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INTRODUCTION

Let G be a graph with vertex set V = {#,-..,v,} and edge set E. Denote
by L(G) the n-by—n matrix (a;;), where a;; is the degree of the vertex ¢ when
j = i;a;; = —1 when j # i and ij is an edge of E: and a;; = 0. otherwise.
While L(G) depends on the labeling of V. its characteristic polvnomial does not.
I A < Xy £ --- ) are the eigenvalues of L(G), then A\, = 0 and X,_; > 0
if and only if G is connected. For connected graphs. the eigenvectors of L(G)
corresponding to A, afford “characteristic valuation” of G. a concept introduced

by M Fiedler [9].

Chapters II and IIT explore the “characteristic vertices” arising from charac-
teristic valuations of trees belonging to a family with specified properties. Trees
with three end-vertices togther with caterpillars are investigated. The location of
a characteristic vertex is also compared with that of a center or a centroid of the

tree.



Chapter 1

Basic Properties of the Laplacian
Matrix of a Graph

We begin the thesis with an introductory chapter which consists of the basic
definitions and concepts of graph theory and the Laplacian matrix. The origin
of the problem with a historical background is given in the second section. Some
of the known results about the Laplacan matnx are also presented. In the last
section, we give the types of trees, introducingi the characteristic edge and the

characteristic vertex together with some examples.

1.1 Basic Definitions :

A graph G = (V, E) consists of two sets: ga finite set V of elements called
vertices and a finite set E of elements called edges. Each edge is identified with
a pair of vertices. The vertices v; and v; associated with an edge e are called the

end vertices of e. The edge e is ther: denoted as e = v;v;. If the edges of a graph

2
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G are identified with ordered pairs of vertices, then G is called a directed graph.
Otherwise, G is called an undirected graph. All edges having the same pair of end
vertices are called parallel edges. If e = v;v;, then e is called a self-loop at vertex
v;. A graph is called a simple greph if it has no parallel edges or self loops. A
graph G has order n if its vertex set has n elements. A graph with no edges is
called an empiy graph. A graph with no vertices (and hence no edges) is called a

null graph.

An edge is said to be incident on its end vertices. Two vertices are adjacent if
theyv are end vertices of some edge. H two edges have a common end vertex, then
these edges are said to be adjacent. The number of edges incident on a vertex v;
is called the degree (ralency) of the vertex. and it is denoted by d(v;). A vertex
of degree 1 is called a pendant verter. A vertex of degree 0 is called an isolated
vertez. §(G) and A(G) denote, respectively, the minimum and mazimum degrees

in G.

A graph G’ = (V', E) is a subgraph of the graph G = (V. E} if V’ and E’ are,
respectively, subsets of V" and E. The graph G = (V, E') is called the complement

of a simple graph G = (V, E) if the edge v;v; is in E’ if and only if it is not in E.

A walk in a graph G = (V, E) is a finite alternating sequence of vertices and
edges w, €;, ¥1, €2, - - - . k-1, &k, Uk beginning and ending with vertices such that v;_;

and v; are the end vertices of the edge ¢;, 1 <i < k. A walk is open if its end
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vertices are distinct: otherwise it is closed. A walk is a trail if all its edges are
distinct. An open trail is a path if all its vertices are distinct. A closed trail is a
circuit if all its vertices except the end vertices are distinct. The number of edges
in a path (circuit) is called the length of the path (circuit). A graph G is cofinected

if there exists a patk betweer every pair of vertices in G.

Two graphs G, 2nd G- zre said to be isomorphic if there exists a one-to—
one correspondence between their vertex sets and a one-to-one correspondence
between their edge sets so tha: the corresponding, edges of G; and G are incident
on the corresponding vertices of G; and G,. A graph is said to be acyclic if it has

no circuits. A iree is 2 connecied acyclic graph.

The Laplacian matrir L(G) (also known as the degree matrix.) of a graph G

with V(G) = {v;,%..... tn} is the n x n matrix L(G) = (a;;), where

degreeof v;, iHi=j,

a;;

e

-1, if there is an edge between vertex v; and vertex v;,

0, otherwise .

.

The characteristic polynomial of G is defined to be the characteristic polynomial
of the Laplacian matrix; i.e. the characteristic polynomial of G = ¢(G,)\) =
|L(G) — M|. The eigenvalues of a graph G of order n are defined to be the roots

of the characteristic polynomial of G. Since L(G) is a real symmetric matrix, the
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eigenvalues of G are real, and so can be ordered as follows:
M2A22-0- 2 A 2 A

- _The sequence of the n eigenvalues is called the spectrum of G. The second smallest

eigenvalue ), is denoted by a(G); and it is called the algebraic connectirity of

G. The family of all eigenvectors that correspond to a(G) is denoted by £(G).

The cartesian product G; x G, of the graphs G; = (V3. E;) and G, = (V3. E)
is defined as G; x G2 = (W x 13, E) where ((u;,u2),(v).12)) € E if and only if

either u; = v; and (uz,v;) € E- or u; = v and (up,»1) € .

As an example, see figure 1.1.1.

A A

Gl Gz Gl X G)

Figure 1.1.1

Let us mention two concepts related to the algebraic connectivity a(G) of a

graph G.

The edge-connectivity of G, denoted by e(G) is the minimal number of edges

whose removal disconnects . Similarly, the minimal number of vertices of G
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whose removal would result in losing connectivity of the graph G is the vertez-

connectirity of G, denoted by v(G).

1.2 Historical Background and Applications of
the Laplace Matrix of a Graph

There are several matrices which max be associated with a finite simple graph
G=(V.E). HV = {1,....n}, then perhaps the most commonly associated matrix

is the n X n adjacency matrix, A = A(G}. defined by

1, if(i.j)eE.

o
0, otherwise.

Since G is simple, A is a symmetric {0.1) matrix with zero diagonal. The term
“algebraic graph theory” may be defined as the theory which relates the geometric
structure of G with the spectral properties of 4. Some excellent general references
are the books by N. Biggs [3]; Cvetkovi¢. Doob, and Sachs [5]; and Cvetkovi¢,
Doob, Gutman, and Torgasev [7]. An explosion of graph theory began in the

1950’s with such people as Coollatz and Singowitz [4] and A.J. Hoffman [12].

Let the edge set of G be {e,,...,ex}. For each edge ¢; = v;vy, choose one of
the end vertices to be the positive end of ¢; and the other to be the negative end.
We refer to this procedure by saying that G has been given an orientation. The

vertex—edge incidence matrix afforded by an orientation of G is the n x m matrix



Q = (g;;), where
+1, if t; is the positive end of ¢;,

;=4 -1, ifitis the negative end

0, otherwise .

.

This matrix Q has been studied by Pomcarré [14). among o:hers.
The matrix that this thesis is concerned with is the matrix defined as
L(G) = D(G) - A(G),
where D(G) is the diagonal matrix of vertex degrees.

This matrix is variously referred to as the Laplacian matrix, Kirchoff matrix, or
matrix of Admittance. The term Laplacian comes from the fact that such matrices
arise when using discretizations in looking for nontrivial solutions to A¢ = Aé on

a region (1.

The origin of the Laplacian matrix can be dated back to Kirchoff [13] in an
1847 paper concerned with electrical networks through the well known matrix-tree

theorem: if L = L(G), where G is a graph on n vertices, then:
KG) = (~1)* detL(i|j}) foralli,j=1,...,n

where k(G) is the number of spanning trees of G and L(i|j) is the matrix obtained

from L(G}) by deleting the i-th row and j-th column.
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Forsman [10] and Gutman [11] have shown how the connection between L(G) =
QQ* and K(G) = Q'Q simmitaneously explain the s:atistical and the dynamic
properties of flexible branched polymer molecules. Inceed. since L(G) and K(G)
share the same nonzero eigenvalues, it follows that for bipartite graphs the smallest
eigenvalue of A(G") > —2, where G~ is the line grzph of G. This observation.
first made by Hoffinan, has led to a new directior in spectral theory [6]. {7
Eichinger [8] has shown how the spectrum of L(G) may be used to calculate the
radius of gyration of a Gaussian molecule. Due 1o its importance in physical and
chemical properties, the spectrum of L{G) is more natu-al and important than the
more widely studied adjacency spectrum. In [2; Bier uses the smallest positive

eigenvalue of L(G) to estimate the “magnifving coefficient™ of G.

Another application within mathematics is in the problem of decomposition
of graphs. The second smallest eigenvalue of L{G) is used in characterizing re-
ducibility. It was proved [7] that a connected graph can be decomposed into two
subgraphs by the signs of the eigenvector belonging to the second smallest eigen-

value.

1.3 Known Results on the Laplacian Matrix

In this section, known results about the Laplacian matrix are given.

Theorem 1.3.1. The number 0 is an eigenvalue of every tree.
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Proof: Let T be a tree of order n, and L is the Laplacian matrix of T. I

1
11. ~

= is a vector of dimension n, then Lii = 0 = Ou. So, 0 is an eigenvalue
1 -

of L. -

Theorem 1.3.2 [16]. Let X > 1 be an integer. If X is en eigenvalue of L, then X

must divide n.

Theorem 1.3.3 [6]. If K, is the complete graph of order n. then L(K,) =nl—J,

where J ts the n X n mairiz all of whese eniries ere ones.

Theorem 1.3.4 [6]. If G is the complement of G, then

L(G) + L({G) =nI - J.

Theorem 1.3.5 [6]. The edge connectivity e(G), the rertez connectivity v(G) and

the algebraic connectivity a(T) of any graph G of order n satisfy

e(G) 2 v(G) 2 a(G).

Theorem 1.3.6 [14]. If R, is the space of all real column vectors with n coordi-

nales, and

=1 1=}

S= {x:(:,,...,zn)TER..; iz;:ﬂ. ir?— 1}.
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then the algebraic connectivity of G = (V, E) salisfies

a(G) = mlg Z (z: —ze)?, or
€ (mee
i<k

a(G) = E‘eils“:TL(G)x'

Theorem 1.3.7 [1}. The algebruic connectivity a(G) satisfies the following prop-

eriies:

by

. a(G) =20, a(G) =0<¢ G is not connected.

o

If Gy = (V. Ey) and G, = (V. E} and E, C E,, then a{G,) < a(G,).-

L]

IfGy =(V.E)), Gy=(V.E,) and E\NE, = 6. then a{G,)+a(G) < a(G5)
where Gy = (V.Ey U E,).

4. If G, is obtained from G by removing k vertices (and incident edges), ,then

a(G,) 2 a(G) — k.
Theorem 1.3.8 [1}. Let G, and G2 be graphs. Then

O(Gl X Gz) = min(a(G,), a(Gz)).

Theorem 1.3.9. For the complete graph K, the spectrum of K, is:

)
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Proof: If L(K,) is the Laplacian matrix of K,, then:

[L(K.) - M| =

n—1-—2X

-

-1

-1

-1

-1

11

n—1-—X

Subtract the first column of |L{ K, }—AI| from all the other coiumns of [L( K, }—

Al}. Then we get:

IL(Ka) = M| =

n—-1-2
-1
-1

-1

-n+A
n—2A
0

0

—n+A
0
n—2A

0

—n+A

n—2\

Now adding to the first row of the above matrix every one of the other rows,



we get:
-A 0 0 0
-1 n-2A 0 0
-1 0 n—X --- 0
I(KL) = M| =] - y - e s = =Am =)
-1 0 0 -e- n—2A

Therefore, the spectrum of K, is:

!

Theorem 1.3.10 [7]. Let G be a graph of order n. Lei G be its complement. If
A =0< Ay < --- < A, are the eigenvalues of L(G), then X' = X, < --- < A} are

the eigenvalues of L(G) where

’ 5
t=n—dusars k=2,...,n

In addition, the eigenvectors of L(G) corresponding to A} and those of L{G)

corresponding to A, ;- coincide.

Theorem 1.3.11. If m is the minimum valency of a noncomplete graph G, then

a(G) < m.

