An Aid to Similar-Characteristics-
Code Clustering

by

Mohammad H. Al-Huwaidi

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

June, 1997

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

e e s s e e e b
An Aid to Similar-
Characteristics-Code
Clustering

BY

Mohammad H. Al-Huwaidi

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fuffillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Computer Science

June 1997

Vel obel e el el Vel Vel bl el el el el el el el el el el felfelfel el el el e 9 e e el e el

L

X i

%PW#WWWWWW%QTW&T@W@%WT KRR e A e A IEIEIEIEY

UMI Number: 1385831

UMI Microform 1385831
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by Mohammad Hussain Al-Huwaidi under the direction of his
Thesis Advisor and approved by his Thesis Committee, has been presented to and
accepted by the Dean of College of graduate Studies, in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE.

Thesis Committee
A

Dr. JarAllah Al-Ghamdi (Chairman)
AV S\[\\ ﬁ._

Dr. Muhammad Al-Mulhem (Co-Chairman)
/

o e SHEL 1116747

Dr. Mohammed Shafique (Mempér)

—

Department Chairman
Dr. Talal Maghrabi

A A

Dean, College of Graduate Studies
Dr. Abdallah M. Al-Shehri

15/ 6/5F
Date

THESIS ABSTRACT

FULL NAME OF STUDENT: Mohammad Hussain Al-Huwaidi

TITLE OF STUDY :An Aid to Similar-Characteristics-Code Clustering
MAJOR FIELD : Computer Science
DATE OF DEGREE : June, 1997

Software engineers are faced with new technology and left with legacy systems,
that are integral part of an organization. Legacy systems are difficult and costly to
maintain and cannot just be abandoned. They are full of problems and obstacles
that aggravate handling them. Industry and literature have been proposing
schemes to deal with legacy systems and their problems. This thesis will propose
a methodology and a tool to alleviate the problem of dealing with these notorious
legacy systems. The proposed methodology is based on similar-characteristics
possessed by fragments of code scattered in source code file(s). When applied,
this methodology should help with source code understanding, which in wm
enhances legacy systems’ migration, maintenance, and parts reusability.

MASTERS OF SCIENCE DEGREE

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Dhahran, Saudi Arabia

Date
June, 1997

iv

Ul I Lo

&

oAlat Ll sl el b S b e

-~ -

2 25

o

el i

VEVA i ¢t o2 Ry 6
< N

s 3o DL Bs Coeol o e 1pad 3 ol el I A Sl S o i il

oY st ol cowsl ST b ot adl e oSl Iy S, L Ll i e
L s - 4 - —

IR A & (€ o S 7
sl Slie o Sl 5 Tadall gl 2 i W g U, Ol s s sl Y

Sy o it 3 sl g g gl a oI S By DY ads - lane 5 LAkl

e

38 ks cahedl de L ailad aSLadl g ol Ll J e 2 5 Sl ads Lt wSal

Lapk y Jom A g el Y slel Sl Bl o ST aely L By, M1 sl g 3 el

ekl 3 porlll @ s

3 gal 3l S O ghall

e,

VEVA (iwo £

This thesis is dedicated to my illiterate mother whose care, dedication, advice,
wakefulness, children (my brothers and sisters) and many other factors enabled
me to complete a Masters of Science.

ACKNOWLEDGEMENT

Acknowledgment is due to King Fahd University of Petroleum and Minerals for

support of this research.

I wish to express my appreciation to Professor JarAllah Al-Ghamdi who served as
my major advisor. I also wish to thank the other members of my Thesis
Committee Professor Mohammed Al-Mulhem, Professor Mohammed Shafique and
Dr. Al-Zamil, Nabil. Also, I wish to address my gratitude to all of those who
helped me complete my studies, not to forgot those who proofread my thesis, i.e.

Frank Housholder.

Contents

THESIS ABSTRACT iii
List of Figures ix
Chapter 1. Inmoduction 01
Chapter 2. Legacy Systems 06
L Legacy System Problems 08
II. Solution to Legacy System Problems 24
Chapter 3. Code Clustering 40
Tools of Code Clusteringcovuvenvennnn. 41

1. Process Clustering with an Algorithm Based on a
CouplingMetriccovvivvennrnnnnn. 44
2.Cobol/SREcciiiiiiiiiiiiiiinnnn. 48

DISCUSSION & ittt ettt et aeneeenanaaannas 53

Limitation of Existing Tools of Code Clustering 55

Chapter 4. Similar-Characteristics-Code Clustering Methodology 59

Similar Characteristicsof Code 61
Classificationieiiiiieiennnnnennnnns 70
Discussion........ .ottt 73
Chapter 5. Similar-Characteristics-Code Clustering Tool 76
Tool Descriptioncovviiiiiniiiinnneennn. 78
ToolMechanismcovviiiiiiniiinnn... 79
Tool Capabilitiescooiviiiin .. &3
Chapter 6. Benefits of Methodology and Applied Tool 86
Chapter 7. Case Study 90
Required background il 92
1 T3 T) A 93
L 7 97
0. CASE 2 v ittt eitar it 101
0 R 6 T 105
IV, Cased .. ittt iaaenn, 108
Chapter 8. Conclusion 112
APPENDICIES 115

A. Glossary e 116

References

B.

C.

D.

Reverse Engineeringccovvvnan...
Reusabilityocviiiiiiiiiiiiinennen.n

Coupling and Cohesion

List of Figures

1.1

3.1

3.2

4.1

5.1

6.1

Proposal perspectiveseoviiiiiiiiiiiii i, 05
CobOlSRE .\ttt it i i i i i e 49
Cobol/SRE process flowcoveiiiiiiiiennnnnnen. .52
Legacy System fI€€cuveuieinineennenacnncanennens 72
Similar-Characteristics Code Clustering tool flow 77

Similar-Characteristics Code Clustering Tool /O 79

Chapter 1

Introduction

There are a lot of changes and challenges in the world these days. Technology is
rapidly changing. Economics are fluctuating. Competition is reaching its peak.
Therefore, there are many consequences accompanying these phenomena. The need

to overcome or at least deal with these changes is indispensable.

Unfortunately, computer software, which is already complex, has been affected very
much by these activities, which has made software even more complicated [Whit93].
This has caused the burden of the correction effort to be thrown over the shoulders of
software engineers to plan for the future, attack current problems, and solve the

mysteries of the past.

In general, software is difficult to manage and is rather sophisticated. Brooks
compared software to a monster, and stated that the complexity of soft\:;/are is an
essential property, not an accidental one [Broo87]. Even when it reaches a high stage
of development, software may be unmanageable at certain points [Booc94],

[Neum95],[Tile95].

Software engineering, which is the “Development and writing of software using
engineering discipline and practices, rather than the inclination of the individual
programmer” [Thro90], resolved some of the software problems. Although it is not
easy to tackle the problem of software development and management, some existing
techniques can reduce the severity of the problem, as stated in [Broo87] that “There is

no royal road, but there is a road” [Booc94], [Neum95}, [Tile95], [Wegs97].

Software engineering is the discipline that organizes activities associated with
software from its release to its termination. Reverse engineering, is a branch of
software engineering. The main purpose of reverse engineering is to enhance existing
software to lengthen its life, or provide tools that support the reusability of its
components. Moreover, reverse engineering can be integrated within the life cycle of
a software during development of a new project [Chik90], [Benn95]. More about

reverse engineering is found in Appendix B.

Code clustering is a subset of reverse engineering, which is used to bundle related
(usually scattered) code segments according to certain criteria, such as strength of
coupling among processes. Chapter 2 will be dedicated to code clustering and its

tools due to its relevance to this thesis subject.

Similar-Characteristics Code Clustering (SCCC) is a special type of code clustering
that promotes grouping subprograms that posses similar characteristics, such as user
interface related code [Cowa95]. The main theme of this thesis is centered around

SCCC methodology, which will be discussed in details in Chapter 4.

A legacy system is a complex software system [Booc94] that requires intensive
software engineering practices, which in turn may involve reverse engineering to
avoid crises or obsolescence [Snee95]. In many cases, code clustering is

indispensable, especially when migrating legacy systems.

Dealing with legacy systems is a significant part of the whole problem. Legacy
systems are affected by software complexity, technology, economics, people, and
other factors that will be discussed later. The subject of this thesis will be centered
around legacy systems, their inherited problems, and how to help alleviate the severity
of the problem by applying Similar-Characteristics-Code Clustering (SCCQO)

methodology (Chapter 4).

A methodology for Similar-Characteristics-Code Clustering was developed for this
thesis and a tool that is based on the methodology was implemented. This tool was

used to analyze four actual projects. The result of the analysis is shown in Chapter 7.

The relationship among legacy systems, software engineering, reverse engineering,

and code clustering is depicted in the Figure 1.1.

Software
Engineering

Reverse
Engineering

Figure 1.1: Proposal Perspectives

Chapter 2

Legacy Systems

A legacy system is usually one that is an integral part of a certain company and one
that has been around for long time. Generally, it is a vital asset of a company, and
without it the company may malfunction [Loud95]. A legacy system is a set of
software systems that runs under set/sets of hardware to accomplish certain business
needs [Ning94]. It is a large and complex software system that has consumed a
significant amount of resources [Semm95]. It may consist of millions of lines of
code, and it is usually developed and maintained by thousands of people [Aike94],
(Ball96]. It needs ample and useful documentation, that in most cases is not present or
may not be current. It contains valuable assets of critical business rules, that are
embedded in the code and may not be documented anywhere else [Alop96],

[Baum96], [Ricc95]. With time, the legacy system becomes outmoded and may not

take advantage of newer technologies [Brod95], [Semm95]. At some point, its
maintenance becomes neither practical nor economical [Ning94]. Its maintenance
tends to be complex, expensive and may no longer be feasible [Brod95], [Gris?S],
[Semm95]. Most practitioner are opposed to rewriting a legacy system from scratch,
which is neither feasible nor practical in many cases [Amo94], [Benn95], [Brod95],

[Ning94], [Snee95], [Wong95].

l. Legacy System Problems

Throughout the definition of the legacy system provided earlier, a surrounding
problematic atmosphere is tangible. Therefore, with time, the legacy system becomes
more complex [Booc94], deficient and/or inadequate [Lyon95], [Mich95]. A legacy

system becomes deficient because of factors that include:

A. Environment Instability

Environment instability is both constantly changing business work-
flow [Adol96], [Char95], [Lyon95] and rapidly growing technology
[Adol96], [Booc94], [Cimi96], [Davi95], [Lewi96], [Mona93],
[Rama96], [Whit93]. Both of them require design modifications,
people movement, functionality adds and drops, and hardware
upgrades, which result into a complex migration process in order to
recover the consequences. The migration process is mot easy and

susceptible to failure [Brod95], [Snee95].

A good current example of a simple environment instability, which is
costing companies millions of dollars, is the two-digit year

represented, or even stored, for the DATE data type. This problem

surfaced while approaching the 21% century, where a two-digit year is
not, any more, enough to represent the DATE data type. The
consequences of implementing such a new need is quite sever
(Mart97]. Assuming everything else was perfect, the user interfaces,
database representation, and data manipulation have to be modified
accurately and transparently without disturbing the work-flow of the

end user!

