated reflects the
minimization of the objective function. The quadratic form of the energy function

is represented as :

where V is the state of the network, T is the connection matrix (synapse) between
the neurons V; and Vj, and [ is the input bias. See Figure 6.2 for a circuit diagram.

Each neuron has ¥, T;;V; + I; as input and its state changes according to

Vim0 if STV + i< Ui

Viol if Z;\;, T,J"J +I; > U;
where U; is the threshold condition for the ith unit.
Such a system with symmetric connections and non-negative elements on the
diagonal [Hop82] would always converge to a stable state which would be a local
minimum of the energy. This is the binary model, and its continuous analogous

model has the following form:

1 N N 1 v , N
E = —5227},-1!;13 +—/\-./0 gi(v)dve — ;Im

i=1 j#i

Here R;; = |7-| is the input resistance to I; and g}(v) = u is the inverse of the
9
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ui

Input layer 1 @

v=g(u)=05(1+tanh{(Au))

A =50
—

Jfe—r=2

j
J (b)

I 1
LR N J
Rink]
Rk 1}
\ [
- p XX} - 7 c P
w
Vk

Figure 6.2: The Circuit Diagram of a Hopfield Network
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sigmoid function

% = g(huy) = .;.( 1+ tanh(hy;))

where X is the gain parameter which is shown in Figure 6.1b.
The evolution dynamics of the network is governed by the equations :

du; X u;
Pl i At
J#i

which we iterate as

Aui(t + 1) = Aui(t) + Au;

It has been shown by Hopfield [Hop84] that this system of equations models a

Lyapunov function and takes the form :

dE dv; (& uj
i) D (ZTIJLJ - +1')

j=1
which decreases as the system !evolves and convergence is guaranteed to a local
minimum. The updates can be either in an asynchronous manner, where different
neurons update in different ordet, or in a synchronous manner where neurons are all
updated at the same time. Either of the ways can he used and in most applicatious

it does not give significant differences in results.

6.2 Preprocessing Procedures

We adhere to the convention of representing the given nodes as Z-nodes and the ad-

ditional nodes as S-nodes. In order to represent the constraints, we use the following
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information which we avail to the network:

1. Single Source Shortest Paths : Every node should know its distance to all
the other Z-nodes. An S-node in the final solution should have the minimum
distance to all the other Z-nodes. We usc the Floyd-Warshall algorithm of
complexity O(n3) to obtain the All Pairs Shortest Paths (the Single Source

Shortest Path when executed for every node). This information is available to

every uneuron.

2. Removed Edge Shortest Paths : This procedure computes the difference
in shortest path lengths of each node to every other Z-node from that valne
when each edge to a node is removed. More formally. if node i has edge . then
its sum of distance to all the Z-nodes is say, sum1, and when x is removed, the
nodes distance to all the other Z-nodes is say, sum2, then this routine sliould
return the difference sum! - sum2. If the difference is positive. it means that
when the edge is removed the node is disconnected (i.e its distance to all the
other nodes is 0) and thus this edge is crucial. If the difference is negative
then, it also shows that the edge is important since the cost increases when
the edge is removed. If the difference is zero, then this edge has no effect,
and can be deleted without any change in cost. The algorithm is a repeated
application of the Floyd-Warshalls algorithm for cach edge tested with the

resulting complexity of O(n3m).
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6.3 A Representation Scheme

Given a graph G(V, E) with V] = N and |E| =M and its vertices and edges are
in some lexicographic order, we utilise a M x N array of neurons for this problem.
We represent this as a 2D array (transpose of the incidence matrix) where the
rows represent the labeled edges, and the columns, the labelled universe of vertices.
Neurons with output 0, indicate absence of the edge, and 1 its presence. The final
solution should give a minimum number of 1s to reflect the minimum number and
hence the cost of edges. Figure 6.3 shows an example and its optimal solution is as
Figure 6.4. We use the double subscripts to represent the vector V" as a matrix.