The star S, is a tree of order n, having n — 1 pendant vertices and one vertex

of degree n — 1. ¥Figure 1.2.1 shows the general shape of §,.
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Tn

= I

T ope

Figure 1.2.1

Theorem 1.3.12. If S, is a star of order'-r-zi then the spectrum of S, is:

1-2A 0 0 -1
0 1-2 0 -1
0 0 1-2A -1
!L(S,)—MI=
1 -1 =1 -+ n—1-2)

Add to the last row of |L(S.) — AI| every other row multiplied by (;1;)- Then

we get:
1-2 0 0 -1
0 1-2 0 -1
0 0 1-2 -1
IL(Sx) = M| =
0 0 0 n—1-A-=
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= [n-l-,\- ('1‘:1)] (13- At

= AMA-n)1-2x)?
Therefore, the spectrum of S, is:
g n 1
1 1 n-2
Theorem 1.3.13 {1]. If C, is a circuit of order n, then

a(Cr)=2 (l - cos:i—:)

Theorem 1.3.14 [5]. (Interlacing Theorem). Let G be a graph with spectrum
AL 2 A3 >--- 2 A, and let the spectrum of G — vy be py 2> p2 > --- > pyy. Then

the spectrum of G — vy is “interlaced” with the specirum of G; thai is,

M2m2X2m 222

Theorem 1.3.15. Let T be a tree of order n, and f = (z1,...,2a) € E(T), then:

iz,-:().

=1

Proof. Since the vector & = is an eigenvector of L corresponding to zero,



le, Lt =0u, then each T € &(T) must be perpendicular to it, i.e.

I

- T2 - - =

I= . and ZI-u=0 or Zz,—=0.
: =1
z‘ - -

Theorem 1.3.16. Let T be a tree of order n. Then, a(T) is bounded as follovs:

0=d < Ahay=aTl} <1

Proof. Siance T is connected, a(G) = Ap—; 7 0 (Theorem 1.3.7(1)). Also, using

Theorem 1.3.11, a(T) < 1.
1.4 'Types of Trees

We will discuss two types of trees according to the corresponding eigenvectors
of a(T'). Type I and type II trees will be defined and some results will be obtained

based on type I trees.

Theorem 1.4.1 [9]. Let T be a tree. Suppose = (=1,...,5,)! is an eigenvecior

of L(T) corresponding to a(T'). Then iwo cases can occur:

1.V = {i € V|zi =0} # &, then the graph T = (V,E) induced by T on V is

connected and there erists exactly one verter j € V which is adjacent (in
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T) to a vertex not belonging to V. Aoreover, the ralues of < along any path

starting at j are increasing, decreasing, or identically zero.

2 Ifzz7# 0 foralli € V, then T coniains exactly one edge jk such that =;
and z; hare different signs, say =; > 0 and z; < 0. Moreover, the values of
< along any path that starts at j and does not contain k increase while the

values of = along any path thai staris at k and does not contain j decrease.

If a tree satisfies the first case of the previous theorem. then it is called a iype

I tree, and if it satisfies the second case, then it is a iype II tree.

The vertex described in the first part of the above theorem is referred to as
the charucteristic vertez of T, and the edge described in the second part of that

theorem is called the characteristic edge of T.

Theorem 1.4.2. Let T = (V,E) be a iree. Let g.h € E(T). Thenue V isa
characteristic vertex of T afforded by g, if and only if u is a characteristic vertex

of T afforded by h.

Proof: If a(T) is a simple eigenvalue, then g is a nonzero multiple of A and the
result is immediate from the definitions. So, we assume a(T) is a multiple root.
Let Vg = {v € V|z(v) = 0 for all eigenvectors = corresponding to a(T)}. H V} were
empty, we could find some z such that z(v) # 0 for all v € V. This contradicts

Theorem 1.4.1.



Theorem 1.4.3 [1). I T is a tree. and a(T) is mulliple, then T is of type L

Theorem 1.4.4 [16}. (A Reduction Theorem for Type I Trees). Let T = (V, E) be
I

a tree on n > 4 vertices. Suppose there is an eigenvecior X= : belonging

In

to a(T) and a pendant rertex v € V such that z, = 0. Let u be the verter adjacent
to v. Denote by Ty = (3. E;) the subgraph obiained from T by deleting t from V

and {u,v} from E. Then
(i) z.=0
(i) a(Th) = a(T3)

(iii) X, is an eigenrector belonging to a(Ty), where X is the restriction of X

to V5.

(iv) F(T1) = F(T:) where F(T) denotes the set of characteristic vertices of T.

Example 1.4.1. Let T be the tree shown below in Figure 1.4.1.

0 o
ul»——Cv
>r————-t——o———¢
1+v3 2 0 -2 -1-5
Figure 1.4.1

Then the characteristic polynomial of T is

r(?=3r+1)*(z* -6z +7)
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and a(T) =

2 (.332 has muliiplicity 2. One eigenvector belonging to a(T)

3-Vv5
2
is shown in Figure 1.4.1.

If vertex v and its edge are erased. the result is T3, as shown in Figure 1.4.2.

=3 Anteanst X

—:.’ —1 - V5

Figure 1.4.2

Not only that, but the numbers which remain constitute an eigenvector be-

longing to a(7;). Indeed. the characteristic polynomial of T; is
z(z — 2)(2° — 3z + 1){z* — 52 + 3)

and one can check that a(T;) = a{T). {In the case of T}, % is a simple eigen-
value). We may apply the thecrem zgain by removing vertex u from T, obtaining
the eigenvectors of a(T3) as shown ir Figure 1.4.3. The characteristic polynomial
of T is

z{z? ~ 3z + 1)(z* — 5z + 3).
One can check that a(T;) = a(T). too. Since there is no longer a pendant vertex

of value 0, the reduction process stops.

L A S ——
1+v6 2 0 -2 -1-5
Figure 1.4.3
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Example 1.4.2. The reduction process described in Theorem 1.4.4 and in Exam-
ple 1.4.1 is not entirely reversible. If we increase the degree of vertex v in Figure

1.4.1 by attaching a new pendant vertex to it. we obtain a tree T of tvpe IL

-.61 ~14 -184
*>r—ap—ee

T 6 33 36 1

Figure 1.1.4
The characteristic polynomial for T” is

9z) =z(z —2)(z* — 3z = 1){z* — 422 + 252 — Wz + 4).

3-V5

2

While it is true that )\ =

is ar eigenvalue of L(T"), A is greater than the
simple eigenvalue of a(T”) = 0.243:. An approximate valuation of 7" is shown in

Figure 1.4.4.

Theorem 1.4.5. (A Partial Converse to the Reduction Theorem).
Let T = (V,E) be a type I tree. Choose an eigenvector f belonging to a(T) and
choose w € V such that f(w) =0. Let T' = (V', E') be a tree obtained from T by
adjoining a new pendant vertez u ot w. (So, V' = VU{u} and E' = EU {(u,v)}).
Then a(T) s an eigenvalue of L(T"). If a(T) = a(T"), then F (T)= F(T") and '

is an eigenveclor belonging to a(T"}. where f'(r) = f(v), v €V, and f'(u)=0.
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Chapter 2

Trees With Three End—Vertices

Let T be the family of trees with three end vertices. HT € T,and T is a
type I tree, then what is the general shape of T? In this chapter we will partially
answer this question by introducing the basic definitions and concepts of passive
and aciive branches. Furthermore, automorphism of graphs is given together with
two important theorems. Also, some basic and important theorems for the tree

T € T are given together with the proofs.

In the last section, we give a list of theorems characterizing a class of type I
trees T € T, together with the general form of the characteristic eigenvector of
a(T). Furthermore, the characteristic vertices of these trees are determined and

the values of a(T') are given.
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2.1 Passive and Active Branches; Automorphism

Suppose v is a vertex of a tree T. Denote by T, the subgraph of T obtained
by deleting v and all edges incident with it. A branch (of T’} at v is a connected
component of T,. i T is a type 1 tree, v = wy, the characteristic vertex of T,
f € &(T), and B is a branch at wr, then f is uniformly +, uniformly —, or
identically zero on the vertices of B. Of course, every f € £(T) is orthogonal
to the vector each of whose component is 1, i.e. an eigenvector afforded by 0.
Thus there will always be a positive branch and a negative branch at wr for any

characteristic valuation.

If B is a branch at v, we denote by r{B) the vertex of B which is adjacent (in
T) to v. It will frequently be convenient to view B as a rooted tree. In such a2
situation, we always take r(B) as the root. i v = wr and f € £(T), then f(r(B))

determines the sign of f throughout B.

Let T be a type I tree. Let B be a branch at wr. We call B passive if

F(r(B)) = 0 for every f € E(T). A branch at wr is actire if it is not passive.

Theorem 2.1.1 (15) Let T be a type I tree with characteristic verter w and al-
gebraic connectivity a(T). Let m be the multiplicity of a(T) as an eigenvalue of

L(T). Then ezactlym +1 of the branches at w are active.



Theorem 2.1.2 (15) Let w be a verler of the tree T = (V,E). Suppose B, =
(M, E,) and By = (V5. E;) are two (different) branches of T rooted at w. Let
a : V; = V, be an isomorphism of the rooted trees By and By. (Then, in particular,

ofw) =wc.) Let f € E(T) be fited but arbitrary, then either
(i) fla(v)) = f(r), reW.or

(i) F(T) = {t«} and there is a g € E(T) such that g(r) = —gia(r)) > 0,

wFveEWrandg(t)=0, rgWViul,

Let w be a vertex of the tree T = (V. E). Suppose By = (V1. E;) and B, =
(V3, E,) are two branches of T rooted at w. Assume the rooted trees B, and B,
are isomorphic. We say that f € £(T) distinguishes B, from B, if there is an
isomorphism

a:h =V,

such that f(a(v)) # f(v) for some v € V;.

Theorem 2.1.3 (15) Let T = (V, E) be a tree. Choose w € V. Suppose there are
k > 2 branches B, = (V;, E1),..., Bi = (Vi,Ei) rooted at w. If these branches
are all isomorphic as rooted trees, and if there is a characteristic valuation of T

which distinguishes B, from B,, then the mulliplicity of a(T) is at least k — 1.

Theorem 2.1.4 (15) Let T = (V, E) be a type I tree with characteristic vertez

w and algebraic connectivity a(T). Let f € E(T). Suppose T' = (V',E’) is the
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tree obtained from T by adjoining a new pendant verlezr, p, to w. So, 1" =
Vu{p), E = EU{{p,w}}.] Extend f to a function f' on V' by defining
fi(p) =0. Then a(T’) = a(T) and f' € E(T”). [In particular, T" is ¢ type I iree

with the characteristic tertez ic.]

2.2 Basic Results on the Laplacian Matrix of a
Tree

The next few theorems are just basic results on arbitrary trees of type 1. Some
of the proofs are presented to simplify the restriction to 7. They will be used in

the next section.

Theorem 2.2.1 Let {i,j} € E and z; > 0, z; > 0. Suppose also that verter:
is on the unigue path from vertez j to either the characteristic vertex of T (Case
1) or the characteristic edge of T (Case 2). If the degree of verter j is k + 1, let

vertices t3,13,...1; be the other neighbors of j besides :. Then
1. %<z<z, s=1,..,k
and

k
2 zj—zi=a-z;+ (=, — 2) where a = a(T).

s=1



Proof:

1.

)

Assume that V = {i € V|z; = 0} # 9, then call the characteristic vertex
of T, c. Then any path from c to 1, will be either increasing or decreasing.
(The values of = along this path cannot b:i:ienticall}' zero, since otherwise
z; and z; will be zero.) If the values of = along this path are decreasing,
then z; < 0, =; < 0 (contradiction). So the values of = along this path is

increasing, and so z; < z; < =;,.

Assume that V = §, then the characteristic edge of T is say £, k such that z, >
0. = <0. Consider the path from { to 1, if the path contains k, then the
path from k to i, is decreasing, but z; < 0; so z;,, zj. 5; < 0 (contradiction).
So the path does not contain k, so the path must be increasing for the values

of z. Therefore, z; < 2; < z,.
Since a is the smallest eigenvalue for L, then
Lz =aZ where 2 is the corresponding eigenvector.
Then by considering the j-th element of this equality we have:
-zt (k+1)z5 =2z, =2, — - — 2z, =az;
k
> —z+kzj+z-) z, =az

s=1

E
Szi—z=a5+ Y (2, —35)

=1



25

Remark 2.2.1 Let T be a trec with A\,_; = a. If i is a verter with degree d, then

I3

Jor any eigenrecior X = : | belonging to a, we have:
zﬂ

Y. z;=(d—a)z.

G4)EE
Proof: By the definition of the eigenvalue a, we have:
LT = az.
By the definition of the Laplacian matrix, we will get:

- Z z; +dz; = az; for the z; element in z
UJ)eE

= Y zj=(d-a)x
(.i)eE

I

Remark 2.2.2 Suppose v is a pendant verter with (u,v) € E. If X =

Tn
then z, = (1 — a)z,. In particular, ifa =1, then z, = 0 for every u adjacent to a

pendant vertex. In addition, if z, = 0, then z, = 0, i.c., a pendant vertex is never

an isolated zero of an eigenvector belonging to a.
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Figure 2.2.1

Theorem 2.2.2 Let T be a iree as shown in Figure 2.2.1 which has a path of

order k as a subiree of T. If g = (ay,--..a,)" € E(T), then:

a; = a, fi(a); i=2,....k

where f;(a) is a polynomial in a.