Another example is that during early days of computers the hardware
prices were cherished; meanwhile, they had very limited resources and
confined computational power [Booc94]. Back then, the need to write
efficient code and fully utilize these hardware systems was
fundamental. The software at that time was less expensive and
unsophisticated. Yet, nowadays, the table has been turned around.
Hardware is cheaper and more efficient. Software is more involved

and much more expensive.

Poor, Inadequate, and/or Archaic user interface

Due to their nature and rapidly changing technology, legacy system
user interfaces become obsolete and require modification to comply

with current environment and business needs [Baum95], [Cox 96],

10

[Edge95], [Lyon95], [Mark95], [Wins95]. This case is perceptible
during the migration process of a mainframe based legacy system, that
most probably uses ISPF system as a user interface, to a client-server
environment, that most likely uses a graphical windowing system (e.g.

X-Motif or Windows NT).

Cumbersome Data Manipulation

In a legacy system, data manipulation is neither easy nor straight
forward. In many old legacy systems, some of the data are handled
through file management systems [Brod95]. Some other data could be
scattered among hierarchical, network, and/or relational databases.
Strangely enough, there are some data that are embedded within the
code body. Handling and focusing around such data is really
cumbersome. Besides, data manipulation code is not centered and, in
most cases, scattered, which could further aggravate the situation

[Adol96), [Edge95].

Expensive and Impractical Maintenance

Legacy system maintenance is costly, complex, and dreadful

process that sustains exponential relationship with the size of any

11

given system [Ball96], [Bank93], [Benn95], [Booc94], [Brod9s],
[Broo87], [Broo95], [Chik90], [Cons95], [Dods96], [Edge9s],
[Gris95], [Kasp94], [Lern94], [Lyon95], [Makc95], [Mark95],
[Meye88], [Mona95], [Prem94], [Raz 93], [Semm95], [Sher96],
[Star94], [Wins95]. Maintenance cost has been rising dramatically

[Lern94]. More about maintenance will be discussed later.

Continuous and Expensive Resources Requirement

Due to technology and business needs, more resources requirement for
a given legacy system rises. Some examples of new resources
requirement are memory, more powerful workstations, communication
links [Edge95], and many other resources. An example of some
business needs that require expensive and high-tech resources is the
interactive 3D earth modeling of subsurface in order to define oil
reservoir boarder/shape. In order to be accomplished, this need will
add to the hardware cost and software complexity. Technology, also,
will influence vendors to rush (incomplete) features to their legacy
systems, which will, later on, require a lot of maintenance and

complication overheads [Brod95].

12

Improper Documentation

Documentation is one of the biggest obstacles faced in the industry of
software devélopment and maintenance, especially when dealing with
a complex legacy system. This subject has been exhausted throughout
literature and can be sought in many resources such as [Broo95],
[Ingl94], [Ning96], [Sage95]. Usually, the documentation of a
software system is either extravagant or insufficient. Even fair
documentation lacks the components that are required for maintenance
or reverse engineering [Canf92]. In many instances, prevalent
technical data is absent, inaccurate, or outdated. Ingle and many others
are nominating reverse engineering to ameliorate documentation in
order to achieve improved productivity [Adol96], -[Baum96],
[Benn95], [Broo95], ([Canf92], [Dods96], [Ingl94], [Mark95],

[Ning94], [Patr95], [Ricc95].

Software Complexity

Computer programming, as it stands, is claimed to be the most
complex responsibility ever undertaken by mankind. Besides,
software complexity exhibits a nonlinear behavior that has been

experienced by developers since the beginning of programrning

13

[Budd91], [McLe96]. Software complexity is described to be software
resistance to maintenance, modification and understanding [Zuse90].
Notwithstanding, it was stated earlier that a legacy system is a
complicated set of software. Therefore, software complexity is blown
up within a legacy system environment [Brod95]. Moreover, software
complexity implies legacy system complications. Software complexity
is increasing [Wegs97), meanwhile, there are basic human limitations
to deal with such complexity [Booc94]. Anyway, legacy system
complexity is encountered in most of the cases. There are many
factors that amplify the complexity of any given software system.

Some of these factors are:

1. Natural complexity

Complexity of a software system is natural (essential) property
[Broo87]. This point has been briefly covered in the
introduction of this thesis, yet it is well known in both
academia and industry. This point can be furthered researched
throughout literature, such as [Abde96], [Brod95], [Broo87],

[Booc94], and [Broo95].

14

Complexity of the problem domain

Externally, the nature of the problem (i.e. nuclear reactor) the
legacy software deals with, is already complex and difficult to
apprehend. Mapping this extemnal complexity to software
situation causes the arbitrary complexity [Broo87]. Also, users
are not clear about what they want [Phil96], and developers
may interpret what the users wanted differently. This drags the
two disunited groups (i.e. users and developers) into a chaotic

state [Booc94], [Wegs97].

Documentation state

Documentation and its associated problems have been briefly
discussed in a proceeding segment, i.e. Improper
Documentation. Another fact to add, however, is the way
requirements are being addressed [Whee96D]. Requirements
are usually expressed in terms of large mass of text, that is
usually appended with some graphs. This kind of
documentation is difficult to capture and susceptible to
different interpretations [Booc94]. In addition, software
development requirements are, regularly, ambiguously defined

[Rama96]. They go under refinement process while the

15

software system is being developed [Mull89], or in software
engineering terminology, the software development undergoes

an incremental process.

System growth and evolution

There are some problems imbedded in legacy systems that may
not be solvable. For example, a legacy system growth cannot
be stopped. Furthermore, a legacy system growth,
exponentially, adds to cost, complexity, faults, maintenance,
and risk [Booc94]. Moreover, legacy system growth decreases
efficiency, correctness, robustness, modularity, compatibility,
and creditability [Mack96], [Whit93]. Besides, legacy systems
evolve over time [Booc94], which causes the system to be in
inconsistent dynamic state [Benn95]. Commonly, unneeded
functionalities are left over, which introduces maintenance and
efficiency overheads. Removing obsolete functionality is also

another overhead to be taken care of.

People and their variant experience/environment
During the development of any given software system, people.

who group together, come from different disciplinaries to

16

accomplish a number of objectives of a given project. Most of
the involved people do not have the proper software
engineering or even computer science background. Also, in the
industry, there are many excellent’ coders who do not adhere to
good software engineering practices. However, people do
contribute to the complexity of any system and they will still do

that even in the future.

Another problem caused by human is people’s varying level of
expertise. It was mentioned previously that a single legacy
system could be developed and maintained by thousands of
people [Ball96]. Throughout the legacy system life,
experienced people leave with their wisdom and undocumented
knowledge, and new arrivals come green. Much of the needed
skills has departed and may not be recorded anywhere. The
newcomers have to learn, maintain, and face the facts of the
system. Even experienced people may face problems with the
newer technology, that they are not familiar with. Also, they
may reject it due to their negligence of the its value. Another

side effect caused by people to a legacy system is bad coding

! Excellent in terms of attacking problems and finding fast solutions, but not necessary the right way.
Industry is full of such coders who do not believe in comments/documentation or adhering to certain

17

and improper/outdated documentation. Regardless, good

developers are scarce [Brooc94].

Even if the previous problems were minimized, an incongruent
atmosphere could very much appear [McLe96]. Congruence,
in this context, reflects the amount of harmony and agreement
among hierarchical organization employees. This interesting
subject has been thoroughly covered in “Beyond Blaming:
Congruence in Large Systems Development Projects”

[(McLe96].

B. Security
There are many simple problems in industry, especially in
distributed environment, that have been made very complicated
due to security rules and constrains. A simple example of such
situation is password authentication among heterogeneous
systems, i.e. MVS and UNIX. Large companies, who are
gradually moving toward client-server environment, have most
of their legacy systems and data resident in a mainframe

environment. Developers and users life would have been much

guidelines. Some excellent coders intentionally write code in a vague manner due to job security

18

simpler if some of the security rules had been waived. In one
hand, developers have to write either complex code to get
through TCP/IP protocols or encrypt/decrypt passwords among
these heterogeneous systems, which is rejected in many
organizations anyway. In the other hand, users have to
remember and keep track of many different passwords, which
they usually get confused, in order to accomplish simple tasks.
Users have to execute different programs in different platforms,
then consolidate their result into a common place, usually using
FTP. This activity cost 70-80% of users time as being claimed
in the industry [GeoQ96]. Security restrictions seem to be
simple at the surface, yet they do stand to be one of the most
difficult stumbling blocks that developers and/or users ever

face [Luca96].

Efficiency

Efficiency adds to complexity [Benn95], [Mack96]. It is
known that the most efficient code could be written in
assembly language. Nevertheless, industry is moving away
from lower to higher level of abstraction for the sake of

simplicity and other attributes [Faya96], even if efficiency is

reasons.

19

scarified. This can be seen in fourth generation languages and
object-oriented paradigms that require more resources and time
to execute. After all, with the current advanced technology and
cheap-efficient and fast processors, human time is considered
to be the most precious, unlike those days when computers

were primitive and slow yet priceless.

A good contemporary example of the problem of efficiency is
C++ Constructors and Destructors. Constructors allocate
space and initialize variables during objects creation.
Destructors do the opposite when freeing up objects.
Destructors are good clean-up tools; however, destruction is an
expensive and time consuming operation. Efficiency seeking
developers will bypass Destructors, which may cause a lot of
confusion and memory leaks, which in turn leads to deficiency

due to unattainable memory [Whee96J].

Programming environment/language(s)
Programming environment may add very much to the
complexity. A good example of this is the DoD environment

in terms of hardware and different high/assembly languages to

drive these sets of hardware [Aike94], [Mack95]. Moreover, it
is believed that a single programming language cannét support
all the business needs [Moor94], which forces organization to
use multiple languages. Some examples of such a case will be
covered in later discussion(s). Likewise, it has been claimed
that the structured programming falls apart when the
application size exceeds 100,000 lines of code. Along with,
structured design does not properly scale up with extremely
complex systems [Bart94], [Booc94]. It is known that the
legacy system size tremendously overruns this number.
Moreover, most legacy systems lack the structured architecture
[Ning94]. This leaves software engineers attack both the
environment, that does not fit, and the legacy system itself.
Furthermore, it is well known among software engineers
community that the C programming language influences its
users to abuse the language, which introduces ambiguity and

documentation problems.

There are also some environmental problems that look vincible
at the surface, yet they cause a lot of annoyance and
incongruity. An example of such problems is the terminology

inconsistency, as stated that “... the company used different

21

terminology for the same item; payroll was called “pay” in one

program, “salary” in another, and “wages” in a third ...

[Pfle96].

9. Software flexibility

Software offers the ultimate flexibility. Correspondingly, there
are no set of common standards or rules that can be
implemented. Most developers are inclined to do things their
own way, especially if they are under pressure. Flexibility is
required (i.e. this is why technology is lending itself toward
software-device-drivers instead of hard-coded chips).
However, flexibility creates uncertainty and reduces
predictability[Booc94], like throwing a ball of soft clay not

knowing the shape it will take whenever it lands.