To determine the Z-nodes from the universe of vertices, every neuron must have
the information that the column it is in represents either a Z-node or a S-node. This
can be provided by a bit field indicating a Z-node (1) or a S-node (0).

The energy function for this problem is given as :

M ON MON
PZZU:.ROlL'(l)+QZZz pi(1 = zvetx(i).Col(i)+ R > v, RemSP(.r)
r=1i=] r=1i=] r=1i=1

+FZZ:,,SI:P«M I)+BZZ(‘“CUsf l)+CZZl,, ot

r=li=l r=1i=1 r=1i=|

M N N

+YT Y w

r=li=1j=1,g;

This can be written as :

M N N M N

(Q)ZEZUTIUTJ —ZZ( PROU)(I)-{-Q (l - "uf( C()[( )

r=li=] j#i r=]i=}
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Figure 6.3: (a) The Labelled Graph (1) Matrix representation
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+F.ShPath(i) + R.RemSP(x) + B.Cost(x) — C.zvtr(i) ) vy

The first part composes the connection matrix and the sccond part the external
input. The first two terms in the second part are dynamic inputs, i.e they are
a function of the outputs, and always decrease. The other two terms are static
(constant), and always decrease the energy. The last term increases E but is never
greater than the total sum combined of all others. The evolution of the system is
then modelled as

Ugi

N
Au = (ZT"J'UJ' - —T— + I,‘)At

j=l
which we iterate as u;(t + 1) = u;(t) + Aw;. On making appropriate substitution,

we get the form :

) N M
Aug = | —"'f — A Y vy = PRow(x) = Q.1 — scta(i).Col(i) — F.ShPath()
y=1j#i

!

—R.RemSP(x) — B.Cost(x) + C.zvta(i) ] At

We now explain this in detail. The first term is due to the time constant of the
circuit (the damping term), and the second one inhibits all the other nodes and edges
in attempt to minimize the overall number of 1s in the solution. The third and fourth
terms are ’syntatic’ constraints, in that they only facilitate effeetive representation
of the graph problem. The fifth term acts as inhibition to the nodes in attempt to
eliminate those nodes that have large path lengths to all the other Z-nodes. The

sixth term inhibits those edges that do not change the overall length when removed.
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The last term excites those nodes that have to be there for a valid solution. We give

the energy equation details as under :
1.

N M

=PY > V.iRow(z)

z=] i=]
This term is zero when there are only two 1’s in a row to depict an edge.
otherwise it increases the energy. The function Row(x) checks to see if row

has only two 1’s and returns 1 if it does not.

7f 2, 1 Vi = 2
Row(z) =

1 otherwise

N

szv,,. zeta(i)).Col(i)

r=1i=1 1
!

This term increases the energy if the S-nodes have only one edge (degree 1).

otherwise it remains zero. This is to remove 'dangling’ edges in the graph.

Vif oM vi=1
Col(i) = s=iy

0 otherwise

M N
=F Z z v i ShPath(i)
r=] i=1

Energy is desired to be minimized when the shortest paths are sought from

each node to all the other Z-nodes. This is cffectively the case for any S-node
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that exists in the optimal solution. The function ShlPath gives the sun of

distances as computed in the preprocessing stage.

M N
E;=R) > v.iRemSP(z)

=] i=l
The energy increases if RemSP(x) returns 1 due to the fact that the removal
of edge 2 does not effect the cost. Thus such unecessary edges are minimized.
RemSP(x) returns zero if edge is either very crucial or just as important (due

to the difference heing either positive or negative respectively).

4 AlN
E;=B Z Z v iCost(x)

r=1i=1
Those edges having high cost increase the energy and thus through minimiza-

tion, less costly edges are ldesired to be determined.

E; = C.zeta(i)

We seek to enforce Z-nodes to be present in the final solution in order that a
valid solution be generated. This external bias is positive and increases the
energy but only marginally since it has influence only when no other inhibitions

are significant.