Proof: By Remark 2.22
= as = (1 — a)a; = a; f2(a) where fi(e) = (1 —a).
Again,
a; + a3=(2 —a)ay
= 03=(2 - a)ag - ay
=(2—a)(l —a)a; —a, =[(2—a)(1 —a)—1]a;
= a,fs(a) where fo(a) = (2 —a)(1 —a) — 1
a; +a,.2=(2 - a)a;,

= a;=(2 — a)a;_y — a;_2
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Assume that the statement is true for a;.a;,-..,a;;.

a;=(2 - a)a; fi—1(a) — a; fi—2(a)
=a; {(2 - @) fimila) — fi-2(a)]

a;=a, fi{e).

Theorem 2.2.3 IfT is a tree of order n, and the diameler of T isd, then a(T) <

2(1—cos;:—l).

Proof: Let n =d+E+1andlet X; > X2 > -+ 2 A1 > Ax = 0 be the eigenvalues
of T. If we have more than one longest path, then specify one of them, say P;.
Remove one pendant vertex which is not belonging to P, (say 1,). Let T be the

tree obtained after removing v, having the spectrum:
pV > a0 > > B, s Wl =0
By using the Interlacing Theorem 1.3.14, we have:
M2pP 2222 2 s e = =0

Again, remove one pendant vertex v; which is not belonging to P, to get the

tree T;. Let the spectrum of T; be:

2 2 2 2
P> > 5,0, =0
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Using the Interlacing Theorem, we get:

2 ) 2 1
p) > pi >pP > >y >0, 5 42, =P =0

We remove pendant vertices which are not belonging to P, k-times so that we get
a path of order d + 1. Let yg') > pgﬂ 2> - “(0 = 0 be the eigenvalues of the
tree T; after removing the vertex v;. Agzin. applyving the Interlacing Theorem we
get:

k (| =2 1
PRI e D SLEG R SO S W

r.—s—l
but by Theorem 2.3.3 u);_, = a(P1) = 2 (1 — cos 3%5). Aoy =a(T) = a(T) <

(1 OS g ¢+1)

2.3 Towards a Characterization of Type I Trees
with Three End—Vertices

In this section, we will study all trees T € 7 which are of type I, giving
their general shape. We will also locate the characteristic vertices of these trees.
Furthermore, we will give the general formulas for a(T) with the corresponding

eigenvector(s).

Theorem 2.3.1 IfT € T is e tree of type I, then the multiplicity of a(T) is not

more than 2.

Proof: If the multiplicity is more than 2, then by Theorem 2.1.1, the active

branches are at least 4. But we could only have 2 or 3 branches.



k
k »n k
- Figure 2.3.1

Theorem 2.3.2 If T is of order n = 3k + 1, having the shape shown in Figure

2.3.1, then:
I. T is of type I.
2. The only characieristic veriex is vy
3. There ezists { € E(T) such that [V]| =1 where V' = {v; : f(v;) = 0}.

Proof: The three branches rooted at v; are all isomorphic as rooted trees. Call
them B;, B, and B;. Assume that there is no characteristic valuation of 7" which
distinguiskes B; from B, B, from B;, or B; from B;. H we have f(v), v €
B, is somewhere positive and somewhere negative. then according to our first
assumption f(B;) and f(B3) will be so, and this contradicts Theorem 1.4.1. So,
J(B1), f(B2) and f(Bs) are either all positive or all negative.

By Theorem 1.3.15, f{vs) = — 3 f(x:). This result again contradicts Theo-
wey

i#3
rem 1.4.1. Therefore, this is a contradiction to our first assumption. As a result,

there exists a characteristic valuation of T which distinguishes two of the branches.
According to Theorem 2.1.3, the multiplicity of a(T') is at least 2. By Theorem

- 1.4.3 the graph is of type 1. Also, by Theorem 2.3.}, the multiplicity of a(T') is 2.
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Now, if the characteristic vertex wr # 3, then we wil. hzve at most 2 active
branches, but by Theorem 2.1.1, we should have 3 active branczes at wr, and we
have a contradiction. Therefore, wor = v5. Now, since we tave 3 active branches

at wr = v, V = {us}.

Theorem 2.3.3 6] If P, is a path of order n. then the €:gentciues of L(FP,) are

M =4sin? () k=01.2....n-1 a(R) =X =48 {Z).

Lt} v2 U3 i Uk:x Vis2 Tok T2kl

Figure 2.3.2 -

Theorem 2.3.4 If Poy;, is a path of order 2k + 1, labelled cs shown in figure

(2.8.2), then:
1. The path is of type I.

2. The only characterisiic verlez is wr = vpq).
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3. The multiplicity of a(T) is one, and if § € E(Pus1), then

([ o )
a, f2(a)
. ay fa{a)

a, fi(a)
o

—a; fi{a)
—ay fi-1(a)

—a, f3(a)

—ay f2(a)
N e
where a; is a nonzero real number, and f;(a) are polynomials in a.

Proof: Let f € £(Pas1) and f(v;) = a;. By using Theorem 2.2.4,

f-(vk"l'l) = alfk'l-l (a) = azk+1fg+1(a)
= (a1 — azx41) fiva(a) = 0.

241
i a; = eapy1 then either Z F(¥) # 0 which contradicts Theorem 1.3.13, or
=1
we will have more than 2 characteristic vertices which contradicts Theorem 1.4.1.

Therefore, fiy1(a) = 0 and f(viy1)} = 0. So, the path is a type I tree. Since we

don’t have more than 2 branches, then by using Theorem 2.1.1, the multiplicity
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of a{T’) is one. Again, by Theorem 2.2.4,

(

By using Remark 2.2.2:

ag + ary2 = 0 = a = —agy4a.

az
a, f~(a)
a; f3(a)

aifi(a)

o

azi41 fi(a)

-

8241 f>(a)

\ @21

/



So a, fi{aj = —az41 fila). Since fe{a) #0, a; = —an4,. and so

( )

a, f>(a)
a; f3(a)

a, fi(a)

Sy
"

o

—a, fi(a)

—a; f3(a)
—a, f2(a)

\ "%

V2k42

i

Vg Uky) Uky2 Tk U2k

Figure 2.33
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Theorem 2.3.5 If T is of order n = 2k + 2, having the shape shown in figure

2.8.3, then:

1. T is of type L.
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2. The only characteristic rerter is Wy = viyy-
3. V = {vn41, 0542}
4- ofT) = 4sin” (z577)-

5 If B = (M,E,) and B, = (V3. E;) are the two (different) isomorphic
branches of T rooted af v;yy. and a : Vi — V, is an isomorphism of the rooted
trees B, and By, then ihere ezists | € £(T) such that f(v) = —f{a(v)) >

0, v¢ {1'2k+131’2k+3}- and f(riq1) = flvars2) = 0.

Proof: Let Po;; be a path of order 2k + 1, then adjoin the vertex 42 to
the vertex viy;, obtaining the tree T shown in figure 2.3.3. By Theorems 2.1.4

and 2.34 a(T) = a(Pusn) = 4sin2( ) and if § € £(Pairy1) such that

x
2(2k+1)
§(v) = —g(a(v)) > 0, vis F v € Wi, and §{vi4y) =0, and f is the extension of §

by defining f(vr42) = 0, then f € £(T) and so T is type I tree with characteristic

vertex wr = vgy). Therefore all parts of the theorem are proved.
Theorem 2.3.6 Let T be as shoun in figure 2.3.1. Then a(T) = 4sin® (ﬁ;—l))
Proof: By Theorem 2.1.2, we will have two cases:

1. there exists f € £(T) s.t. fle(v)) = flv), veW,or

2. F(T) = {w} and there is a § € £(T') such that g(v) = gla(v)) >0, w# v €

Vi,and §(v) =0, v g V, U V4.
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The first case is illustrated in figure 2.3.4 and the second one is illustrated in

figure 2.3.5. Both cases could be proved by the same technique used in proving

Theorem 2.3.5.

*——eo——o ... *——o—eo—o—o - —e

aQ a g Oy G 0 a:ay g 0

Figure 2.3.4
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In Theorem 2.3.3, we have proved that there exists f € &(T) such that the
first case is satisfied. Since the multiplicity of a(T) is 2, there exists two linearly

independent vectors §;.g € £(T). H g, € £(T) satisfies the first case, then

(b
b,
b
0
b

jJ|
ll

by

—2b;

\ 20,/
Now, if g2 also satisfies the first case, then
( a \

az

ak
0

ax

o
i

az

—Qdk

k-—?al y



and by Theorem 2.2.2 we have

(& )
a, f2(a)
ay fa(a)
a1 fi{a)
0
61 fi(a)

a; f(a)
ay

- 2&1

—2a; f>(a)

\—261/z(a) )

51
a,gz

This implies that

g1 and g; are linearly dependent (contradiction).

Therefore,

g2 cannot satisfy the first condition

=al

1
by

Ja(a)
Ja(a)

Jila)
Jila)
J2(a)
1
-2
—2f(a)

(1)

\—2fx(a))

—q) =0

g satisfies the second condition.

3

-

Remove the pendant vertex v with gi(v) = 0. By Theorem 1.4.4 (Reduction

Theorem), we have the tree Tx_, ~ith a(Ti_1) = a(T') and go[i- is the eigenvector
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belonging to a(T;_, ), where §a|;_, is the restriction of g2 to V;_; = V—{v}. Repeat

this technique (k — 1) times until you get the path Py, with a(Poryy) = o(T)
k

and @y, is the restriction of > to Vo=V — U {v:} (where &(v:) = 0). Therefore,
=1

P
- T

by Theorem 2.3.4, o(T) = 4 sin® (z(T:-.-l_))

I T2k4s+1
o V2%kys
Takg2
*>—e ... ﬁ—I—o ..~ *~——e
Ly ] V2 Tk Vigl Vg2 U2k V241
Figure 2.3.6

Theorem 2.3.7 If T € T is of order n = 2k + s + 1, having the shape shown in

figure 2.3.6, where1 < s <k, then
1. T is of type L
9. The characteristic vertex wr = vpy;.
3. a(T) = 4sin® (m;—ﬂ)

{- If B, = (K, E,) and B, = (Va, E;) are two (different) isomorphic branches
of T rooted at vp4y and a : V; — V, is the isomorphism of the rooted trees By
and By, then 3 g € E(T) such that g(v) = —g(a(v)) >0, wvipp FveW

and g(v) =0, v¢gWKUW.
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L} T2 Uy UVii1 Tis2 T Tousil

Figure 2.3.7

Proof: Consider all the trees T such that 1 < ¢ < k as shown in Figure 2.3.7.

We have, T = T,. and by The Interlacing Theorem 1.3.14. we have:
a(lh} 2 a(Tz) 2 ---2alTs) 2 --- 2 a{Ti).
Since a(Ty) = a(T;), then:
o(Ty) = a(Ty) = --- = a(Ty) = -+ = a(Ts).

Now, for the tree Tj, there exists §; € &£(Ty) such that §(r) = —gi(a(r)) >
0, wiya F v €W, Glven) = Gilvargz) = 0 where a : Y} — Vo is the
isomorphism of the two different isomorphic branches of T, By, = (W4, E;) and
B; = (V4, Es) rooted at viyy. Adjoin a vertex varys to the vertex vary2. Since
a(Th) = o(T3), then by Theorem 1.4.5, F(T;) = F(T3) and §» € E(T3), Ga(v) =
ai(v), v € V(T}) and Ga(ver4a) = 0. I S = 2, then it’s done. Otherwise,

in the same way we can prove that, for the tree T3, 3 g5 € &(T5) such that
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@(v) = &(v), v € V(T3) ané Fftac:3) = 0. Continuing in the same man-
ner, we conclude the existence of the g, € E(T) such that §(v) = —g(a(r)) > 0
Tip1 # v € W and §(v) =0, £ 17 U V5. Therefore, all parts of the theorem

have been proved.