Lack of Proper Process

Software processes, especially proper ones, are essential part of a
software life cycle, however they are not easy to define or implement.
One process may fit certain software project but it may not be proper

for another [Boeh88], [Boeh96], [Booc94], [Ridd89], [Tull89]. Barry

Boehm is well known to thoroughly cover this subject in many articles
throughout literature, two of which are [Boeh88] and [Boeh96].
Generally, a complex legacy system requires more
developers/maintainers than a regular software. The communications
of such large group tend to be complicated and overhead to the

software process [Booc94], [Lede92], [Luca96], [Whee96D].

Competition

Currently, software industry is in a competition climax. Most software
houses that support some of their own legacy systems are contesting
with other rival companies. Most of the competition centers around
addition of new features and enhancement of user interfaces, yet the
basics of software engineering principles are violated. Competing
companies build these new features over originally ill-designed legacy
systems. Reengineering a legacy system is time consuming; besides,
the success of the reengineering process is not guaranteed [Adol96],
and this may leave a particular company behind which makes it loses
market shares and business opportunities [Brod95], [Luca96]. This is
why most vendors come to the conclusion to built over the already
existent legacy system. Ariother reason these companies do not bother

much is that the end-user of their legacy system is not aware of the

23

design or the maintenance of the system, which is in fact transparent to
him/her, as long as it delivers a certain functionality the user hopes for.
Besides, end-users are not that sophisticated much to know the
difference. In many occasions, their evaluation of a piece of software
is concentrated around appearance and functionality availability, not to
say these are not important features. This is analogous to a car driver
who cares most about cosmetics of the automobile and totally forgets
efficiency, design, tolerance and many other important factors. The
competition repercussion can be felt during software exhibits and/or

support.

There are finer ingredients of impediments that consolidate (intersect with) one or
more of the obstacles mentioned previously. Some of these ingredients can affect
more than one major obstacle, e.g. budget, time, manpower are some common factors
among most of these obstacles. It is worth noting that the impact of these obstacles is
quite sever in many cases. Consulting the referenced resources can help relate the

impact of these obstacles over legacy systems.

Academia and industry are aware of these obstacles and they are dealing with these
obstacles effects as will be seen in the coming “Solutions” section. Then, a

methodology to reduce the effect of these obstacles will be discussed in later chapters.

24

. Solutions to Legacy System Problems

Literature and industry proposed a number of solutions to tackle problems of legacy
systems. The panacea to these problems is not there yet, however this should not
prevent searching for better ways to improve what is currently available nor come up
with a new process that revolutionizes industry [Kasp94]. Some of the available

solutions will be discussed shortly.

It has been noted that some of these solutions reduce the austerity of associated
problems and may extend the life of a legacy system or improve reusing it or its
components. However, some of these solutions have their own short-comings.

Following is a brief summary of these solutions and their associated problems:

A. Maintaining the legacy system

1. Definition

Maintenance can be divided into three parts: adaptive,
perfective (enhancement), and corrective [Sneeds].
Maintenance consists mainly of modifications that fix design
defects, add incremental functionality, or adapt changes in the

used environment or configuration [Broo95]. Around 70% of a

25

project cost is consumed by maintenance [Meye88]; whereas,
Brooks states that 40% or more of the budget is used by

maintenance [Broo95].

Advantages

Maintenance is an indispensable process within any legacy
system. Without proper maintenance, any system could
fall apart. Maintenance should keep the legacy system in
shape and minimize many of its faults. Sometimes,
maintenance is used to improve performance or other

attributes [Bank93].

26

Disadvantages

a) Maintenance is difficult and expensive [BaliS6],
[Dods96], [Edge95], [Kasp94], [Mark95],

[Premd].

b) Maintenance cost has been rising dramatically

[LernS4].

c) Maintenance is highly impeded by improper or

lack of

(1) documentation [Mark95],

(2) documentation tools [Star94, Wins95],
(3) manpower [Lyon95],

(4) and adequate processes [Sher86].

d) Maintenance degrades with time [Snee93].

Due to its complexity and cost, maintenance is protested by
many practitioners who suggest the use of reengineering or
other tools (such as inspection [Acke89]) [Cand96], [Cons95],

[Lern94], [Mona95].

27

B. Redeveloping the legacy system

1. Definition
'Redevelopment is the act of rewriting a new system from

scratch without tacking into account the existing legacy system

[Adol96], [Lern94].

2. Advantages

Redevelopment from scratch provides the advantage of
learning from the past development(s). Redevelopment, most
probably, will produce a more efficient and cleaner code. With
redevelopment, dreadful maintenance could be enhanced.
Also, redevelopment can take into account newer technologies,
which can dramatically improve the status of the current

system.

3. Disadvantages

The redevelopment activity is observably protested by many

practitioners who believe that:

28

Redevelopment is too costly and impractical
process in most cases [Arno94], [BrodS5],

[Mack95], [Prem94], [Tile95].

Redevelopment may react to a current need,
meanwhile, not taking into account future needs,
which may need another redevelopment [Brod85],

[Lewi97].

Redevelopment requires a complete shutdown of
an already working system, which may not be

affordable in many cases [Brod95].

Redevelopment does not guarantee a perfect
system. Some new problems, due to technology,

for example, could very much appear [Brod95].

Failing to successfully complete a redevelopment

project could cost a lot of assets [Brod95].

29

C. Migration

1. Definition

Migration is the process of migrating a system from one
platform to another due to technological, economical, or new
business requirement [Brod95]. The cost of migration can be
minimized by reusing as much as possible of the code and
design of the original system. Applying reusability can save a
lot of time and money as well as producing better product

[Card94].

2. Advantages

Rarely it is feasible to run an old legacy system over a new
environment without modifying the system. Migration has the
advantage of preparing a legacy system into a new
environment. It provides the advantage of exploiting newer
technologies. It also provides a good chance to improve the old

system.

D.

30

Disadvantages

Migration is expensive and labor intensive process, which may
not necessarily succeed [Snee95]. There are many stumbling
blocks during the migration process [Adhi96], [Baum96],

[Edge95], [Mack95], [Mona93].

Wrapping

Definition

Wrapping is the process of building a GUI (graphical user
interface) around a legacy system [Patr95]. Wrappers ought to
be targeted toward a specific legacy system in order to
enhance/ease access to legacy functions. However, wrappers

are not general solutions for every system [Wins95].

Advantages

Wrappers have the advantage of preserving the legacy code and
data, and interfacing with users under their environment
[Brod95], [Lyon95]. Wrapping is a cheaper solution than

redevelopment and/or migration.

31

3. Disadvantages
Wrappers are supposed to be temporary solutions because
inflexible-legacy systems are aging underneath wrappers
[Wins95]. Wrappers are used as transient state of migration.
Wrappers have integrity and performance problems. Probably,
the most difficult part, when implementing wrappers. is

identifying the code that should be wrapped [Lyon95].

E. Integration

1. Definition

Fitting a legacy system with a new environment is an

integration process, which is rather complex [Cimi96].

2. Advantages

Integration is proposed because legacy systems are staying and
are not going away soon [Loud95], and the only way to
preserve a legacy system is integrating it with the new

environment.

3. Disadvantages
Integration is full of complexities and very costly, yet it is
indispensable in a heterogeneous environment [Cimi96],

[Davi9s].

F. New Paradigm Adaptation

1. Definition

New paradigm adaptation is the transition from conventional
software engineering practices to object-oriented software
engineering [Faya96], or the transition from older to newer
disciplines [Selk96a], [Selk96b]. New paradigm adaptation is,
somehow, the process of changing the way one thinks
[Booc94], [Budd91], [Mull89]. It is a new way of viewing the

world [Budd91].

2. Advantages

New paradigm adaptation came to reduce the problematic

effects of older methodologies, e.g. enhancing maintenance and

33

reusability [Booc94]. When applied well, paradigm shift pays
well [Faya96]. Indeed, with growing complexity, paradigm

shift is mandatory [Booc94].

Disadvantages

New paradigm adaptation is a real challenge since people are
inclined to get attached to their original concepts [Booc94],
[Budd91], [Clin95]. Besides, it is not just a process of
translation that could be easily translated or mapped (i.e. it is
not one-to-one rendering [Mull89]) which indicates that
automating the process is not handy yet. Furthermore, paradigm
shift is not simple and it requires real qualified experts to do
the transition [Faya96]. Also, it was stated that it is a difficult
shift for experienced developers; meanwhile, it is much easier
with novices [Budd91]. In reality, experienced people and
expertise are needed to handle the shift smoothly and
successfully. Recruiting people with proper expertise in the

field costs.

34

G. Data Warehousing

1. Definition
Data warehousing sterilizes data, strips it out of application
context, and then isolate it behind one or more relational
database engine. It is an architecture that separates applications
from their data yet provides seamless integration. More about
data warehousing can be found in [Ecke95a], [Ecke95b], and

[Hard95].

2. Advantages

This new technology has exited to confront many current
problems found in legacy systems and operating environment,

and provide cleaner atmosphere for future data manipulation.

3. Disadvantages

There are no disadvantages to data warehousing except the cost

and complexity associated with the task.

35

H. Reengineering

1. Definition

Reengineering is a discipline that restructures existing code
without functional changes to the system [Ingl94]. Some
practitioners consider reengineering to be one of the latest
trends in the information systems field [Cand96], [Luca%6].
Some other practitioners define reengineering to be “the
fundamental rethinking and radical redesign of business
processes to achieve dramatic improvements in critical,
contemporary measures of performance such as cost, quality,

service, and speed” [Hamm93], [Cand96].

36

Advantages

a)

d)

f)

a)

reducing maintenance cost by making the system

more understandable [Snee95], [Cand96],

[Lern94],

better cost estimation due to availability of befter
metrics, such as the number of lines of code

[SneeS5],

better testing process due to availability of real

data [Snee85],

paraliel processing of the reengineering tasks

[Snee95],

quality improvement [SneeS5],

easier to out-source, which leads to many other

advantages, such as cost estimation [Dede95],

easier migration process [Snee99],

greater reliability achievement [Snee95],

functional enhancement [Snee95},

37

i) fault discovery [Snee95].

3. Disadvantages

a) Reengineering is not straight forward as it
appears. It is a risky process [LucaS6] that

requires proper expertise that may not be present.

b) It is significantly affected by the quality and state of
documentation. The assumption that
reengineering a legacy system is simpler or more
successful than building a new system from

scratch is questionable [Adol96].

c) Furthermore, the reengineering business is very

difficult to justify [Snee95].

Software Reverse Engineering (SRE)

Reverse engineering is a superset of code clustering and it has been
nominated to be the most promising solution of solving legacy system

problems [Adol96], [Aike94], [Baum96], [Benn95], [Broo95],

38

[Canf92], [Dods96], [Ingl94], [Mack95], [Mark95], [Ning%4],

[Patr95], [Prem94], [Ricc95), [Sage9s5], [Samu90], [Semm95]. More

about software reverse engineering is discussed in Appendix B.