An example showing the computation of the RemSP values is shown in Figure

6.5. Edges are labelled in boxes and tabled in the first colummn. The second cohunn
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'sum ol shoriest paing sum ol shortest paths Difference of
E on end nodes without edge on end sum1 - sum2
sumi nodes sum2
0 9 " 9 1 0 0
1 9 10 9 12 0 -2
2 9 7 16 10 7 -3
3 7 10 11 12 0 -2
4 11 10 11 10 0 0
5 10 10 10 13 0 -3
6 7 10 7 11 0 -1
7 7 9 7 11 0 -2
8 7 10 7 10 0 0
9 10 9 10 9 0 0
10 10 10 10 10 0 0
1 9 10 13 10 -4 0

{c)

Figure 6.5: (a) Graph with labelled edges (b) After RemSP (c¢) Table of values
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in the table computes the sum of the shortest path to all Z-nodes from cach of the
end nodes of the corresponding edge. The third column does the same thing but
without the edge. The difference is given in the last column and the corresponding
edge that has its difference value zero is portrayed as a dashed edge in the illustration.
These are the edges that get inhibition in the network so that they are eliminated.
An example where the Cost and ShPath function values differ in terms of locating
suitable edges is shown in Figure 6.6. Here the main confusion comes from paths
that are equal in costs. Edge 3-6 has a direct edge of cost 3 and a path via node 5 of
cost 3. However, the network determines one of the solutions correctly since larger
edge costs are eliminated first. The network gives the first graph in Figure 6.6¢ as
the solution.

Figure 6.7 shows how the shortest paths alone do not help in determining all
tLe nodes that will be there, and the RemSP procedure shown in Figure 6.8 deter-
mines vaguely the necess#ry edges. The edge 0-2, is not determined by the RemSP
p:rocedure but the shortest path weight removes it on node 0. The edge 2-3 is also
not determined by RemSP, but is removed due to its cost being high as is edge 1-6.
Edge 2-3 however, determined by RemSp to be deleted, appears in the solution due
to its low cost. Only the cost function effectively deletes the high-cost edges.

Figure 6.9 denotes how the RemSP procedure does no edge deletion at all. and
we must resort to the shortest path procedure which determines the node that

could be included and thus directs search into better solutions. We mention that 1o
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(b)

Figure 6.7: (a) Graph with labelled edges (b) Shortest Path to all Z-nodes
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Figure 6.8: (a) Graph with RemSP computation (1) The Solution
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single input determines the complete solution and thus a collection of such inputs
is desirable.

It is noted that the dynamic equations have more of inhibition than excitation
and the energy would not settle to a value until all edges have been deleted, making
the change in energy zero. Thus, the termination of the iterations should be exter-
nally activated upon some condition. For a valid solution, since it is required that
the shortest connecting network must contain the given vertices. whenever a Z-node
Just begins to be eliminated, we stop at that point. This can he detected through
a summation of the outputs in each column of the matrix for cach of the Z-node
to determine its absence. A trigger can then be incorporated to stop the iteration.
However, in order not to loose the previous neuron outputs, they should he stored
in a register as the solution. Figure 6.10 gives the layout of the network and the

trigger for the Z-nodes als of Figure 6.4.

6.4 Computa:tional Results and Problems

We have tested the network on some random graphs with a varying number of Z-
nodes and S-nodes (the sum being under 13). The results are depicted in Table 6.1.
The parameters A, B, C. F, P, Q. R were empirically determined and are different

for different size problems.
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Figure 6.9: (a) Graph with labelled edges(h) After RemSP (no change) and ShPath
weights on nodes (¢) Optimal solution by network
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Figure 6.10: Terminating the Network
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We note that the network does not have any global information that would
help in the choice of edges in a dynamic way. Also the case of avoiding multiple
paths is not understood. Figure 6.11 shows the case where the alternate path is not
discarded for the graph of Figure 2.1. The problem is aggravated by the paths being
not edge-disjoint and at times having many cycles. Another problem is of obtaining
fragmented subgraphs of the solution. It is not known how to connect these in the
optimal way. Figure 6.15a shows the graph and in b, the effect of ShPath (weights
on nodes) and RemSP (dashed edge). The possible solutions are in 6.15¢ and that
obtained by the network is d. Figure 6.13 shows a plot of the energy with number of
iterations. Sometimes we get oscillations in the energy valies. although it decreases
until net termination as shown in Figure 6.14.