Chapter 3

Centers, Centroids and
Characteristic Vertices of A
Caterpillar

In this chapter, we will introduce centers and centroids of a graph G. If
T € T and F(T) is the set of characteristic vertices of T, then should the center
and centroid overlap the characteristic vertices of 7?7 We will see that the answer
is no. Furthermore, we study type I caterpillars together with their centers and

centroids.

3.1 Center and Centroid

Let T be a tree. A branch rooted at v € " is a maximal subtree containing
v as a pendant vertex. (The number of branches of v is d{v)). The weight, w(v),

of v is the maximum number of edges in any branch at v. A vertex v is a centroid

4]



pointof T if
w(r) = mig w(u).
u v wl
[ 2
ur: characteristic edge
w: centroid
Figure 3.1.1
Example 3.1.1 Let T be the tree shown in Figure 3.1.1. Thex the characteristic

polynomial is z(z — 1)*(z® — 1625 + 91z* — 23223 + 2662° — _16-— 11) and a(T) =
0.1288129 is a simple eigenvalue. Moreover, T is of type I cad F(T) = {u.v}.

But w is the unigque centroid point of T .

The eccentricity e(v) of a vertex v of a connected grzapk G is the number
max d(u,v). The radius rad G is defined as min e(v) wiile the diameter diam
3€V(G) =€V(G)

G is max e(v). A vertex v is a center point of T if
v€V(G)

e(v) = xunex‘x,x e(u)
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vw: characteristic edge

u: center

Figure 312

Example 3.1.2 Let T be the trec shown in Figure 3.1.2. Iis characteristic poly-
nomial is z(z — 1)%(z® — 182° + 109z* — 288> + 33627 — 146z + 13) and o(T) =
0.1179743. In this case, F(T) = {r.w}, but u is the unique cenier point.

K T € 7, then we lzbel the vertices as shown in Figure 3.1.3

I Ukglis+1
b2 2 2

Uk4t42
——e --- 0—1——4 .. -——e

u 02 Tk Ukl Ub42 T+t Vk+i4l

Figure 3.1.3

Theorem 3.1.1 If T € T such that T is a type I tree then the only center (cen-
troid) in the tree T is the characteristic verter vyy,.

Proof: If the centroid o is not v;;, then w(o) 2> k+ s +1 > w(vey) = k which
contradicts the definition of a centroid, so vy, is the centroid. If the center C is

not vx;,, then

e(c}2k+1>e(oeqr) =k

pac
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which also contradicts the definition of a center of T, so t;., Is the center.

Theorem 3.1.2 If T € T such that T is of order n = k + € + s + 1 where

E>€6>s2>21,

k£ and s are the orders of the branches of T af try, then if

kE+(+2

k 4+ is even then the only center is ————, and if k + ( is odd, then the only

cenlers are >

k+£f+1 andk+(+3.

‘)

Proof: Assume that k 4 £ 1s even

e(m)

- 9
efi) =i-1 (k—';—i1<isk+£+1)
kE+¢
2
‘,
ej)=k+€-j+1 (1$j<-k-ié—'{"—')
2k+l-£-—:—[+l
_ ke Lkt
= t>
=m-1 (E+84+2<m<k+l+s+1)
> (k4l42)—1=k+t41> 2L
2
= The only center is —’Eiét

Assume that k£ + £ is odd

k+é+1 k+t-1 k+(-1
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{k+t—1 l.-+l-‘-1}
= max -

2 2
_k+E+1
-2
E+E€43 E+£41 .y E+-£+1
(4 5 = 2 I - L= 9
_ fE+€+1 E=E-1
- 2 2
_E+E+1
- 2
e(i) = i—1 £i§i§<i<kvi+l)
E+£6+3 1_k+t+1
e e

eli) = k+L—(i-1) (151'5&—"?—‘)

= k+l—j+1
k4t E+l+1
> k+t-—-—%+—l+1=—'f;—

e(m) = m-1 (k+€+2<m<k+{+s+1)

k+&+
> (F+€+2)—1=k+t41> 71
=> The only centers are Eié:—l- and Ej#-

Theorem 3.1.3 IfT€T isairecof ordern=k+{+s+1 vherek>l>s2>

k—£€—~-s+2

1, k,£ and s are the orders of the branches of T at viy. Leti = 2

Then:

1. Ifi <1 then the only centroid is £ + 1.
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2. Ifi > 1 then if n is odd, then the only centroid is £ +1, and if n is eren. then

the only centroids are { + [t} and £+ 1] + 1.

Proof: =7

1. Assumethati:ki;’—""<l:

k< (+s
wif+l) =k
wll+j7)=L+s+(G-1) (2<j<k+1)

>(+s+1>E+1>k=u(l+1)
w(n) =k+l-n+l+s (1<n<{)
SEk+l—Cl+1l4s=k+l+s>k=w(l{+1)
w(im) = m-—1 (k+t+2<m<k+l+s+1)
2k+l+2-1=k+l+1>k=w(l+1)

= {41 is the centroid .

2. Assume that : > 1 and n is odd:

Hi=1then k=¢+5 and

w(l+1) =€+s=k

w(l+j)=Ef+s+(7-1) (2<j<k+1)



2L+s+(2-1)=(+s+1>k=w(f+1)
w(n) =k+l-n+s+1 (1<n<)

SE+l—t+1+s=k+1+s>k=w(f+1)
w(m) = m—1 (E+(+2<m<EkE+l+s+1)

>(k+£+2)—1=k+€é+1>k=u(f+1)

= £+ 1 is the centroid .

Hi>1then k> f+ s, and

w(l+1i) = w(ii:ir_%)

-

L f—s+2 L f—
=max{¥—l—:—s, L-.;.(-EI_[_‘)_SLz_H}
_k+e€+s
T2

. E+t—-s+2 . . _k+¢£

w(l+i+])=w(—t—,,i+—+1) (IS]S%)
E+l+s
= —5—+J
E+e

__>_k+:+s+l :,T = w(f +i)
win) =k+d-n+l+s (1<n<9)

> k+l-C+l4s=k+l4s> FiTE iy
w(m) = m-1 (k+€é+2<m<k+€+s+1)

2(k+l+2)-l=k+(+l>k—+-§—ti=w(l+i)

wl+l)=k but k>L+s=222k>k+l+s

S k> 5—+—;—+3=>w(t+1)>w(z+i)
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w({+f) = max{{+f-1+s, E+(-({+f)+1}({+2<Et+ f<—F—

KL+ f =552 then:

E+e~ k+f—s-
u:(t+f)=max{——%—f-—l+s, k+(———,,—.s-+1}
3 E+¢€
=m{+_Hs__l,+_9+_s+,}
2
So,ift—:25t+fsf+—,f-'—’,then
e+ fy=k+l—(E+f)+1
2k+£—k+[—s+l=k+£+s+1
2 2
>———-k+:+s=w([+i)
. . . . . k—l—-s5+2 .
Assume that £ > 1 and n is even. Smoenlseven,t=——§—-1snot
an integer. So, if
t1=-—=2>k=0+s+1

-~ owlw

w({+1) =
v({+2) =L+s+1=k
w(l+j)=LC+s+(-1) B3<i<k+1)
>l+s+(3-1)=f+s+2=k+1>k
w(n)=k+l—n+1+s. 1<n<Y

2k+l-t+1+s=k+1+s>k
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w(m) = m—1 (E+(+2<m<E+f+s+1)

> (k+(+2)—1=k+{+1>k

=> £+ 1 and £ + 2 are the only centroids in this case.

Assume that i > 2, then

E>£f+s+1

w(l + i)

w(l+[i]+1)

w(q)

w(m)

w(l+[i] +7)

D E+l—-Et+1+s=k+1+s>

> (k+0+2)—1=k+l+1>

= I -1+ (2$j

_ E+l—s5+1
= w —2—

> —1+$, k-i—[- > -

{l‘+l—s+1 E+€~s+1 }
max { ————— —_— 1

9 ° 9 9

E+l{—s-3
w 2

{k+t—s+3 E+l-s+3 }
max { ————— —_t1

{k+£+s-1 k+£+s+1} E+€+s+1
max = -

5 —1+s, k46— 5

kF+€+s+1 kE+l4+s—1) k+€+s+1
max > y > = >

=k+€l—qg+1l+s (1<¢<y

k+€+s+1
—

£

=m-1 (k+{+2<m<k+L+s+1)

k+€+s+1
2

E+2-s+1 <k+l+s+l)
- 9

2
E+e+s-1
——

|
._k -1
+i> +:(-;-s

+2

E+€+s+3 k+e+s+1
2 > 9 .

= €+ [f] and £ +-1t] + 1 are the only centroids.
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3.2 Center and Centroid of a Caterpillar

A caterpillar C is a tree such that if we remove all pendant vertices, we get
a path. A list of caterpillars showing the iocation of the characteristic vertices,

centers and centroids is given in the next page.

The circle O indicates that the vertex is z cexter. The square O indicates that
the vertex is a centroid. The triangle A indicates that the vertex is a characteristic

vertex.



o——(@ 0<

0q

adq

od 3
< adg

od
q

o<
Pransnra.
(u ]



A list of caterpillars of order n. 3 < n <9 is given in Appendix 4.

Theorem 3.2.4 If a caterpillar is of the shape shown below. wheren = i+j+£+1

and j > t, then:

o]

. Ifj <1+ £€+1 then the only centroid isi + 1.

]

. Ifj = i+ L+ 2s (where s is a natural numberj then the only centroid is

1+s+1.

Rl

Ifj =i+€+2s+1 (where s is a whole number), then the only centroids are

i+s+landi+s+2.

i jrls] 553 a0
*r——o——o—o --- ~.- *——o—e
1 2 3 4 i i+l i+2 i4+j i+j+1
Figure 3.2.1
Proof:
1. Assume that j <i+ £+ 1, then:
w(i+1) = j
wn)=(i-n+1)+j+¢ (1<n<i)

2(-i)+1+j+e=1+j4+€>w(i+]1)
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w(m) =n—1>uw(i+1) ((+j+2<m<i+j+L+1)
wip) = (p—1)+¢ (i+2<p<i+j+1)

>(E+2)-D+e=i+L+1>uw(i+1)

So i + 1 is the only centroid.

2. Assumethat j=1+{+2s

w(i+s+1l)=max{i+s+£j—s}
= max{i+ s+, (1 + { +2s) — s}
=max{i+s+ i+ {+5}

i+s+1¢

w(m) = (i+j+1)-m+t  (1<m<i)
>2@E+5j+)-i+l=7+(+1
=1+€+2s+L+1=i+2+2s+1>w(i+s+1)

wi+l)=j=i+b+2s> w(i+s+1)
wr)=t+3+1-n i+2<n<i+s)

v

UL+ +1—(i+s)=i+Ll+s+1>w(i+s+1)
wip) =p-1+¢ (i+s+2<p<i+j+1)
S+s+-14+L=i+s+l+1>w(i+s+])

w(g) =i+j+¢ (+i+2<g<i+j+l+1)



i (4042 2=+ U+ 2> w(i+s+]1)
So, i+ s+ 1 is the only centroid.

s+ 3. Assumethat j=t+£{+2s+1

w(i+s+l)=max{i+s+{j—s}=max{i+s+6i+(+2s+1—s}
=max{i+s+lizs=(F1}=1+s+(+1
w(i+s+2)=maxfi+s+1-(j—s—1}
= max{i+s+1+ L z'f[+i<+1-s-—-l}= max{i+s+1+£.i+(+s}
=i+s+{=1
wim)=(+3+1)-—m={( (1 <m<i)
= (i+i+l+2s+1)—m=¢
=% 42U 42 +1-m> U +A+2+1—i
=i+ U+2s+1>uw(i+s+1)=v(i+s+2)
wi+l)=i+l+25>uw(i+s+1)=w(i+s+2)

wiry=i+tj+l-r ((+2<r<i+s)

%425 +2—r 22+ L+25+2—(i+5)
=i+l+s+2>u(i+s+l)=w(i+s+2)
wp)=p—-1+£2i+s+3-1+¢ (i+s+43<p<i+j+1)

=i+s+€+2>uw(it+s+l)=w(i+s+2)

w(g) =t+5+¢ (i+7+2<qg<i+j3+£+1)

Psc
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= P25 +1) +E=2i+2A =2~ 1> w(i+s+1)=w(i+s+2)

So,i+s+1 and i + s+ 2 are the only centroics.