1. Code Clustering

a)

b)

Definition

Code clustering is the concept of grouping together
related processes of the source code. These processes
are related by having either similar characteristics or
interacting closely with each other [Raz 93]. More

about this will be covered later in a stand-alone chapter.

Advantages

Code clustering contributes to reducing maintenance

and improving effectiveness of development [Raz 93].

Disadvantages

Requirement of budget, time, resources, and expensive

expertise.

39

2. Reusability

More about reusability is explained in Appendix C.

It is worth noting that some of the previous solutions are inter-related.
Accommodating one of them, e.g. new paradigm, can help with others, e.g.
maintenance. Later, in a different chapter, it will be seen how similar-characteristic

code clustering can help the flow of these provided solutions.

Many tools have been written to assist dealing with legacy system problems. Most of
these tools adapted reverse engineering discipline to reach their goal, and subset of
the latt2r have been written to directly attack badly/unorganized written code by using
code clustering methodology, which along with two of its tools will be examined and
discussed in the “CODE CLUSTERING” chapter since they are related to the subject

of this thesis.

Chapter 3

Code Clustering

It was stated earlier that code clustering is the concept of grouping together related
processes of a computer, usually high level, language source code. These processes
are related by either: 1) having similar characteristics, or 2) interacting closely with
each other (i.e. strongly coupled). Code clustering is thought to contribute to reduced

maintenance and improved effectiveness of software development [Raz 93].

Similar characteristics processes will be thoroughly discussed in the methodology
chapter (Chapter 4); whereas, a brief discussion about coupling and cohesion is

presented in Appendix D.

41

Tools of Code Clustering

There are some available tools that aid code clustering source code. These tools can
be classified as:
1. Specific; or

2. General

A specific tool is a tool that was developed to aid code clustering a particular project.
This project may be either a very large project that is written in more than one high
level language for multiple platforms, or a small to medium size project that is written
only in one specific language for a distinct platform. A combination of both may
exist as well. An example of a specific tool, not necessarily addressing code
clustering alone, is given in [Aike94] concerning reverse engineering DoD legacy
systems that have more than 1.4 billion lines of code with thousands of heterogeneous
information systems located at more than 1,700 data centers. The mission of the
previously defined project was to migrate legacy systems scattered among
heterogeneous systems into homologous target systems. Another example is the case
demonstrated in [Mack95) “Software Migration and Reengineering: A Pilot Project in
Reengineering.” This project relates to military equipment that involve upgrading

both hardware and software. Most of the code was written in assembly language for

Y]

16-bit microprocessors. The migration mission was to convert the code to Ada
programs that run on 32-bit microprocessors. Although this is more of a migration
process, this event is a core classical case of reverse engineering of large systems that

involved both hardware and software, where code was not the paramount concern.

A general tools is a tool that was not developed for a specific project. However,
usually a general system has to be written for software implemented in a certain high
level language. In the meantime, there is no general system that would work for all
the languages or even few languages, even though having a general system to work
according to a high-level language grammar is attainable . An example of a system
that addresses COBOL is Cobol/SRE found in “Automated Support for Legacy Code

Understanding” [Ning94].

However, there are algorithms that are not based on a particular language. Such
algorithms give a general idea of how to solve the problem of code clustering. An
algorithmic example is the “Process Clustering with an Algorithm Based on a

Coupling Metric” encountered in [Raz 93].

Two code clustering tools are presented here as examples. The first one has been
chosen because it is a general algorithm that disregards the nature of the source code.

The second tool is a tool that was written specifically for COBOL source code. It has

43

been chosen because of its generality and the intersection of some issues with this

thesis-proposed tool.

1. Process Clustering with an Algorithm Based on a Coupling Metric

Raz and Yaung emphasized the importance of process management [Raz 93]. They
assumed that grouping related processes (i.e. subprograms) would lead to better

system control.

Process management is not straight forward. Process management requires a lot of
efforts and resources. To minimize these efforts, processes should be sorted and
placed in groups that possess similar characteristics, (i.e., user interface processes). or
those that closely interact with each other, (i.e., subprograms that share data) [Raz

93].

Raz and Yaung placed emphasis on the inter-process linkages and contributed very
little to those processes that possess similar characteristics. They criticized the
previous work regarding the same subject as being either not accurate or not

addressing the clustering problem properly [Raz 93].

Therefore, Raz and Yaung suggested a clustering algorithm that would produce better
results than previous algorithms that may produce objectionable solutions, as these
algorithms were criticized by [Raz 93]. The suggested Raz algofithm runs in the

order of O(n3). where n is the number of processes.

45

A linkage matrix reflects the connectivity between two processes as “1”, and no-
connectivity as “0”. Process A may have a link with process B, but it is not necessary

to have a link from B to A, although this case may happen.

An example of a linkage matrix M is as follows:

N RN BN
OO~ O Ol
o — 0o o olw
o~ o~ oln

O — — O —IN
— O O~ —~i&

After getting the matrix M, column and row elimination starts by taking a 2 X 2 sub-

matrix M’ and merging the higher index number into the lower one. Sub-matrix M’

will look like the following:
M1 2
1 |0 1
2 10 O

After combining column/row 1 and 2 into column/row 1, M will produce M;. The

formula used to produce M; is:

M[1]1=M[1]+ M[I+]], {Matrix addition}

M[J]1=M[]]+M[J+1], {Matrix addition}

where M[1] represents a complete row in M and M[J] represents a complete column

in M. In the first iteration, I and J will be given the value of “1”.

M1 3 4 5
1 o 0 2 1
3 2 0 0 O
4 1 1 0 1
5 0O 0 1 O

It should be noticed that only column and row 1 have been affected due to borrowing

values from column/row 2, which disappeared in the new matrix M;.

The process continues until a desired result is consummated. Then a transformation
of the result matrix is applied to get a coupling matrix. For example, the
transformation of matrix M; will produce the coupling matrix C;. The steps required

to get from M; to C; are as follows:

CAI) = (my+my) /2 (1)
C(1J) = (my+my)/ 2X ny) ()

CALY) =(my+mm /! 2XnXny) | (3)

47

C:|1 3 4 5
1 1x 05 5 0.0
31 - x 05 0.75
4 | - - X 0.0
5 - - - X

Both M and C; will contribute to the repetitive algorithm to get to the final result.

The final result will decide which processes should go together according to their
coupling values. The details of this algorithm are found in [Raz 93], where the

algorithm is explained thoroughly with some industry examples.

The Raz and Yaung algorithm is easy and good only for processes that interact

closely to each other.

A drawback of the Raz and Yaung algorithm is that it is a pseudo code algorithm that
does not specify a target language, which is a plus sometimes, and it does not provide

a tool either. The algorithm is just providing a base for a useful tool.

48

2. Cobol/SRE

One of the useful tools for COBOL source code clustering is Cobol/SRE illustrated in
[Ning94]. This tool is comprehensive and complete when used for code clustering
COBOL source code. This tool was presented after thorough researching, and came
to solve a wide spectrum of the problems faced when reverse engineering a COBOL

legacy system.

Cobol/SRE, as depicted in Figure 3.1, consists of six subsections:

1. Workspace management

o

System-level analysis
3. Data model recovery
4. Concept recognition
5. Program-level analysis

6. Distributed execution architecture

Work Space
Management

System Level
Analysis

Data Model
Recovery

Concept
Recognition

Program Level
Analysis

Process

Manager

System
Log

Figure 3.1: Cobol/SRE”

% This figure has been adopted from [Ning94].

49

50

Workspace management is used to manage a working team.

System-level analysis holds information about COBOL source code libraries and

manages relationships among modules.

Data model recovery is a virtual data model of a system where Cobol/SRE builds

segments according to this model.

Concept recognition is a knowledge-based technique to automate the recognition of

functional patterns.
Program-level analysis is a code level parser to help automation.

Distributed execution architecture uses the software bus to facilitate process

integration.
Cobol/SRE uses two major steps: focusing and factoring.
Focusing will cluster related segments that are scattered around a program. Focusing

can be donme according to select statements, COBOL PERFORMed statements,

Condition-Based Slice, Forward slice, and Backward Slice.

51

Factoring clusters focused code segments into independent modules. In Cobol/SRE,
factoring shows/sets entry and exist points of subprograms, and allows extracting
segments in three modes: a callable subprogram, an independent program, or a text

file containing all the statements in the segment [Ning94].

Figure 3.2.a shows the Cobol/SRE process flow, while Figure 3.2.b explodes

Cobol/SRE to show its internal processes.

Cobol/SRE has the following limitations:

fom—y

. Language specific (COBOL)

2. It does not have precedence among segments if they intersect, although it
handles Union, Intersection, and Difference operations

3. It works only on interactive mode and requires human operation

4. The provided interface can handle one piece of code at a time

Module 1
/
|Source Codelr // 17 Cobol/SRE AN ﬁl Module 2 I
/ P P

Select Statements Create Factor
PERFORMed Statements Select Show Entry Points
Conditional-Based Slice Localize/Expand Show Exit Points
Forward Slice Edit Set Entry/Exit Points
Backward Slice Comment Extract Segment
Unfocus Trace Subtract Subprograms

Delete

Highlight All

Highlight Commented

Save Segments

Union

Intersection

Difference

Figure 3.2.b

Figure 3.2: Cobol/SRE process flow

v

Discussion

There have been few attempts at tool development that would help with reverse
engineering and its components (i.e. code clustering). Most of these tools were
written for a specific system to be reengineered. Nevertheless, The C Abstraction
System found in [Chen90] is a ubiquitous tool that runs under UNIX for the C
language programs. This tool works as a fully blown database of C source code that
accepts different queries regarding routines or variables. In this tools there are indices
for all routines, variables and relations among process/variables. For example, if a
user wants to collect all related variables for a function, the user can do it with a

query. Then the user can redeem a particular function as one entity.

There are other general tools that exist; however, they are tailored for non-commercial
languages, e.g. [Canf92], which proposes a general solution for Pascal software

systems.

In summary, code clustering is a major part of reverse engineering a legacy system.
Some tools have been implemented to aid in code clustering. Some of these tools are
explicit and others are general. Two tools have been discussed previously: Process

Clustering with an Algorithm Based on a Coupling Metric and Cobol/SRE. Due to

54

the complexity of the process of code clustering, many existing tools suffer due to
some limitations that make them inept for certain circumstances. The next section

discusses the limitations of code-clustering tools.

55

Limitations of Some existing Tools of Code Clustering

Code clustering tools are fairly new [Amo94]. Consequently, there are many
difficulties that accompany any new technology. It is not easy to implement a new

technology. Furthermore, its benefits are not clear [Wino95].

Since code clustering has not matured yet, some limitations and causes of limitations
(obstacles) exist with the currently-available tools [Cand96], [Canf92]. Some of the

causes to limitations (obstacles) are:

1. Lack of knowledge acquisition
In a large project, knowledge needed for reverse engineering to
apply code clustering over a legacy system is scattered and
difficult to converge to a focal point. Neither the naked-eye
nor the human brain can deal with a huge project to acquire
needed knowledge [Brod95]. Automation is hindered because
of the difficulty in knowledge acquisition, that is to identify and

specify [Ning94].