We introduce a post processing stage of MST construction. This removes the
cycle but in a greedy fashion. Figtlre 6.12 shows the solution strategy. However.
when the neural output contains forests, an MST to connect these introduces com-

plications (in a greedy sense) and would lead to non-optimal solutions.



Z-nodes | Edges | No. of nodes | optimal A,B,C,F,P,QR
0.4 0.4 10 2 0.5, 8, 2, 2, 700, 700, 1, 30
0.4 0.3 5 4 0.5, 6, 2, 2, 200, 200, 1, 25
mixed ratios 15 1 different values

Table 6.1: Results of the Neural solution to the Steiner Problem in Graphs

P8
o}
o ©

Figure 6.11: Alternate paths in solution
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Figure 6.12: Solution Flowchart
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Figure 6.13: Energy against No. of iterations for a 7-point graph problem
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Figure 6.14: Energy against No. of iterations for a 5-point graph problem
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Figure 6.15: (a) The Graph (b) with ShPath and RemSP (¢) optimal solutions (d)
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This last chapter concludes the research with the contribution this work has made.

\

In addition the neural solution and its extensions ave discnssed, |
For the Rectilincar Steiner Tree Problem, this rescarch lias shown that by con-
sidering only the relation of each point and its closest neighbours, it is possible to
determine all the steiner points that would reduce the length to a minimum in a
localized area. These closest neighbours compose the Minimum Enclosing Rectan-
gles, which we have defined, and are coustructed with respect to cach point in the
local area. The local area is the region where all such points ‘influcnce’ cach other

and is effectively its cluster. Steiner points exterior to this cluster arc determined

in a greedy way and only if they reduce the inter-cluster distance between nearest

90
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points on the periphery of the nearby clusters. Thus considerably less steiner points
are generated than that given by [Han66]. Other methods of [Ric89], [SLL80] and
[Hwa79b] do not generate all the necessary points. In addition this work has exam-
ined in detail the point connections that are possible between clusters and defined
the types of connections.

The clustering is performed using a 'nearness’ metric, and the algorithm pre-
sented is tested for two different metrics, the Nearest-Two Neighbours and the
Nearest-Neighbour. Results for random uniformly distributed points show that the
Nearest-Neighbour gives slightly better results. When compared to the work done
by previous authors, this algorithm matches the best worst-case time complexity of
O(nlogn) with the average ratio of our results better than the results of the similar
worst-case time complexity.

A neural network solution to the Steiner Problem in Networks is also presented.
The model uses the continuous Hopfield recurrent network for optimization. A
representation scheme is formulated, using pre and post processing. The network
does not compare favourably with other optimization techniques, and has various
limitations.

Recent research of Bhaumik [Blia94] which was brought to our attention by R,
Braham, has tackled the Euclidean Steiner Tree problem using the asynchronous
update of neurons. His network determines steiner points through an ordering of

points that provides the constraints which are mapped onto the energy equation.
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This approach is bottom-up, and the solution is determined from all the negated en-
ergy states, one that has the maximum energy and hence that will produce the near
minimum connecting length. Our neural approach tackles the generalized Steiner
Problem in Networks in a top down fashion and has been tested for general random

graphs.

7.2 Future Work

This work can be extended in the following ways:

1.. A parallel version of the Clustering Algorithm could be derived, particularly

with the recent advances of computing the Voronoi Diagram in parallel.

2. The neural formulation could be improved using other information derived

from some properties predetermined from special types of graphs.

3.: Obtaining neural solutions to the polynomial-time algoritms of the Single
Source Shortest Paths and the Minimum Spanning Tree which we use in pre

and post processing. These problems are of interest in their own right.
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