Corollary 3.2.1 If the caterpillar is of the shape shown belor. wheren =k +(,

then:

by
i

IfE < {+ 1. then the only centroid is 2.

te

Ifk=£+2s+1 (s is a natural number), then zh2e only centroid is s +1.

8. Ifk = {+2s (5 is a natural number), then the oxiy centroids ere s end s+ 1.

Figure 3.2.2

Proof: This is a direct consequence of the last theorem by putting : = 1 and

i+2=k

Theorem 3.2.5 Let C = (V, E) be a caterpillar of order n, and let B, = (W, Ey)
and B, = (W2, E3), Vi N'V; = ¢, be two isomorphic (but different) branches rooted
at v € V such that any verter of a longest path of C &clongs to ViU Vs, then v is

the centroid of C.



i?.'sc

Figure 3.2.3

Proof: Let Bj arise from B; by removing the vertex r and the adjacent edge.
Also, let B arise from B, by removing the vertex v and the adjacent edge. We

have:
Vi=Vi-{v} ad V=V,—{r}

where V]’ and V] are the sets of vertices of B and B; respectively. Let V3 be the

set of vertices which are adjacent to v and not included in Vj U V5.
w(v) = Y| -1=|Wn]-1
wu) = (Vi - 1)+ [Val + 7 ve uy;

where r is the length of the path between v and u. Since |V3] > 0 and r >

1, w(u)> w(v). Also, if p € V3, then:
w(p) =n—1> w(v).

So, v is the only centroid of C.
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Theorem 3.2.6 Let C = (V. E) be a caterpillar of order n and let B, = (1. E,)
and B, = (V5.E;) be two isomorphic branches rooted at v, and v, respectively,
where t; and v, are adjacent and deg(v,) = deg(vy) in C. Suppose also, that any
verter belonging to a longest path in C must also belong to V; U V,. Then, both v,

and v~ are the only centroids of C.

Figure 3.24

Proof: Let B! arise from B; by removing the vertex v; and the adjacent edges.
We have:

Vi=V.- {u}

where V! is the set of vertices of B!, (i =1,2). Let V" be the set of vertices which

are adjacent to v; and not included in V] or V,.
w(vn) =V +[V;] +1

w(v) = [V + Vil +1



Psc

since |V | = [V;| and [V]] = |V3], we have:
(o) = wles) = V7T + W]+ 1.

I p € VU Vj, then:
w(p)= N7+l +1+ [Vl +r

where r = gg{ lengtk of the path between v; and p}. Since {17[> 0. [V{ >0
and r > 1, then:
w(p) > w(v,) = w(vz).
Hge V7 ulg, then
uw(g) =n—1>u(n) = w(r)

So, v, and w; are the only centroids of C.

3.3 Type I Caterpillars

In this section. a characterization of.a class of caterpillars of type 1 is given.

Theorem 3.3.7 Let C = (V, E) be a caterpillar of order n, and let B, = (W, E;)
and By = (Vo E;).V; NV, = ¢ be two isomorphic (but different} branches rooted
at w € V such that any vertex of a longest path of C belongs to Vi U Vs, then
F(C) = {w} and there is a g € E(C) such that g(v) = —g(a(r)) >0, w#veW

and g(v) =0, vgliul.
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Proof: Let C- = (V-,E") be the caterpillar ob:zained from C = (V.E) by
removing all pendant vertices incident with « and 2ll corresponding edges (see
figure3.2.3). Let a : V; — V; be an isomorphism of the rooted trees By and B,. Let
f € E(C*)e fixed but arbitrary. We need to prove that f(a(v)) = f(v), rveW
is not satisfied. Assume that fla(r)) = f(r). v € \5. HC" isa type II

caterpillar, then one of the following conditions shouic happen:
1. f(v)>0.wv#v€C and f(v) <0.
2. f(v)<0,wv#veC and f(w)>0.

3. 3,020 € W} and m.v, € V5 such that firsi = firy) > 0 and f(v) =

J(v2) <0.

In (1) or (2) we will get 3 characteristic vertices {2 characteristic edges) which
contradicts Theorem 1.4.1. In (3), we will get either 2 or 4 characteristic edges

which again contradicts Theorem 1.4.1.
If C~ is a tvpe I caterpillar, then:

If v; € Vi(V5) is the characteristic vertex of C” (f(r1) = 0) then 3 v; € Vo(1})
such that f(vy) = 0. In this case, we will have two characteristic vertices which
contradicts Theorem 1.4.1. If w is the characteristic vertex (f(w) = 0), then

Y flw:) <Gor Y f(vi) > 0 which contradicts Theorem 1.3.15 So, we have
, €C* ", €C*
v Fw v

proved that f(a(v)) = f(v), v € ¥, is not satisfied for C*. By Theorem 2.1.2,
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applied to w. we have F(C™) = {r} and there is a ¢ € £(C"? suck that
g(r)=—g(a(r)) >0, wF#reliandg(r)=0 vglitW,.

Now, adjoin a new pendant vertex p; to w, so V() = V- U {p}EMW = E~ U
{{p1,c}}- Extend f 1o a function f©*! on V¢! by defining f!}ip;} = 0, and then
applving Theorem 2.1.4, the new caterpillar C® is a type I izee. f* € £(C™") and
a{C™) = aC™). Apply the same technique to C™® to get C'? with f” € £(C™)
where f?) is the extension of f!) on V? by defining f®)(p-) = 0 where V?) =
V& {p,}. We continue applying the same technique until we gex C = C @) where

¢ is the number of times the technique is used.

Remark: Actually, it is found that this theorem is true not only for caterpillars,

but also for any tree T. The same proof is used.
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Appendices

The results below were obtained with the help pf Mathematica.

Appendix 1:

Appendix 2:

Appendix 3:

Appendix 4:

The eigenvalues of all trees with three end vertices; 4 <n <
14.

The second smallest eigenvalue with the corresponding eigen-
vector for all trees with three end vertices; 4 <n < 14.

The eigenvalues of all paths of order n with the eigenvector
for the second smallest eigenvalue; 1 <n < 14.

The second smallest eigenvalue with the corresponding eigen-
vector for all Caterpillars of order n; 3 <n <8.



U ooreey | uesoe | £ | eozere | serozn | 1 | gvovsso | sueszio o | 6l
o
oLt 5L otsevy | ossere | ooz | ¢ | seert | svstecco | zoverzo | o ¥eL
L
8
LS el , weaver | soovee | weszwz | sevsst | ocozet | ersioro | eoossto | o | coL
ﬁﬁ‘ —— e
DGR W X copveey | 1enve | vooeve |t ¢ | ouseso | coconro | o | 2oL
8
L5 5 N 6 L. veeery | cevoee | tozeoe | eseos | ¢ | tosezeo | ctsoro fo | 1oL
v
L ievivy | costore | contoe | seses | oseteeo | ssstuco | o] cLL
)
l
LT sveey | vsasoe | teveze | wvsors | zerso | szeoszo | 0 eil
L
IR A ceozey | wooce | esssve |t 1 seseeo | o | el
JL
sy et Lp ouzoey | comee | ¢ | vezeso | sesisco | o | zon
R
gyt Ty t 1809¥°€ t coorzeo | o] 1oL
j
Voot o| 181
A
n.luﬂl_. ’ 1 1 o] L
yivip 7 tl o 1 o ) ] L ] ] v ¢ t !

PT S uS p lsanma pro 00 M

foDI) [Jv Jo sonpuataBio oy, T xipuoddy



WIIHe'Y | wnbpte HiKL L ....::.c.s._ PTTDVY ) oot FAT T N LHORGI'0 1} LoLs,
]
)
ot
Tt o8 vttt |
— wesor'y | vesoke | Luzoos | tcore t 1igot's | eezeseo | revtezo | zesuvio | 0 | 00LL
')
)
L e vt
’ seurky | somiwe | wserz | covioe t o1t | veovzoo | ooeteco | szestio o] soll
] )
0l
TV Lo s ¥ ¢t |
_ suee'y | oozese | owesre | oeabet ¢ { t totesveo | sisoero fo | vorl
ot
v L A G VL]
~ creeed | comnoe | emvmore | cownore | eveoyn | aorget | vssesL0 | 99013C°0 avzetrro | o} cotl
[1]]
o A o : sy
’ _ eeove'y | conize | vtosoe | torore t wivet | sizeoeo | eLstovo | sseeut’o | o | Totl
ot
eV L o 0 ¥ ¢ &1
e —l.. puseL’y | VLLOLL »uze't gsroue'e | voseL'l 1 { tCLoEY'0 gsLot'o 0] totl
o .
T Tt T
L b hdand ety gobky soviet t sioeee | oovsy's [} tLeoue'o £008¢1°0 0 sel
2 .
(] _

I A
cormr | 1espe | comue | avorwe | sosaet | veeosero | oustaco | erdorro o f vel

L]
]
L 0 9 ¥ ¢t 1
—1 vare'y | icetee | vsouee | ogziue | cieae’ gueesr'o | vevszro | sIZrG60'0 | O | FAL
U
v g v 0L 1
n..:.r!.o.!onl.l.—l....!. iy | teeowe | peeLe | ST £098' | teysiL'o | teeetso | etrorto | O telL

Lo tiseamrwes: | see messmeaeas | asammt mamrnsinne |12 e o o

Yl H cl tl " ol 0 L] i v g 14 £ 1] 1

IO PO SRR PRSVEE el TR B it b i

o?&



TToT 6 ¢ L o s v ¢ E 1
. _ wore'y | eosowt | tuvewe | coovore | coezue | susera | ovees't | zozai'l | eeozlo torsrs'o | ozcror-o | yizoteoo el
]
I8 8 ¢ b 4 v ¢t 1
_ gupLL'y jeovere | ssoswe | cevore | v | vibsore | tooes't 1 1 600g9s'0 | scove'o | Lezsssoo 1e1L
_ ]
Twol 6 ¢ ¢ 0§ ¢ € T 1 -
~ . wereeh | tezewe | congee | weotwe | vaoees | Legret | 69ug'y | 09US6L'0 | 6LEOOVD | EYSHITO 1r10180°0 STiL
t
T T 0 g ¥ ¢ ¢ 1
. ot | reteve | soovee | totewe | cosvre | vevser | oot | MIELLY'O | 290861°0 LHOINI0 olIL
(] N
ot
1
0 L b e vt E 1
. v GOlLY'y | soeeyt | vitkeL ¥orog't [ 4171 ggucL's 1 606LOL'0 | 1E£T6EL0 sigott'o LLL
ol
1]
T T Lo Vv ct 1
veeovy | aeseoe | aiwere | vzeve | overee | vesswt | teevrr | szovovo | slicie’o svezilo 911
ol
1"
T v Lo s retl
worrd | upuese | weosos | costos | eorwz | gotest | escir’t | 2eezero vo616L0 | 68DL68°0 eMLd,
o1
"
Y YT O A A - )
_ oy | soovore | guteee | wroee | rotoree | ozgel ! otLsrs'0 | zoozoco | 919cL60°0 i,
1]
o6 0 L v ¥ttt .
_ aweeey | oegee | seeers | veorere { coserc | coovwt | souzet | 209609°0 Le1zre0 | 699L£80°0 s,
" : ,
6 8 Lo ¢ vttt 1 - i - %
— _ puore'y | zevere | szroze | costoct | froeece | 1eve't | vi00z0'0 | oostseo | LerLes00 .t
[
O T S A
.!.ol..t..l.............!.-l—l.. touLe'y | Leitv e [T T poouL’t | 1icol'e | ourirl ] z0ui18°0 | s4ocec 0 | 8SAINSO0 (34 Y
n ) o
wwp | wl T L " 01 o ¢ L 0 8 y ¢ )

g



of 6 ¢ L 0 ¢ v £ t 1
wiere | soeee | voovee | ctverre | vovve'z | cesrece | versst |opsett | 818L08°0 | £8LO2FO zo0861'0 | Zeses0'0 oIgIL
1
41
£l
fTor, 6 8 L 9 & ¥ t
e s peery | orseene | sovgwe | cenews | coere | soosrie | oeestisty | oL6T°1 | 6420000 | BA9RYS'O Loviet'o | 1¥10180°0 6cLL
"
ti
7ol 6 6¢ 0 ¢ ¢ €& ¢t [ -I
- seeevy | teweee | rosere | otsuoe | vooevz | soteze | oouse’t | votor't | 1626080 s1veor'o | sesiozo | 8z6zeL0’0 Se1L
tl
¢l
TTor 6 ¢ L 0 ¢ v £ L 1
s ooy | vewoee | tvores | segwore | costoe | eetore | 1sozuy | ooiez't | 899L48°0 | 99618C°0 1192'0 | ¥9§92L0°0 LetL
tl
]
ol 6 e t 0 ¢ v € ¢ 1
. veovk'd | servwe | ceoeve | vreowe | coutoe | eotvze | coLLy | vEnTE | LOZLEL'O 9968€°0 | 68960C°0 | ¥10$90°0 9e1L
tl
t
tiiiol o &8 2 o0 ¢ v t bt 1
ese * _ stawy | seuvee | wiseoe | vizgoe | sivove | cusiice | 00800't | Gvece’t | DIEKOLO 1908080 | tecezz'o | 61r6L90°0 SeLL
£
tiiioL o & L o0 ¢ ¥y ¢ t I
¢ _ poove'y | ogpes'e | oovure | ceser'e | cvouwe | Ligie | 6080° | 1 tL08v'0 | cepacz'o | Lorr9n0'0 yeiL
¢l
YTor 6 8§ L 9 9§ v €t 1
' _ coseer | wouces | Leovre | viveoe | oscerz | coveo'r | szeov'l | 1¥SCC’l | £OSSIE'0 TO6LSY'O | 9¥9EOT'0 | $60V90°0 teLlL
11 .
wwp | m £l tl " ] (] ] L ) 2 ’ t z