56

Complexity of concept matching process

Program comprehension is acclaimed to be the most time-
consuming chore in systems maintenance and reengineering
[Wood96]. Concept recognition is a knowledge-based
methodology grown to automate the recognition of functional
patterns in the code. Concept-matching is not an easy matter to

comprehend [Ning94].

Functionality separation
Functionality separation is identifying a functionally complete
piece of logic that is functionally related yet de-localized

throughout old code [Ning94].

The state of documents

Usually, the documentation of a project is either extravagant or
insufficient. Even fair documentation lacks the components
that are required for reverse engineering [Canf92] in order to
perform code clustering. In many instances, prevalent technical

data is absent, inaccurate, or outdated.

57

Bad coding

Bad and old coding cause frustration in the use of current tools.
Handling such cases is not an easy task and requires intensive
human interaction. Besides, it is more difficult to identify the

functionally-related pieces of bad/old code [Ning94].

Bad and unclear coding is not confined only to old programs.
A contemporary C++ example has been borrowed from
[Whee96J] to illustrate the vague style that well-known

developers are still practicing:

char * strdgdup (char * s1)
{

if (s1 == NULL) return (NULL);
int strgSiz = strlen{s1});
char *dup = new char [strgSiz + 1];

for (intj = 0; duplj] = s1j]; j++)
: // All work done in test expression

return{dup);

}

“dupl[j] = s1[j]” within the for loop is both evaluation and

testing construct that is not clear from the first glance, and it

58

may never be clear for those who apply good coding styles and

standards.

Code clustering tools limitations include:

1. Human intervention
Code clustering tools require heavy human interaction and
expertise in order to analyze a software system or to get a

buried-desired functionality.

2. The assumption that the code exists only in one flat file

Most of the current tools assume that the code exists in one
monolithic large file. Code clustering, such as Cobol/SRE,
tools can be used to fragment such a file. There may be many
functionalities scattered around many different files that require

clustering into one file so that the tool can be used.

3. Inflexibility of tools
Most of the current tools are inflexible and tailored toward a

specific product or project [Canf92].

59

Chapter 4

Similar-Characteristics-Code

Clustering Methodology

The methodology of this thesis was earlier proposed to reduce the effect of the
obstacles, mentioned earlier in the legacy systems and following chapters (i.e.
environment instability, user interfaces, data manipulation, maintenance,

documentation, and others), and to enhance the flow of the proposed solutions

recommended by literature and industry (i.e. maintenance, redevelopment,

reengineering, migration, warping, integration, new paradigm adaptation, and others).

This methodology is centered around a specific type of code clustering, that is similar-

characteristics code clustering (SCCC), analogous to opportunistic strategy of code

understanding discussed in [Litt86], that is the study of code on an as-needed basis
[Mayr96]. SCCC can also support systematic strategy discussed in [Koen91] and
[Litt86], that is the strategy of studying line by line of blocks of code while
maintaining rational representation at higher and higher levels of abstraction
[Mayr96]. Besides all of that, SCCC methodology can support dynamic code

comprehension proposed by [Mayr96].

Similar-characteristics code clustering methodology also has proposed the division of
source code into manageable number of intersecting subsets highlighted in [Abd-96],

[DeMa96], [Hsia96].

In addition to the methodology effort, this thesis proposed a tool (Chapter 5) that was
based on the methodology. Part of the tool was developed and implemented to
illustrate the usefulness of the methodology and tool (Chapter 6). To demonstrate the
usefulness of the tool, four different case studies have been used to cluster and

analyze their code (Chapter 7).

61

Similar Characteristics of Code

There are plenty of similar-characteristic classes embedded in a legacy system code,
e.g. user interface [Cowa95], file management, database connectivity calls, and many
others. Characteristic-wise, the definition and discovery of these similar-

characteristics is categorized to be: objective, subjective, and cognitive.

Following are some similar characteristics possessed by code:

A. Objective characteristics
1. Low level language code
2. High level language code
a) Dialects [Mark95]

b) Declarations
(1) Intrinsic type declaration
(a) Basic types
()] Integer
(ii) Boolean (Logical)

(iii) Float

62

(iv) Pointer
(v) Character

(b) Compound types

()] Arrays
(ii) Records (Structures)
(c) Scope

(d) Storage class

(2) User defined types
(a) Sccpe
Constructs

(1)
()

3)

Exception handling

Subprograms
(a) Functions
0} Functions that return a certain type
(i) Functions that use certain
constructs

(iii) Recursive functions

(b) Subroutines (Procedures)

(M Argument-less subroutines
(i) Subroutines that accept certain
number of arguments

Loops

(a) While

(4)

(5)

63

(b) For

(c) Do whileluntil

(d) Goto
I/0

(a) Print
(b) Read
(c) Write
(d) Rewind
(¢) Open
13 Close
(g) Seek

(h) Create file
(i) Delete file
() Lock filelrecord

(k) Buffer manipulation

Concurrent
(a) Fork
(b) Wait
(c) Child
(d) Parent
Logical

(a) If statement

d)

(7)

Calls

(1)

64

(b) Case (Switch)

(c) Logical operators

Macros

(a) Definition: #define <macro>
(b) Usage

Dependent calls

(a)
(b)

(c)

(d)

(e)

(g)

(h)

Platform dependent calls

System dependent calls

Package dependent calls

(M Graphic package calls

(i) Math package calls

(iii) User interface package calls

Library dependent calls

Remote procedure calls (RPC’s)

API calls

Graphic calls

Database calls

(i) Data manipulation calls (DML's)
(a) Insertion calls
(b) Updating calls

(c) Queries

65

(i) Data definition calls (DDL's)
(a) Table definition calls
(b) Rules calls

(c) Data dictionary calls

(2 Non-dependent calls

(a)

(b)
(c)
(d)

(e)

Intrinsic calls
(M Math intrinsic’s
(i) I/Q intrinsic’s

(iii) Text manipulation intrinsic’s

(iv) Memory management intrinsic’s
Language I/0 calls

Internal calls

External calls

Macro calls

Resource management

(1) Code that dynamically allocates memory

2) Code that does not free up dynamically
allocated memory

(3) Code that allocates/frees general resources

Miscellaneous code

(1) Code that manipulates certain variables or
memory addresses

(2) Code with no comments

66

(3) Dead code
(4) Redundant code

- (5) Code that uses certain operators

Subjective characteristics

1.

2.

10.

11.

12.

13.

Code to be wrapped

Front-end code

Static/Dynamic code generator segments

Code that allocates many resources

Active Code

Efficient code

Deficient code

Segments of code created by a certain developer

Segments of code updated/modified by a certain
developer

Segments of code that were created/modified at a certain
date

Report generation code
User interface code [Cowa95]

Code that uses expensive operators

67

C. Cognitive characteristics
1. Code that performs a certain algorithm [Lewi81]
2. Code that parses code
3. Coding tricks [Adol96]
4, Application management code [Adoi96]

5. Code that will have large effects to improve capacity
[Mack96]

The formerly mentioned characteristics are not exhaustive.

Algorithmic-wise, the definition and automatic discovery of previously mentioned

characteristics can be categorized to be:

A. Easy

Some of the similar-characteristics are algorithmically easy to identify,
such as language keywords, platform/system dependent calls,
intrinsic’s, library calls, and many other similar characteristics. This
category mostly fall within the objective domain, which is very simple

to identify and implement.

68

Difficult

There is another category, that exhibits similar-characteristics, which
are not easy to identify (i.e. code to be wrapped [Lyon95], and coding
tricks [Adol96]). This category mostly fall in the subjective domain.
A good example that represents such a subjective case is searching for
large-size arrays. Whatever is considered large is a subjective matter
that depends upon the computer era, platform type, mood of
developers, and some other factors. This category could be identified

by some human interaction.

Impossible

There are some sets of characteristics, such as knowing what an
algorithm does, that are algorithmically impossible to identify, as
stated that “... many questions about algorithms cannot be answered by
algorithms ... in any sort of language that can be used for stating all
computational procedures, there is no systematic way to tell whether a
given set of instructions actually describes a procedure that is
guaranteed to terminate and deliver an answer, no matter what input it

is given” [Lewi81]. This is categorized mostly to be cognitive that

69

requires human intelligence, analysis, and decision to be able t0

identify.

Of course, there are some gray areas between each of these categories [Booc94].
There are some categories that could fall in the mid-range, that is neither easy nor too
difficult to identify; however, such categories can be encompassed within one of the
categories defined previously. The contribution of this thesis will be mostly centered

around the objective similar-characteristic category.

70

Classification

Similar-Characteristic classes are hierarchical in nature, that is, some of these
characteristics are subsets of other higher class characteristic(s), each of which attacks
a finer class. An example of this is a graphical engine that involves three levels of
abstraction (hierarchies). At a high form, a user may request to draft a circle. Some
of the advanced circle algorithms implement circle drafting as segments of lines-
[Yong93b] or arcs-drawing [Yong93a]. Line drawing, at its lowest form, is just pixel
identification and illumination [Fole90], [Hear86]. As can be implied, the highest
class in this case is circle drafting, then lines drawing, and the lowest class is pixels
identification and illumination. The choice of class of interest is dependent upon the

user or arising need.

These hierarchical similar-characteristic classes exist in any general system, source
code, or in particular legacy system. Identifying classes of similar-characteristics is a
favored feature, that can dramatically help legacy system global understanding as will

be demonstrated in Chapter 7.

Because of the interest of legacy systems and their problems, and because of the
hierarchical nature of similar-characteristic classes of a system, in this context, a

legacy systems has been defined to consist of characterized hierarchies that work

71

together to accomplish a specific (pre-defined) objective. A legacy system (e.g.
graphical system) could be viewed as a tee, whose nodes reflect specific
characteristics. Any node (e.g. circle drafting) may have multiple number of children
(algorithms) that inherit and share the node generic criteria. A child may have a
distinct criterion (e.g. pixel illumination) that constitutes its identity. Siblings (e.g.
circle-line and -pixel-identification algorithms) of a node share some criteria (e.g.

producing a circle) identifying their parents (e.g. circle drafting).

A pre-defined-hierarchical scheme of the legacy system in this thesis is illustrated in a
simplified tree shown in Figure 4.1 that describes the major components that

contribute to this research.

This hierarchical scheme can be identified in mathematical notation (recursive logical
ProLog-like definition) as the following:

L: fi(fpeopler fHtardwares fSoftwares Documentations fData)

S: fsofoware(fDependents fNon-dependent, fscripts)

D: fpependent(fsystems fcats)

N: fNon-dependent(fDiatectss fsuandardcode)

C: feans(fLibrariess fPackages)

P: fpackages(fComputations fDBMS, fUserinterface fGraphics)

etc.