>



triror 6 8 L 90 % ¥ C $01
LLOF'Y | YOKVE'E | LISV | DLOBL'L | wLeewE | ToutCe [ oLkeb'l | Zy8U1°T | LO66OL O | LOICZE'O | 88064L°0 | ZT0Z2080°0 L
11!
12
tTTTor 6 ¢ L D¢ F U &1 -
' 1 corw'y | vsviwe | soasee | Luovot | towtve | 6tLove t 90000’) | LoZe0'l | 980CID'0 | voGIBL'D | DTLIST'O | 812960°0 WL
¢l
11
cLer tLol 6 8 L 9 ¢ v ¢ & 1
_ aveut'y | teonL'e | eveope | counie | ttwoot | Lotweis | oLoot't | SOvOL'Y | ¥BL8YD'O | 6LOTOS'O | KOSIBI'O | ¥OL1890°0 CTIAN
11
T 6 8 t 08 v E |
b “o 1 ooget'p | voT08'C { QLIOUL | woubl's | tOuLLE | boski'E | OLEOL'L | BUKEL'I I TOCUL'0 | 6CYSSY'0 | LOOSGI'0 | 129$L50'0 (12N A
2}
steittol ¢ ¢ L O ¢ ¥ C &
o= ~ et L IOBC'Y | LDLPYL | otOOYE | o0ift | Sutus't | oLeuL'y t Lerop't 1 ¢g0018°0 | pYZEOK'D | ORCPIT'O | L8019%0°0 Wil
1 2]
grettror 6 ¢ ¢t 0 ¢ ¥ £ C
v ~ o1 toett'y | voraee | saocwe | oeeione | Lotol'e | 2ttovee | troul’y | SRG1VT | OELDITY | 16¥L60°0 | 17091K°0 | TOYSTL'O | TEECHSOO ({20 A
"
a8 1ot vt tT ] ) .
~ LOpTe'y | vees'e | L080D'C | SKOI'C | bURIL'T | 6lOCT t cavey't | 9c8Ye0°0 | CIVZOK'O | 621YET°0 | 12092900 ML
1]
treeiror ¢ ¢ L0 ¢ v £ k1
LR R S R LR I h kit ML 1TV A0 A A RTVITTA O AN T TN Y AT AT T 74 118 YT A B 41T O R ET I ooy | roozeyo | oLrotzo | cictisn'o TR R
2} y
————— T ey | e | e [ e v | e emseriam s . . .
LA A L poend v | oooakwr | voaure §owuweoce | oouere | orearice | onedwn) | dogoz't | swsueeo | weRIcrn | roteslio | eteesdo’o tieLd,
1
141
¢l
LTTS) 1] ¢ t " o o ] L 0 e ] £ z




01 6 6 ¢t D ¢ ¢ £ ¢ 1
e teeov'y | oozewt | suebwt | ovo1ee | LMD | SLkET ] E0RLY 1 tevvugeo | gtoozr:o | sioozio (1{{8A
ol
i
11}
¢l
0t Porcaeeu.q
puek'y | teusory | coctgs | vevoL'e | wiveL'z | cived t gt ! c1oreL0 | evezey'o | S19021°0 | 8¥26160°0 PIFPIL
]
t
¢l
¥l
Tiol 6 e ¢t o ¢ v € ¢ 1
geory | ovtwsee | vseeoe | svanne | couewe | tvere | Lestett §oLeazo’t | CoLIS dL2060°0 | £SO1s¥'0 | LL66EL°0 | LP10180°0 cirtl
t
1
1
Tvol ¢ ¢ £ 0 ¢ ¢ ¢ ¢ 1
* il v |oepapy | torpe v | 22oure | viere | crsowe | gonee's {4 vosor't | wesicy | couzero | Zrceobo | LZESSI0 | 619L0°0 tivilL
tl
¢l
. vt
ol 5 4 Lo ¢ F ¢t 1 ~ ) -
LOL A L A S et pure | vinowe | eoveere | unovee | uiuset | vosere | coor’t | eavest putel’t | tocgr'o | szceve'o | L9owet'o | LL0LL90'0 L
11}
Tl
H
titiolr 6 9L 9 0¥ £ ¢ 1
- ovey'h | voLkL'e | to100°C | 1vuL0'C | LbRLLE | SLKLCT t oeutg's | zooort | usvetoro | L8eg8K0 | clekLl'o | Ti9L90°0 oIyIL
)]
2]
fiiroi 69 1 6 ¢ v €t 1 i
- geave | voroge | vzove | eookt't | cOBIOE | bOURK'T ¢ vorss'l I £0£9L'0 | opsisc'o | Z90861°0 | LL9S¥R0'0 [{IRA
ot
1
. Wwp 3 | ] " ot ) 8 L ) g v £ (4




L0 g ¥ et |
.!....'.!..l,.!.ﬁl,. coazet olan0Log 0-|1zzei v o-|usreue’o: peeyL00'0 18814170 |ayriTtojeoszet0 L1L99t o 181 |€
. 8
. g vect 1
) - ¢ tootoroleeseyz ol sootovo] zeaLye'o 0 ¥9956¥°'0-(100208°01 posteeo £LL
9
L
p ¢ Vb ¢t 1
.......l..l.ﬁ..l...l. £09201°0|v0D88Y'0-10¥200C (" ogzcyiio-| vLzozt o {y6101E0 g9t61F°0| £2£092°0] TLL
' L . .
9 ¢ ¥ ¢ t |
..!Illcl‘ﬁl\. 1eeoeg o eevocL'o] [8808°0 999¢LL'0 | $81080°0° 116811°0°|1269£9°0° Leeszeo) 1Ll jL
L
g v t & 1
Lo ans pashi 0 Le0V'0 | 289082°0 0 796982°0° LEOY'O* 99618E°0Yy 291,
0
—— e .....i_ b e e e e ST PR ISR (SRR Bty Rt — .
) erm e — * aoveor o lveveru o | 66u6oL 0: BELOTLID: YLUeL 0]06SGON'D cogyze'e 194, |9
9
v ¢ ¢t !t .
.Iol.~l.. ccetvo-| zeetyoe | atozo- | 009€€°0 zrzoL'o 9088190 18.L [§
%
¢ ¢ I
.I.Hl.. 1 0 1 1| 1%L ¥
¥ L
vl 0 1] " 01 o 8 L ] g v ¢ T 107 ] I
Hugmeiq) . soyananadi) anprausfig wpjydrION

VIS U S H00A PUD DAY 1IN BODIY || 10 JOTI0A
Ao Tupuodsosiod o) 1 s onjeauDiitn (8ajjeuls PUOddE DT,

17 xipuaddy

14



p ¢ ¥ C 2 1
0 0 [eogzicto{esysct o-{8rogel’o 0 8Y0501°0 | 88¥802°0|602TLE'O 790861°0f S6L
8
6
9 ¢ b € ¢ L
¢ L00Le 0-fgeeeot o |ecocoro|oLovee o) yrgsuz ojyseLyry Q) 9062L1°0" ¥CeL61°0L66LEL°0 6c90L1°0f ¥SL
]
6
9 ¢ ¥ & b1
_ bt gonos2 olvertez o [paz10z:0-|proost 0| 08500 19L6VZ 0] ZOTVLK'O 1629¢8°0| 150968°0 W12r660°0] €6L
6
0 ¢ ¢ ¢t ¢ |
_ LSLLOT0lELvoor'0 | YsLor0- |100082 0| L68E 1"V~ |+618GS0")) 6S10£2°0 zgsoLe 0| uesyeco 61vori‘0l Z6L
6
9 ¢ v € 2 1
Lo ilsasl et S e yeuzorolezunsyoferostyo jusseoro {1g9Lvitolivni9zo’g 20L001'D Lyorego|ecseeco stgsztol 6L )4
6
9 9 ¥ ¢ ¢ | o_
ol aan (e aLuvel-o-ureLer-oq 1oesse of1izILe o) eyeLil’o 2«385._:S:.jas_.a_.o. zorerzol Y.L
L ,
0 .
p 9 v ¢ t 1t .
_ 0 Yo9LVY'0{20168C°0] LEABI’0 0 LEo61°0- [29165¢°0808LYY O too0ge1°0l 8L
(]
L9 ¢ v el )
_ ' a0o0162°0°| 50210°0 |806L6¥°0|9p0T0L 0[8Y 166200 P189EL'0- | 2190V 206265 01 £6£991°0| TEL
]
vl 4] tl 1 ot [ ¢ ) 0 g ¥ ¢ 4 1 ‘O Lot {
Bugawa(| nduanoijy anpeauatlyg upyjydnap v




T B R
¢ A EREARE 0 | A0puae o [ nund o i be o OPRLE'OD | HERKSE - [0} SLAGHE O] ¥ELD%S 1| Yubbad' S_.s:..__ LoLl,
[’
[
01
v s rtee _ r
WCTD1I'0 [¥200880 0 TIngL 0} 6£L0CC'O|22YILL 0| OP1OVUO'D |LOSILBU'OULILLL'O 6VS192'01€¥690€°01 68LY1°0 901L
]
()
9 ¢ ¢ £ 21
szesozo| covsez o [wulotho [peeisero-utect o] aveel-o- |L806610°0)LEFOLIOJTOLSLL 0|6TRE9L'0 PILLTI'Ol SOLL
[}
0t
b s bt t | -
_ 0 ceebubo- urtoob o JLiococ’o| Leiol’o- 0 £2101°0 |€1060£°0|81L80) 0| CHTIOY'O $10021°0f YOIL
ot
D ¢ ¥ ¢ ¢ 1
_ ouscel'olupeutro-leecesr o [wovose o-juuegl o |r10ce000:0 e¥BUYE'0 |LI$98Z°0|ZIBIPC0)STLLELO loveLrt o toLL
ot
o ¢ b ¢ t |
— PUINTT A A Tl | LA (T2 LT ) L182cn'0° | dueeii’0 [pesige o|9k00CL'0{SLSLLE O lesssot o zo1L
ot
9§ ¥ £ T L '
_ ° Y0008y U] 0LEODY'D |LILOIE O[LODOBC O)LECLYL O] SOTL690°0 |CEISI1°0° te198L'0-j09r 1€Y' 018060890 fszot o TOLL ¢ |,
ot
11 e._ 1] I 01 [} [} L ] [} 14 £ 1 ] ‘i 1-uy
Suimei() 10323Auu81 anpwauadig utpy|ydein|

e )

Y



9 ¢ ¥etv i

0 0 [usooLe0-fusyueso-Jeustyzofciesel o 0 £C98z1’0 | 299t 0| 99¥52e0|8600L8°0 $19021°0 LI1L
01
" _
y ¢ v ¢ L |
b PUEZYL'0 [UODIO L 0[11guEY 01 1TONL 0-[02L9W2 0 LEBFD1 O+ [2082C20°0 | £Z8ZL1'0 [08ISIZ'0| bPTESZ O] 1V6IC0 28:.?:&
ot
1
A voeetco-je e ' ‘ ; y ' L # : d ‘
. «fevitogocoLrad'olueeLsroloecioe o] 22LETL 0 (210L800°0|FO1ICE00ZLO0LL 0{2HILRT 0{v9681£ 0 3926600 SITL
ot A
1 1 .
L0 9kt
H YLOAGUN' D TCLOL I OJOSDILL O L0UIAL 0] Y061 V] Z8LOVOO'O|TOLILDO’ O] LOORE 0~ | CYELL U {P¥SISC 0]90S0BE Y 9i9¢CL60°0) PIIL
i

~ YZULOL'D [SLOLLY'D |FOBDSL U [PRSOIL 0 [LOTLOT 0-{THR1080'0180CL1S0°0| 8606L1'0 |OCTLLO[CILLEC Y| 660TLE 0 609LE60°0) CTIL
1"

— rEILEL O |GooLLboldaLICyD|drnigc o(ubLdLe 0] TLOOOI 0 [UROLHCO'0-| OCYPLE 'O~ [¥60802°01L0200C 0°|9C810) 0 Lerlesoq TIL
I

_ * 1900LC°0 [0VSLLI'0-{STVL6C°0[b1 1 L28°0|LV0BLL 0 680LT1°0° | C20CC10°0{ OVSSCI'0 {SCOLTT O VICIEC 0| 1968LE°0 43239 (RIAR
4
143 ¢l tl 1} ot 0 e L v 9 y £ t 1 il 1=%|
Yupmed) 0praanuiig) ydwapy




trirol 6 @ & 9 6 b t t 1
[ cersssoolvereveo-rorseooosvoro| 1eseeo-| ceavro-[eeLtisoo| coreararn | vzozero [ vorozziofzazsezo) sochio | 10269E°0 61¥6190°0] STIL
£l .
erilol 6 8 L. O g ¥y €L |
l eeeaor'o | seesero|vosor-o] ezvevero] cosoew | zovuro | serecooo| Lozesvo'o- | vachs o |9Gh0KL0" 8L901¢°01L5209E°0]66889¢"0 20¥¥990°0) YELL
£l
cLutol 69 L 9 8 ¥ €t
| wovseeo| sozessro|uvivaero] vureco {vervsen| tvreorofsrioouo'o] deercoo- [8oLtero-{101ELz 0 |b208820189T8LE01IBOISED] $60¥90°0 £CIL
tl
eLitor 68 L 9 ¢ Vv €Tl
- _ atssieo | crervo- esosen [oseevo fesriorouiousrodestcesoo] 192v0r00 | 1201zt 0 | vorsteu|s40062°0) 8926LE°0 80819¢°0 rzo190°0 TELL
ol
tLiiol 6 9 L 0¥ €U L 7
_ aovtevo-| sevoevo] renisyo| viwsaco|oreereo|eossrzo| esovoro iaetzaon vy sveszr-o- [acisszo toee'o: 22680¥°06991¢¥'0 1625650°0} TELL |21
el
Trol 68 ¢ 08 b 8l . 7]
_ v |oozzein]atgoveu|uzseoro]peerit e ovtite 0 ouL11°0s [yLevit0-[92us6z U Llg0ne 0082268 0 1¥10180°0 SEIL
11
e L 08 et L o_ -
ieessool eievavoloseotsorofscorueio] eroceor | nerogr-o-| ouvoosoo- | sozecza'ol sssss o |LLvysToLI0SSE Ol 0LOSTY psoset-olorzry) et
ot
{
t
TN ) . ) «
ceosat 0| ueoest o] earvorojzueorso{ stgrozo:| ceezozio- [0zeeren 0 92e8rYO 0|9LISOI D} 9TV OELOLLID £PO1PT0] STLL!
[] |
ol
u'.
M il ¢l "n n 0 v L 9 9 ’ t t T 1T I ¢
Yuimvi() FIMETIYT™ T2 anpeandtiyy upplydvin|v

 aid



——— s was aps

" o ;
i R wvuonu] grupeco | Cucuut o] Erunin] L0FO0C 0] SHOUE'0 | LO0ABLO § ¥IVDOI'O 0 |vestizojovseeto josoveesofetszivo| z | stvozroicid
ot
1"
el N
6 ¥ Lo 4yt |
i ikt ALTTTRT (RN 522..1:::.... giveve'o lususezo | oveert-o-| sutesoo-| ozgrzioto [utget i ojerieLi’of 11vLIZ'0 [SCCOKZ'G seercsooltiell]
1 .
u
RN Lho O PPN S .
..-..im_.:,.... ._.”:..,.._.::. .v... v....m-m ] NIV I i.,.. ‘- N . - . . - L .
cviting, o) esveut ol woxgrojonerbt v e o levousen ] vontuio [uueseso v Jiont oo BUroe0TOIHOLISEN] LEEXEE O FERIO0G B cesveofotetd
f
) 2
11
ot 6 8 L 0 ¢ b € & 1
' * ¢ 0 0 [eutorro-feosote o (ioove o junsost o-uuatesoo 0 D06LO60'0 | 6LL061'0|D899VZ°0| S060ZL 0 EI6ILD 17101800 6811
1
i

ot ¢ 9 t 0 g¢yct |

ceecoro| virvoerolusizivodsarsstujiesizeufosicero] ceaeti:o- [6L82110°0 18501°0 | Luv8I'0 [9T0LOL0 t161c'o |LLi9veo .ogﬂnpcl [ [N 2

!
el .
1Mot ¢ ¢ L0 ¢ ¥ ¢t 1
i anls ¢ vaoovz'o-luerugeo | Lovserolorroree|covueoforocuev] rocuor-o [seostro'ojovesssoo-izreiz-ojesicez o] 69cEEC0” [LEPEIED YoSHLLO0f LSIL
1
]
1oL s 92 ¢ ket |l ) ’
- e deiliead el il Anbihale vaotee'o lonvaneu| vrivvo [uerrero] seeoeo 2ot veo| vyeoer‘o [LeseLvo'o|veinogo i iLovet’0fi12L0L0] 9Y00L 0= {CLEILC’0 r105990°0{ 9¢LL
4
¢t
vl ¢l 14} 1 1] 6 [ ) [ [} y t t 1 NN ol {

Supmva() 1092240095 anjvaualiy n_zﬁ‘n-.o o




- 1
tLtrol 6 8 L 0§ ¥ €2l
LXveoeveo- hwveo| veeeero| vocsov o] covuuero|vooruz o] scvara | sosveoo [veseziorofzsianro-pasotziofussrszofirsorenycerocco- _:2..3. oL
£l
H
Lol 49 L0 8 ket
Ll —o=0 | ygi06e'0 |uotoneru|tcooveo fusuwor-o fizovero [riorveio Jscest-o-| vozent'o- [vevzt 1o 0fwook su 0] w1£601°0) LVBLYE 0} 601082'0| 98296L°0 .:S...ST:._.
£l
7]
CLei1toL 6 v ¢ 9 8 ¥ ¢t | _
_ 0 {10buro NEehtof bUizoro| LovEYE D) COLEL [HONY U [VEDRLUO'O ZVOLE'O" [Z9HEYE'D] ::2.&2:;.:. TN Y :.:.8.@1» 1w
"
gLerttor 6 4 L 08 b bt
- | Leseaswo] cvatovo] toveeo {otveeeo]uevsozojoysugi-ufueszucu vivrarozuovfecrecen ofLeeest o-[voorsz 0{eory is 0 {6uose 0 d 1O8LE 0" 1299250°08 a¥11
"
tLeLiLoL 6 8 L 0 % b € B
. _ o gpaerro veeeveo [vesocu luaveseo fevanven [iaovw o Jezsoun o [uotoivo-| 1616080°0] 6L¥L01°0 | 899YLL 0] LEO8BZ O LEYILE O] 1088HC°0 lLastosod vrud
H
el
CLeLtioL 6 8 & O 4 b & ¢ | :
o Reetes _ olLeeroreo-lervencolvoetos | cereeo fivecoeu]erotoro] sueworro | ivovstoo] revoowo- jusoser-o-Jotoceeofeocrszo fectoerofirsaceso]  feasersogerid
]
cterttol ¢ e 2 0 8 k€& |
. ~ “o| gurorero: [ eeoervo|ssosecol corescofvorioen] eurteo | 2ovzi-o | raviccorofvovoroua [Lisesico-| @1rzios freceiLof1cISC 0] teBOLL 0 [reosesod er1a
"
cLyLtior 6 @t 98y ¢t | A ] i e_
l | gcceecor | rezooeo] iewooeo] szosee'ofvvazaeofusgcoen] uracern| cove2eo'ouL18690°0-|LoLsE 1 0-[L69E1L 0561 192°0 LLpTe 0. | SCCLSLC0- c1e01s0°0 1110 o1
"
¥ tl t " ol ) ] L ] $ v £ t t o un) v
Wupmna() 10930A0094 anfeausdyg wipgyderciv
L.}




or 6 9 &t 9 & ¥ t b ¢

o2 leorsgt 0-levzerto-fioustio-ficoeeio o | eusdnt | ALBLLE O  TLTVEL'D 9090+1°0 [00¥9190°0[v0BEILO 0 J1L6ZLLO'O18GRIL'0 £OLCHI"0799LL81°0 8r26160° 0¥ IVIL]
"
4]
¢l
vl
tmor e ¢ L 08 ¥ €L |
- 0 [} 0 GUUDIL 0 [91016T°0° 0L 1¥2:0:|¥00TL1 "0 1HECT080°0" 0 vecioco-ol soszeLio |¥eLIVE'0[810162°0{69991¢°0 1¥10§80°OETPIL
tl
et
2]
1ot 6 8 &0 ¢ ¥ € 8 L
T 0128£0°0 | SOUELT 0] ZUTE01 0] LELILT O [HEEEOL0 [ILIHNE'Y vougst'o | cespor-oe [eruagruro{veruaool crsreto jocazsi’y L0SLIZ'0]$PHSLL°0 649L0°0§21PIL)
tl

ot

[ LR

i
(T TN S I

LOULTE 0] URINE D] FSUBLL B FEDEUE D T TR R A7 L AR AR U ALV U goLLLr'o |yovvetralviuwior 0] LO6ZIZY nr.._:ba.L::._

bl

a_qbc_ocpo,eva«_

TLYROE0" O VORSRU LIV VI 1ED! SrLuseo- [rargot o [vocvie o | Couy10- 81102800 0806L40°0| ¥060£1°0 | £29972°0 {£99182'0| CLULLCO LIcrI9e'o —n.opeo.qo—:.—.
)]

1]

eirot 6 8 L o & ¥ € B L

catgat'oc|taice o} tvourio] 1rELIVO | LOETDC'G]BNIERE'0 £ovgs1'0|avce8.0'0 cszeeco’o-] Loost 0 | 1698LL°0° Y96L02°01 918E8°0°[1OSTDE 0 LLOSY90°0 1L
]
1

11! 9] 1] }] ol (] 8 L [ g y £ t I g 1LYV t=vy

Fumeig) JUTEEINTR: 1] anjrauafiy upjydeiplu




assorco | veeonro | eeoozeo | wzowwen | wwosozw | wewerew | vsrcoeo | ovicerwo- | veebero- | oesntuzos | 19229te | Z600U0- | VSLUSEO- | BUSSLEO | ZVHIOSUO | I
TLLGHEO" | PRAOIL" oo | vomen- ‘oo | oot ] ciowesve | seezeio | seoosze | tovezro | veesorw | eevsero | venissoo | e
T evero | e | s wegween | cesin _::__:.. “wmono | czoutue | veseveoe | swsseso- | swezeo- | sseroro- | sevtesoo | 2
. e B .:h_._mhv: Wi 0 [ATAXAN] e.;.:....a =. ..s_::.... ) ......... ..-._.”....H-oaﬂ.ﬂ.i -.—M.“..—“yi. —.....n«a_...cn.l CH AT _ccmh—..c.l iriviso'o lﬂ—‘A
B m:.:—.—._n. . ..:.:..Hr._s u.c.n.ancr-.—....._n_.! ..Q—.“..._ﬂ:..s.._. :.M...._“..eac_-,: ARG tgoeoe’o- weenieo- LYyt 0- S0LEVY'U~ L99L60°0 ot

T atere | wasro- | ewooeo- | eeiovos 0 coiot | cloorro | svzeovo | everevo | sisvzro | 6

coenoro | ueasive | seeeeen | tuvseowo | zsveiovo- | seeeezo- | seauivo- | cevosvo- | ovezsio | @

iwniesos | woives | 1zeiceos 0 1eeteeo | cosetro | renizso | zeovsro | o

BLULLL'Y (1R 11T sLtyoki’o serdbi-o- | wveuoro- | 8L9L89°0- 8voLOL'0 .e

108109°'0 SKLLLED ' grLtLc o~ | t08109°0- 99618L°0 g

18LL80'0 ga50LY'0 gggoL'o~ | 18tCy00- y81$89°0 1 4

1 o000 0 1082020~ 1 ¢

! to1000- | o100 t z

' t

2] [§] 1] I ,.l.nc. ; (1] [} . Ilnpl..l [ ] 14 4 T t feuy u

WOI|HIVA 1 MO yud ¥ 8] 1] 01AM (u,1)7 Jo 1012080382 Sugpuodaind ayy fijm Injeauadis ysajpeuis Yy,

.
.