72

Legacy System
__z *Tss-_
- ~ ~ ~ -
- P Y
- -~ ~ -
- - ~ -~
- s ~ S~
P P ~ ~ -~
- [~ ~ -~
- - P - -~ ~ -
& & ~ s
People Hardware Software Documentation Data
”~ - ~
” < ~ ~
P - ~ ~
P ~
P d -~
”~ ~
g ~
- S
-~ ~
&~ S o
4
Dependent Non-dependent Scripts
System Calls Dialects Standard Code
4 / |
Libraries Packages Intrinsic’s Constructs Declarations

IR

Computation DBMS User Graphics

Interface
Subprograms Loops U/O Concurrent Logical Macros
Functions Subroutines

Discussion

As could be seen in the previous figure, the legacy system is the root of the tree.
Mainly, there are five children of the legacy system, which are people, hardware,
software, documentation, and data. There is some mutual dependencies among
siblings (e.g. between the software and documentation). Although hardware,
documentation, people, and data could be further decomposed, they have been left at
their consolidated state because they do not contribute as much to the framework of
this thesis. Nevertheless, some reference to them may appear within the body of this

thesis to illustrate certain points.

The software child (node) consists primarily of three children, that are dependent code
(i.e. system or platform dependent code), non-dependent code (i.e. standard high level
language), and scripts (i.e. shell scripts, make files, JCL's etc.). The non-dependent

code falls within the strategic path of the framework.

The dependent code could be code that is dependent on the system or certain calls.

These calls could be either library(ies) or packages calls.

74

Although there could be many packages, however, four main packages have been
selected: Computations , DBMS, User Interface, and Graphics. These four c':ategories
could be system or platform dependent (e.g. Microsoft Windows), or stand-alone
packages (e.g. Oracle RDBMS under many different platform running different

operating systems).

A non-dependent code can be classified as actual segments of code (e.g. standard

code), or dialects (e.g. FORTRAN dialects accepted in certain systems).

The non-dependent standard code could be decomposed into three major categories:
Intrinsic’s, Constructs, and Declarations. Most high level languages (e.g. C) require
type and storage class declaration. Some languages (e.g. FORTRAN) come with rich
intrinsic calls. High level languages code is usually composed of constructs.
Constructs could be further decomposed into finer components, as seen in the figure.
IO has been selected to be an example of a construct child. In many cases, certain
languages (e.g. FORTRAN) has VO code embedded within the language (e.g.

PRINT). Each of these children and many others can be further decomposed.

The tree in the previous figure may not reflect all the combinations and permutations
of siblings or children; however, it has been chosen this way to illustrate the idea and

define the framework of this thesis. If all options had been identified, the tree would

75

have been complex, ramified, and hard to comprehend. Simplicity has been sought to

illustrate the core idea.

In the previous tree, it is noticed that each node possesses certain criteria that are
passed to its children. Each of the children contains its identifying criteria, and so on.

Nodes could be dropped or added according to the nature of a given system.

The provided tree classifies the legacy system and defines relationships among its
constituents. Converging a legacy system toward this tree will help organize,

maintain, migrate the system, and reduce the amount of faults.

In the case of migration from one system/platform to another, for example, a critical
path(s) of the tree should be identified. The path(s) should pass through those nodes
that need modification, enhancement, or extraction in order to work under the new
environment. Theoretically, paths can be highlighted and identified according to their
identifying criteria. Segments of code that possess similar-characteristics should

belong to a certain node, which may be liable for further decomposition.

Although code classification and breaking a legacy system into hierarchical tree can
help source code understanding [Ball96], current source-code dictionary is required to
further enhance functionality definition, maintenance, and to improve documentation.

This concept can be sought throughout a third party commercial software.

76

Chapter S

Similar-Characteristics-Code

Clustering Tool

Part of the similar-characteristics code clustering tool has been implemented to help
in clustering source code according to the methodology defined in the previous

chapter, i.e. objective, subjective, and cognitive.

77

‘ Similar- o
B Characteristics- §

g Code Clustering

|
l
|
1

Clustering
Criteria

Figure 5.1: Similar-Characteristics Code Clustering tool flow

78

Tool Description

The previous figure shows the basic idea of a similar-characteristics code clustering

tool (SCCCT):

= SCCCT accepts more than one input file at a time.

= SCCCT engine is a black box to the end user.

= SCCCT produces a number of modules that are equivalent to the number
of criteria fed by the user. The user should be able to define as many
criteria as possible during one run of SCCCT, that was shown to be m in
the previous example, which does not have to equal to k; m could be less,

more, or equal to k.

= Although the modules produced by SCCCT can be ready for use, it is
recommended to run these modules into a coupling based clustering tool,
which can attack finer detailed problems since SCCCT works on
subprogram basis; that is to cluster code at subprogram level without
modifying the contents of any of these subprograms. These subprograms

could have been badly coded from the beginning.

79

— SCCCT can support intrinsic clustering criteria, such as keywords,
however the user should be provided the ability to define his criteria of

interest in order to be able to attack more involved problems.

Tool Mechanism

Basically, the mechanism of the tool is depicted in Figure 5.2. The tool will require

three categories of user input and will generate three classes of output.

Clustering
Criteria

Clustered
Code

~ Similar-
Characteristics

User
Parameters

Source
Code

7T

Figure 5.2: Similar-Characteristics Code Clustering Tool YO

A.

80

Required Input

Clustering Criteria

The clustering criteria role is to identify pieces of related code
that need to be clustered together. There can be more than one
clustering criterion at a single run of the tool. Each criterion
can intersect with other criteria. Each criterion is represented
by a cluster file. A criterion could be literal pattern matching
or wild card expressions equivalent to the UNIX egrep filter.
All cluster-file pointers of interest should be identified within a
single file. Examples of clusters are: system calls, file
manipulations, O calls, user interface calls, database
connectivity routines, library calls, etc. A clustering criterion
can be wide, narrow, or specific, such as clustering code that
deals with a certain input file, for example. The user has to
define the clustering criteria (classes) against certain objective

using opportunity strategy.

User Parameters

The tool requires certain user parameter in order to generate

desired output and deals with collisions among clusters. In the

81

case of intersection among clusters, the user can prioritize
clusters (that is to assign more gravity toward certain clusters
where the intersected code will be attached to heavier gravity
clusters and will not show up in the lower gravity clusters),
allow intersecting code to go with more than one crossing
clusters, or dynamically create distinct clusters to hold

intersections.

Source Code

Source code is required to extract clusters. The tool can work
with multiple source code files at the same time to enhance the
possibility of collecting related code even if it is scattered
amongst many distinct source code files. The source code file

names should be collected in an input file as parameters.

B.

82

Generated Output

1.

Clustered Code

Clustered code is the result of filtering source code files fed by
the user as well as user parameters. Normally, there will be a
module per defined cluster, unless the default output is
overridden by user parameter, e.g. generating dynamic clusters

to handle intersection among different clusters.

Statistics Reports

Statistics report about user input parameters, number of
clusters, intersecting clusters, and the percentage amount of
intersection between clusters will be dispensed to the user to
relate the whole work together. Sometimes, users want to try
different parameters under different runs in order to accomplish
the desired output. Having statistics reports will smooth this
operation by relating output together besides the availability of

other statistics that can help on achieving better judgment.

83

Tool Capabilities

The capabilities of the tool, whose general flow is depicted in Figure 5.2, are:

1.

!Q

Converting a legacy system to a hierarchical tree:
The tool is able to work with a scattered functionality and multi-file legacy
system and converge it to a tree-like system, as depicted in Figure 4.1,

with minimal human interaction.

Intrinsic-automatic search for basic objective criteria:
The tool can automatically manipulate language keywords and objective

characteristics discussed earlier.

Supporting automatic smart-search for user-defined criteria:

The tool can automatically manipulate user-defined criteria. These user-
defined criteria could range from too specific (e.g. pixel illumination), to
very general (e.g. graphical library calls). Some criteria of interest could
be user interface calls, database connectivity statements, or any other
desirable criterion that mandates grouping, e.g. functions that contain

certain variables[Gris95], occurrence of goto statement, etc.

4.

84

Hierarchical clusters (modules) generation:

The tool can automatically generate a hierarchy of interest. For example,
if the user was interested to isolate the “Dependent” software “Calls”,
found in Figure 4.1, he can perform this operation through the usage of

this tool while preserving the hierarchical characteristic.

Background processes:

The tool allows concurrent execution with different parameters in order to
reduce tumn-around time and be able to work with huge source code file(s)
as a background process since human intelligence fails to deal with or
comprehend huge source code [Booc94]. Interactive tool may not help the
user much when dealing with scattered-colossal-source code. A smart-
background process can collect user ideas (criteria) that the user is looking

for, then delivering them in a more manageable modular form.

Reusable components extraction:
The tool can help its user to look for reusable components of interest

written in a standard high-level language.

85

7. Code understanding improvement:

Code understanding can be achieved through similar-characteristics code

classification, as will be seen in Chapter 7.

8. Modular output:

The tool can provide a modular output that can be more meaningful and
easier for the use by Coupling Based Clustering Tools (CBCT), such as

Cobol/SRE.

86

Chapter 6

Benefits of Methodology and Applied

Tool

Similar-Characteristics-Code-Clustering methodology and tool present a number of
benefits that can be used to reduce the severity of legacy system problems and
enhance the flow and understanding of the proposed solutions, both of which are
introduced in Chapter 2. Referring back to Chapter 2 and revising the annotated

references can lead to more understanding of the following benefits:

87

Source code understanding
Source code understanding is highly desired and sought about in both industry
and literature [Abd-96] because it is a key factor to solving some software

problems, even though it is a complex cognitive task [Wood96].

Similar-characteristics code clustering (SCCC) is a concept used to
hierarchically break a legacy system into manageable related pieces [Hsia96].
Besides its desired envisioned-structure, the hierarchical system produced aids
source code understanding, which in turn, reduces the effects of legacy system
deficiencies, and supports enhancing solutions proposed by literature and

industry [Abd-96].

Moreover, the table produced of the tool can heuristically aid to calculating
coupling and cohesion of clusters This result can be seen in Chapter 7, after

applying the tool over four different cases.

Clustering code of interest
SCCC tool allows the clustering of code of interest, such as the user interface
or others. This can help in many aspects of the deal, such as migration,

wrapping, maintenance, and others.

n

88

Enhance reusability

Reusability can be increased by clustering portable/reusable code together.

Automation
Automation can speed up a certain project and reduce the amount of errors.

SCCC tool provide a good clustering automation as will be seen in Chapter 7.

Productivity increase
Productivity can be increased through automation, reusability, and code

understanding.

Heuristic-global calculations of coupling and cohesion
Chapter 7 will show how cohesion and coupling can be heuristically

calculated in an easy manner and minimal parameters.

Heuristic approach

Usage of the tool is approached heuristically. The user is not required to fully
understand the system he is dealing with. Only minimal number of parameters
are required to be input to the tool in order to achieve the previous mentioned

benefits.

89

Ability to deal with colossal applications

Huge applications are difficult to understand and deal with. They are very
difficult to deal with interactively. SCCC tool allows the user to input few
parameters without having to vigorously deal with or understand the

application before hand. Then, the process will be run in a batch mode.