¢ xipuoddy

A . a B



v.:...“m.....v..“......‘.t ...:_..“.__ﬂ....._ | ..H...E._E.... ..ﬂ_:.;_ . :L_._rs. z : .:_..:._. ¢ ) ..«.. o ..:..._..;.e...-. . _Ms”;.c__.. a m.a.“_....h.m..:...- pe..“..n““_l: oG o 14221000 1] 2
R ...S:_..tp.l . l._eﬂ..m..».....,_:: . .,sr.?v._. e 14 y4 :.::.. g _:..:...».._ . ..».Z:..«..r " —..FU._._.:.{.WI ._.p“_.m.w.a M_n. :g..:x..M...n_.! i _g......._l—HII [ (3]
wite's soeeL't -ﬁ.._q..mm., 1 ..: ..w;w«l_..s.n.. ; !.m..:...r., ...!ﬂ.._..sce.- | YYLYeY'L oYOLUT'D Lurigo0'o [} 1

ooutu'e h (P14 183 . LLgne'e . e.e._:..c.u ..r....v.:m..a- ...M...m._t».._”..b. Lisv1t 6LIN09'0 LoriLLo 1H10480°0 0 "

Ienee fugiv'L LugLl'e tustve 14 Loiee) (24324 A1) V9619°C LY8L6V Q o1

[T Y [ITATRY ¢ e L1t § 116L9v'0 g19021°0 0 [

e 1erire LeuL'e t Loree’t 0BLINY0 1§22 1% 0 9

T (T30 By oure'e 101144 11} oL’y 908610 0 L

- T soreL’e [ [ ! 6y6LOL'V [ 9

. Losty'e twin'e setvets 996i8t’0 0 $

1eriv'e 11 08L885°0 0 4

. ¢ 1 0 ¢

t 0 t

[ 1

sy ty ny oy " w w w ’w " sy ey y oy "

1#0))10 14 00 13wl ¥ B 4 UM (ud)1 0 sanqvauala oy,



.!.l.J!. a6ucor-o | grveveo- | ogooe 0~ | e8L01L00~ | 8z90vZ0 | 66SGOL'0 | G9BYZE'O | DO
e ta b 8L0L99'0 | 8VZ80V'0 | GZVEYI'0 | 6ZVOVI0~ | 8KZBOVO— | 8LOLIT0~ | BVGLOT'O | 19D
Q/l 822018°0 | 8220120 | 8220IC0 0 £208¥0°0~ 1 |eso
.I.Jl. teelpo- | weetvo- | cL1ozo- | oosee'0 | 2bzoL0 | 0088ISO | 2SO
et 1091000 | 8KL1L60 0 8vL1LE'0~ | 1081090~ | 99618E0 | 15D
.l.m.... 1 0 0 - 1 (A79]
——— 182690°0 | 8690L2°0~ | 8090L2°0— | 182¢80°0~ | 084989°0 { 1V
e L0120L°0 0 1012040~ 1 1£0

ydwp 8 L 0 ] b £ (4 I Lo

S US e anpio o saepdiogeg) (v 10) 101204
A Spuodeanios ) I anrAt RIS PUOXDS DIL], Y xipuaddy

3

b



o.|o|.ol>lv. TOLOIL 0~ | EBEOIL'O~ | L1910°0 Loeeeyo | 1evezrro | 188222'0 | 28€91£°0— | 2€9962°0 | v2O
e govzot'o | voosoro- | ovusoeo- | pszewro= | vezozrro | vetoreo | goRetvo | ezeooz'o [ €0
v......l...gz...._ o 1200800 z:..:"m... ::s_z... ooneLzn | utosoo~ | 11eaivo- | 1ze0es0- | Lassezo | 2o
bt g g 1B~ :..::.._,., wogn-| o 1meie0 | eootivo | 1nizgo | zonssro | 1o
.N?. 0 0 0 - 0 ! I 990
v.ﬁlj 0L6100°0 | 0£6104°0~ | 6E6108°0~ | 9981820~ | 90818Z'0 | 6£6109°0 | LLVBEVO | 99O
A pnzez 0~ | D0res0- | Beasea'o | crsozzo | vieerro~ | 0o0ztz0~ | £98S8KD | Y92
T 0 1orn | 28908%°0 0 |zesoszo-{ eeovo- |ooorseo|coo
1dwap) Y ) 0 4 v £ (4 I Lo




.I..I...I..l....ﬁl. covzeen | sontogio= | 122610°0- | 4gp002:0~ | VLEKLOOO~ [ 168IVI'0 | GVKLZL'0 | £0076L0 LEL991°0 | 8D

—s | eoeosyo | geuivo | g982LLz0 | 9V0L00°0 | 9vUL60°0— | 98LLLE'0- | GELITVO= | EOLOGKO- 1vezero | 180
ﬁu 0 0 0 0 1= 0 1 1 o1

..l~|t>| ‘ rzonto | zzomivo | otoceo- | ogorgro- | z61evec0~ | 906LKZ0 | 72OZIV'O | 12EBOE0 | 6LD

II%:. 100610 | 1K0001°0= | [0DOY'O=| 611850 pocorgo | 209010~ | 1¥0061°0~ | £6SSOY'0 | 8LD

T .I—I..i..ﬁi. | | .:b;v....: ...H.,S.aav.c _:..“._ma_...qw . ZHUIR 0 o oKEOE 0~ | CLUTRV'0- | 6YOLOZ'0 | LLD
v.lolﬁ.lh.l. 1g1e0po= | 2600110 | zoonva'd | vz000£'0 | 1068vL0°D | #80LZ'0- | 1ZIB0VO- TLITEO | 920

ol..l.>| Mo 0 0 0 802£8%°0~ 0 80L£82°0 | OV0BSK'0 | 90018L°0 | SLO

| ylwp 8 L 9 ] 14 ] (4 ! 4o

Ao OﬂL



.I.JIHI.!. 186802°0 | 2889020~ | 10000y 0= | vespLe'0~ | 9010810~ | 0010G1°0 | V28OLE'0 | 100£09°0 | 28092°0 | 018D
....aI.I.IHz. usov'0— | 6BYY'0 oepo'0 | zezebgro | gzvesro | gavesio- | 2zeviso- | 0809°0— | 6£981°0 | 68O
:ﬁ-ﬁ. apouuro | riepngo- | austiso - | igoropo= | 1162020~ | 1591080°0 | 12129870 | GVGYOV'0 | 289EIZ'0 | 88O
.....lfJJ:. a0 | rozassoo | zotuoo- | uoosouo— | ezeovaio— | 60L0800°0 | BUSLIE'0 | ZLLBVVO | L8aV2T0| 18D
....T...N/....l. worarro | veovgro | Liziewo= | veroowo~ | gctioro= | 2oesutinio | 191v82°0 | GLOBL'O | L8LLSTO| 98D
.I.I..I.I.\A.. ¢80,
I 0 8OSLYL'0 | 2OI0GL'0 | 2E661°0 0 206061°0~ | zo169€0~ | 808LYV'O~ | 200861°0 | V8D
._w_ gontezo- | gozio0 | ostevo | svoicz'0 | Gv166z0’0 | v189ezO~ | 9190V0- | 800L0V°0— | £OEO8I0| €8O
ylway) H L 1] U] v ¢ (4 l Lo

oud



?nﬁ..N—ﬂ.. gizesern | oraueo | otaeewo | otzavo- | 012200 | 16o08e’0~ | 9811270 61286E°0 | 20BLLE'O | BI8D
‘uﬁ p0z121°0~ | 00Z1LT°0- | D0ZILI0= | GELEID'O | DTODEC'O £0CLEB0'0— | D0ZILI'O | £6¥LSY'O | LISD
vIH.IM....HI.. LBOLO0E0 0 Laagageo= | Lzoese o~ | 9L0882'0— 0 gL882'0 | Lzee6cn | 6VOLOTO | 918D
..l»}lﬁ.l. aeelovo- | LeeLten | LLaLiro | niosvao | 880pLL’0 | £V060LOO gavbie0— | 9E910¥°0~ | 699881°0 | S18D
.\le.l\/l.. BRLGGE 0= | BR164E 0~ S.E_ o | ovsuitvo | se160eo | oziosvoro | v0geLn 0~ | 8C169E°0— | EHVBEZ'0 | PIBD
IJ:\A. geourn= | ogougro~ | ovbos1o | BL1a69°0 | 0911ZV0 | ¥0SBZI0 | EVIEIE0- 9L09L°0~ | 108882°0 | £180
ol..l.\z = 0 0 0 4unLab0~ | 260882'0~ 0 720820 | 9968910 | 00618L°0 | ZI8D
rl?lo....\?l o | gogedeo- | go8LLz 0~ | 908220~ | 810L00°0 | £80I8V'0 | ZVZEOI'D | £8100%°0= 408LL2'0~ | LOVLLE'O | 118D
yduip 8 L 9 4 14 £ (4 1 4o

e b



.—.I

0780

o cast s amsm

[T N TR

yuay)

L20089°0=

Care ame i e e

Lz00v9'0-

- . 2200 1

L20029°0~

e aaaan

Y

L%00%9'0~

L200%8°0=

8£09C8°0~

8£69€€°0

1220280

6r2ree'0

6180

4

(4

£

ovs JEC
i



r:}b‘

5]

REFERENCES

. Anderson, Jr., T.D. Morley. Eigenvalues of the Laplacian of a graph, linear

and multilinear algebra, 1985. vol. 18, pp. 141-145.

F. Bien, Constructions of teiephone networks by group representations. No-

tices, Amer. Math. Soc.. 36{1939). pp. 3-22.

. N. Biggs, Algebraic Graph Theory, Cambridge U.P. 1974.

. L. Collatz and U. Sinogowitz. Spektren endlicher Grufen, Abh. Math. Sem.

CUniv. Hamburg 21: 63—77 (1957).

. D. Cvetkovié, M. Doob. ané H. Sachs. Spectra of Graphs, Academic, New

York, 1979.

D. Cvetkovi¢ and M. Doob, Developments in the theory of graph spectra,

Linear and Multilinear Algebra, 18(1985), pp. 153-181.

. D. Cvetkovié¢ and M. Doob, 1. Gutman, and A. Torgasev, Recent Results in

the Theory of Graph Spectra, North-Holland, 1988.

. B. Eichinger, Configuration statistics of Gaussian Molecules, Macromolecules,

13(1980), pp. 1-11.

M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices

and its application to graph theory, Czech. Math. J., 25(100) 1975.



P.’.‘C

10.

11.

13.

14.

13.

16.

63

W. Forsman, Graph theory and statistics polymer chzins. J. Chemical Phys.

65(1976). pp. 4111-4113.

1. Gutman, Graph-theoretical formulation of Foresman's equations, J. Chem.

Phys., 63(1978) pp. 1321-1322.

A.J. Hofiman, On the exceptional case in characierizztior of the arcs of a

complete graph. I.B.M. J. Res. Develop. 4: 487-296 {1960).

G. Kirchhoff, Cber die Aufidsung der Gleichunger. aus Weiche man bei der
unlersuchung der linearen vertielung galvanischer Strome gefurht wird, Ann.

Phys. Chem. ¥2: 197-508 (1847).

H. Poincarré, Second complement if'analyse situ. Proc. London Math. Soc.

32: 277-308 (1900).

R. Merris. Characteristic Vertices of Trees, Linear and Multilinear Algebra,

1987, vol. 22, pp. 115-131.

Mohar, Laplacian matrices of graphs, no. 262 Preprint Ser. Dept. Math.

Univ. E.K. Ljubljana 269, 1988, 385-392.