Chapter 7

Case Study

Four software systems are used to demonstrate the benefits of the tool.

illustrates these systems properties which are:

LOC

NF

SD

MCPS

Number of lines of code.

Number of functions (subprograms)
Starting date of implementation
Man-Month of development

Maintenance percentage after development.
Average lines per function.

Main clusters percentages sum

90

Table 7.1

Table 7.1

91

92

Required background

Background that is needed for analysis is given in this section. More background is

given in Appendix D.

Coupling
Coupling is “The degree to which separate software components are tied together”
[Budd97]. Coupling is protested because it hinders program understanding [Budd97],

and it has different facets that can be seen in Appendix D.

Cohesion

Coupling describes the relationships between modules, and cohesion descries the
relationships within them [Budd97]. Cohesion is “The degree to which components
of a single software system (such as members of a single class) are tied together”
[Budd97]. It comes in varieties (see Appendix D), one of which is the coincidental
cohesion, that is when components of a module are grouped together for no evident
reason, which usually suggests poor design [Budd97]. Nevertheless, some other types

of cohesion are more desired (i.e. data cohesion).

93

Mission

The mission here is to cluster subprograms according to similar characteristics code
clustering methodology using the SCCC tool provided with this thesis. The tool
breaks the monolithic source file into smaller related components. After separating
the applications, the tool will provide some statistics (i.e. clusters intersection ratio
table) that can be used to analyze each system as a whole. This table should give
enough information that describes the amount coincidental cohesion within each
cluster as well as the amount of intersection between clusters. Moreover, the table

can provides some coupling hints, as will be seen in the analysis part later.

The separation and clustering that will be implemented should announce how close
this application to the three-tier-architecture: the interface, the database services, and
the application {Brod95]. The clustering mission followed the concept of dividing the
main applications into the following clusters:
A. X (GUI interface)

Ist. XLib (X library primitives)

2nd. Xt (X Intrinsic’s)

3rd. Xm (X Motif)

4th. Xint (a third-party X library specialized in graphics rendering)

B. db (database services)

C. sys (system part of the application)
Ist. system (actual system invocation using the “system” command)
2nd. env (environmental inquiry and update)

D. io (I/O part of the application)

The hierarchical nature of this decomposition is shown in the following tree:

It should be noted that some of the examined applications do not have all the
components of the previous tree. This is why some of the leaves will be omitted from

the statistics table.

Interpreting the table
The tool produces a square-table, that reflects the intersection among all clusters. The
first column of the table “Main” shows the number of subprograms per cluster; for

example, table 7.2 shows that there are 193 subprograms in the whole application, 61

of which are system related, 105 are VO related, 22 are database related, and 151 are
X (interface) related. Those subprograms are still further decomposed, such that 39

out of the 151 X subprograms are Xint related, and so on.

The first row of the table “Main” shows the percentage of each cluster over the main
application. For example, the number of the database related subprograms of the

whole application is 22 functions out of 193, that is11.40%.

The diagonal of the table represents the r-lationship of a cluster with itself; this is why

all the diagonal cells should be 100%.

The rest of the table body represents the intersection relationship among all clusters.
For example, it shows the percentages of intersection between a cluster and the rest of
the other clusters. In table 7.2, the amount of intersection between the system calls
and the database-services is 26.23%, which heuristically shows a degree of
coincidental cohesion that could be subjectively calculated as 26.23%. This means
that 16 subprograms out of 61 are common between the system and database-services
clusters, which indicates that these subprograms posses coincidental cohesion

[Mart85], [Scha90], [Your79], which usually implies poor design [Budd97].

One more interesting feature of the table is the sum of percentages of the main

clusters (i.e. sys, io, db, and X) can be used as another metric to give a clue about the

96

total coincidental cohesion of the whole application. In this case, the sum
(31.61+54.40+11.40+78.24) is equal to 175.65. The closer this number to a hundred,

the more ideal the application is.

I. Case 1

Functionality
This program was initiated to solve a problem of numbering and sequencing batch

jobs over a number-crunching machine.

Method of development

This case represents ad hoc design and implementation. The requirement was never
stated at starting time. Ad hoc and late requirements continued to be thrown into the
project (i.e. the project started with a hierarchical DBMS as a corporate database, then
ended up with a relational DBMS, and ,unfortunately, eventually both DBMS’s had

got to be supported).

Platforms

This applications runs under one UNIX platform for user interaction, although it
involves two other different-heterogeneous platforms (i.e. mainframe and number
crunching machines) due to scattered data, and two heterogeneous-distributed-

corporate database management systems (one of which is hierarchical and the other is

relational).

98

Human resources
Initially this system was assigned to a neophyte, who lacks the awareness of both the
working environment and the problem domain. People who implemented the system

kept changing, from one novice to another.

Maintenance
The final product was an evident spaghetti case of undocumented, unstructured, and
non-maintainable piece of software. Whence, 80% of its administrator time was spent

over maintenance.

Clustering
After feeding all the user parameters and the source file to the SCCC tool, ten clusters
of similar-characteristics were generated. These clusters can be shown in the

intersection-ratio table below:

Main 193 IL61% 13.99% 2642% 54.40% 11.40% 18.24% 56.99% T358% 56.99% 2021%
syS 61 100.00% 44.26% 8197% 90.16% 26.23% 83.61% 52.46% T78.69% 54.10% 32.79%
system 27 100.00% 100.00% 62.96% 92.59% 29.63% 74.07% 40.74% 62.96% 40.74% 1481%
env 51 100.00% 3529% | 100.00% 88.24% 3137% 96.08% 62.75% 90.20% 60.78% 3725%
io 105 52.38% 2331% 42.86% 100.00% 18.10% 79.05% 5429% 15.24% 60.00% 24.76%
db 2 3% 3636% .13% 86.36% 100.00% 100.00% 121% 90.91% .73% 31.82%
X 151 B.771% 13.25% 3L9% 5497% 1457% 100.00% 72.85% 9338% T2.85% 25.83%
XLib 110 29.09% 10.00% 28.18% 51.82% 15.45% 100.00% 100.00% 93.64% 81.82% 29.09%
Xt 142 3451% 12.68% 3239% 5634% 1479% 100.00% T3.24% 100.00% T2.54% 27.46%
Xm 110 30.00% 10.00% 28.18% 51.21% 14.55% 100.00% 81.82% N1I3% 100.00% LT3%
Xint 39 51.28% 1026% 48.N% 66.67% 17.95% 100.00% 82.05% 97.44% 9231% 100.00%

Table 7.2

99

Analysis

From the previous two tables and the environment of implementation, the analysis of

this case shows that:

A.

The program is interface dominant because the X cluster makes up 78.24%
out of the whole application.
Weak cohesion due to high coincidental cohesion.
The amount of coupling among the application clusters can be inferred to be
high due to functionality mixing, coincidental cohesion, and high amount of
data that needs to be moved around clusters, especially the database services
cluster. The amount of intersection between the other clusters and X (the
interface) are:

1. 083.61% of SYS,

2. 079.05% of io,

3. 100.00% of db.
The previous point indicates that this system is faraway from the three-tier-
architecture.
Functionality mix-up due to low-cohesion and maybe high-coupling.
The subprogram size is quite large, i.e. 121.26 lines per function on the
average. This is an effecting factor on the amount of coupling, cohesion, and

complexity.

100

G. The application is difficult to maintain due to coincidental cohesion.
complexity, and large function size.

H. The application is difficult to migrate because this type of application is non-
decomposable [Brod95] due to the factors previously mentioned.

L The amount of /O of this application is quite high; that is 54.40%.

J. Automation of reverse engineering tools over this application is not possible

without heavy human interaction.

These points consolidate this case description of being ad hoc design and

implementation and other points mentioned earlier.

Recommendations
After using SCCC tool and methodology, one or more of the following
recommendations are made:
1. Complete system rewrite.
2. System migration [Brod95] toward three-tier-architecture.
3. Employing some other reverse engineering tools, such as Cobol/SRE [Ning4],
to fix up the subprogram-internal-mess, then, re-implementing SCCC tool.

4. Reduce each subprogram size to fifty lines instead of 121.26.

101

II. Case 2

Functionality
Provide a query-by-example under a graphical user interface (GUI) for end users. The
application collects user parameters, retrieves the data, and then draft the data on the

screen and/or generate output flat files to be fed to other applications.

Method of development

This case represents a more systematic way of design and implementation. The
requirements were, almost, fully stated at the beginning. The actual implementation
started on 03/96 and lasted for three months. The application should utilize the

available corporate relational DBMS.

Platforms

The application runs under one UNIX-platform.

Human resources
The application has been designed and implemented by a relatively experienced

programmer who is more aware of the working environment and the problem domain.

Maintenance
After delivery, this application did not require much maintenance except for some

functionality addition.

Clustering

The clustering of this application is similar to Case 1, except the system part did not

need to be furthered decomposed because this is relatively smaller application.

CLUSIER Main system io X XLib Xt Xm Xint

Main 94 426% 44.68% 2.13% 74.47% 56.38% 55.32% 51.06% 447%
system 4 100.00% 100.00% 25.00% 75.00% 50.00% 75.00% 50.00% 25.00%
io 42 9.52% 100.00% 4.76% 80.95% 61.90% 73.81% 69.05% 21.43%
db 2 50.00% 100.00% 100.00% 100.00% 0.00% 50.00% 50.00% 0.00%
X 70 4.29% 48.57% 2.86% 100.00% 75.71% 74.29% 68.57% 32.86%
X1.ib 53 1.77% 49.06% 0.00% 100.00% 100.00% 75.47% 67.92% 39.62%
Xt 52 5.77% 59.62% 1.92% 100.00% 76.92% 100.00% 82.69% 25.00%
Xm 48 4.17% 60.42% 2.08% 100.00% 75.00% 89.58% 100.00% 25.00%
Xint 23 435% 39.13% 0.00% 100.00% 91.30% 56.52% 52.17% 100.00%
Table 7.3
Analysis

1. The application is interface dominant (74.47%).

2. Relatively high VO usage (44.68%), which can be tolerated because this
appﬁcation dumps many flat files into different formats.

3. The application is well designed to concentrate the database services into two

functions only.

4. However, these two functions are highly intersected (100%) with X interface.

5. Little interface with the system (4.26%).

6. The total sum of the main clusters percentages is 125.54, which makes it closer to
an ideal system.

7. The system was designed without decomposition intention. This can be sesn from
the high intersection found between all other clusters with the main X cluster.

8. Although, X cluster is dominant, there is still high degree of coincidental
cohesion, and functionality mix-up exists, therefore.

9. Except for the I/O part, the application is relatively easy to maintain and/or
migrate.

10. Automation of reverse engineering tools will be impeded by the swong
intersection of X and the I/O and interface.

11.The complexity and intersection of this application could be aggravated if the size

of other clusters grows.

Recommendations

1. Due to its small size, manually strip out the database services cluster from the X

interface.

2. Due to its small size as well, manually strip out the system code from the X

interface.

104

3. Implement a reverse engineering tool, such as Cobol/SRE. to separate VO from
the interface. This will be the most time consuming.

4. Maintain the system toward a three-tier-architecture.

(@]
wn

III. Case 3

Functionality

This case attacks the problem of archiving and retrieving end user projects’ data.

Method of development

The problem domain and the environment are completely clear. A quite good analyst
worked on this problem. It took him around 1.5 months to finish implementation.
The average function length was around 35.85 lines. The final application consisted
of 2,438 lines of code and 68 subprograms. The analyst was pressurized to finish on

time. There were not many options left, but to finish the product as soon as possible.

Platforms

One UNIX platform.

Clustering

Main 68 | 16.18% 4.41% 294% | 2647% | 79.41% | 7641% | 5141%
sys 11| 10000% | 27.27% | 18.18% | 8182% | 7273% | 72.73% | 5455%
system | 3| 100.00% [100.00% 000% | 33.33% | 100.00% | 100.00% | 3333%
env 2| 100.00% 0.00% | 100.00% | 100.00% 0.00% 0.00% 0.00%
10 18| 50.00% 5.56% | 1L11% | 100.00% | 6L11% | 6L11% | 55.56%
X Sa| 1481% 556% 000% | 2037% | 100.00% | 9630% | 6431%
Xt 52| 1538% 5.71% 000% | 2L.15% | 100.00% | 100.00% | 6538%
Xm 35| 17.14% 286% 000% | 28.57% | 10000% | 97.14% | 100.00%

Table 7.4

106

Analysis

1.

2.

The application is X (interface) dominant (79.47%).
The sum of percentages of the main clusters is 122.06, which is the closest to the

ideal case from the other cases presented.

. This application has the lowest coincidental cohesion among the examined cases.

Moreover, this application maintains relatively higher cohesion, which could be
due to smaller sizes of subprograms, as the average function length is 35.85 lines.
The /O part is relatively low compared to the other cases.

There are no databases involved, which reduces the severity of the problem.

. A lot of 0% coincidental cohesion’s are found in this table, even between siblings

(as shown in the system and env whose amount of coincidental cohesion is 0).
0% of coincidental cohesion is highly desired and it indicates very good cohesion.
The env cluster is a good indicator of this where it has two totally independent

functions.

. Relatively, a smaller-number coincidental cohesion’s are dominant among

clusters.

. For its size, this application seems to be relatively good. Although, the original

analyst had no clue regarding either coupling or cohesion, he was inclined toward

good coding-practices.

107

Recommendations
1. With minimal efforts, this application can be modified to comply with a three-tier-
architecture.
2. Reduce the system and /O coincidental cohesion.

3. Reduce coincidental cohesion associated with X interface.

108

IV. Case 4

Functionality

Simulation

Method of development
This was more of a migration process from an older system running on the
mainframe. Moreover, rigorous planning and implementation efforts have been put

into place due to the importance and sensitivity of the application.

Platforms

A number crunching machine for algorithm processing plus an end UNIX workstation

for graphical display.

Human resources

Three people with variant experience.

Maintenance

Could not attain maintenance information.

109

Clustering

CLUSTER — Main SVS system i X XLib Xt
Main 244 3.28% 0.82% 3.28% 74.18% 80.74% 6.97% 61.48% 56.97%
sys 8 | 100.00% 25.00% | 100.00% 87.50% | 100.00% 12.50% | 100.00% 87.50%
system 7 | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 50.00% | 100.00% | 100.00%
env 8 | 100.00% 25.00% | 100.00% 87.50% | 100.00% 12.50% | 100.00% 87.50%
10 181 3.87% 1.10% 3.87% | 100.00% 77.90% 9.94% 65.75% 53.04%
X 197 4.57% 1.52% 4.57% 71.57% | 100.00% 9.14% 76.65% 71.07%
X1Lib 17 5.88% 5.88% 5.88% | 100.00% | 100.00% | 100.00% 70.59% 35.29%
Xt 150 5.33% 1.33% 533% 79.33% | 100.00% 8.00% | 100.00% 70.67% l
Xm 139 5.04% 1.44% 5.04% 69.06% | 100.00% 4.32% 76.26% | 100.00% ﬁ!
Table 7.5
Analysis

1. A positive attribute of the program is that it has already been segmented into many
modules (source files) to accommodate different functionality. Also, the
declaration part has been separated from the actual source into include files.
These two attributes, enhance reusability and maintenance. Besides, the initial
task can be distributed easily among a software team. This also indicates that the
implementation of this application was more systematic than ad hoc.

2. The program size is quite large for individual to work on. Having a team to work
on this application was a good decision.

3. Although a good plan was in place, good software design practices were not
observed. The average subprogram size was quite large, that is 153.67 lines per

function, and the amount of coincidental cohesion was relatively high as can be

110

seen from the table. This indicates that the team involved had long programming
experience, but lacked the software engineering theory. This was a successful
application because the team involved knew the problem domain quite well and
the final program size is still classified to be of small scale. If the size of this
program exceeds 100,000 lines of code, most probably, it will reach a bad stage of
complexity, that might lead to software apoplexy as defined in [Brod95].

. The software understanding of this application tend to be difficult because the
number of subprograms exceeds the number of lines per function [Till95].

. Although this‘ application is dominated by the user interface (i.e. 80.74%), it has
fairly large I/O percentage (i.e. 74.18%) that competes with the interface part.

. Unfortunately, as can be seen from the tabvle, all other cluster types are being
absorbed by the user interface part, except for the J/O cluster whose intersection
rate with the GUI cluster is 77.90%, which is still high by all measures.

. Due to its size and problems, this case is similar to Case 1, which indicates similar

analysis, that is many of Case 1 analysis points are applicable with this case.

i1t

Recommendations

L.

(38

A complete reengineering of the system is required. This may involve other
reverse engineering tools, such as Cobol/SRE, in order to clear the internal

subroutine mess.

. Since the data structures (i.e. the declaration part) is already separate from the

actual code, a better chance of paradigm shift toward object-oriented exists. It is
highly recommended to adapt object-oriented technology due to the complexiry

and sensitivity of the application.

. Whichever path is chosen, the coincidental cohesion needs to be minimized.

Also, the subprogram size needs to be shrunk to one third (i.e. 50 lines per

function) of whatever size being practiced (i.e. 153.67 lines per function).

il2

Chapter 8

Conclusion

It is understood that software systems, especially legacy onmes, are complex and
difficult to deal with. Software engineering is used to organize the software life cycle
and minimize certain development and maintenance pitfalls. Software engineering
proposed some solutions to deal with the software dilemma, however, they were not

enough to deal with certain circumstances.

Software reverse engineering (SRE) has recently surfaced as a software engineering
branch (i.e. solution) that tries to enhance legacy systems and lengthen their lives.
SRE has been used to recover some consequences, and sometimes is used as the only
solution for certéin catastrophes [Ingl94]. SRE also surfaced to improve software

reusability and other software engineering tool.

113

Code clustering is a special class of SRE that deals with software code. It has been
seen that code clustering is a very effective tool to organize code according to certain

criteria, such as strong coupling discussed earlier in Chapter 3.

Similar-Characteristics code clustering (SCCC) is a special type of code clustering
that was proposed by [Raz 93]. A framework of SCCC has been identified and

characterized in this thesis, as was illustrated in Chapter 4.

Theoretically, it has been noted that SCCC can support solutions presented by

software engineering besides reducing the factors that provoke software problems.

In order to put theory into practice, a tool was developed to demonstrate SCCC. This
tool was seen to promote nice features and advantages as discussed in Chapters 5 and

6.

Four case studies have been analyzed using this tool (as was seen in Chapter 7) where
a good demonstration of the tool usage was established. The tool was able to
accumulate related clusters, and heuristically compute the amount of coincidental
cohesion. The tool usage guides to global understanding of the examined application,
which leads to better code understanding . The SCCC methodology was used as a

metric for calculating the coincidental cohesion as was seen the in Chapter 7. The

114

result of the tool eased the global analysis of a particular application, which induced

certain recommendations and remedies to the application problems.

The SCCC methodology and tool contributed to legacy system understanding that can

alleviate problems and enhance solutions.

SCCC can be used with other code clustering methodologies for effective solution not
only when dealing with legacy systems but also while founding a new software

system project.

APPENDICIES

A. Glossary

Code Clustering Code clustering is a reverse engineering methodology used to bundle

together related (usually scattered) code segments according to certain critena.

Data warehousing Data warehousing is the process of sterilizing data, stripping it of
application context, and then isolating this data behind one or more relational

database engine [Ecke95a], [Ecke95b], [Hard95].

Functionality Separation Functionality separation is identifying a functionally
complete piece of logic that is functionally related yet de-localized throughout

old code [Ning94].

GUI GUI stands for Graphical User Interface that is currently used with graphical
window managers such as X-Motif. Currently, GUI's are the most popular

way of interfacing with end users.

Legacy system Legacy system is a large and complex software system that is neither

feasible to abandon nor practical to maintain.

il7

Maintenance Maintenance is the effort and cost exerted in order to keep a software

system in-shape and up-to-date.

Recycling Recycling is the collection of reusable components without having

reengineering intentions.

Redevelopment Redevelopment is the act of rewriting a new system from scratch

without taking into account a preexisting system.

Re-Engineering (Reengineering) Re-engineering (Reengineering) is applied over a
system to enhance its maintainability without adding or extracting

functionality.

Reverse Engineering (RE) Reverse engineering is essentially the development of the
technical data necessary for the support of an existing production item

developed in retrospect as applied to hardware systems [Ingl94].

Similar-Characteristics Code Clustering (SCCC) SCCC is a special type of code
clustering that promotes grouping subprograms the posses similar

characteristics, such as user interface related code.

11§

Software Engineering Software engineering is a set of rituals used for software

development and maintenance.

Software Migration Software migration is the process of migrating a software system
(usually legacy system) from one environment (e.g. mainframe) to another
(e.g. client-server). Usually, the migration process is accompanied with

difficulties when trying to run the old system under a new environment.

Software Reverse Engineering (SRE) Software reverse engineering concerns the
extraction (recovery) of higher-level design or specification information from

the computer software [Ingl94].

Wrapping Wrapping is the process of building GUT’s around a legacy system old user

interfaces.

119

B. Reverse Engineering

The origin of reverse engineering is unknown and it is not necessarily new [Ingl94].
Nevertheless, software-wise, the first implicit work in software reverse engineering
was done by Boehm and Jacopini in 1966. Their work regarded eliminating GOTO's
from code. Dijkstra put more significance into it in 1968, when he wrote "Go To
Statement Considered Harmful" [Arno94]. Interest continued to grow rapidly as more

profound problems than GOTO’s surfaced.

Reverse engineering is a broad subject whose definition changes according to the
working environment. Therefore, many definitions exist for the term reverse
engineering. One definition of reverse engineering is that “Reverse engineering is a
set of methods and tools that may enable a software designer to create new and better

programs” [Samu90].

Software reverse engineering includes the following subjects:

1. Code clustering and reusability

2. Object code reverse engineering

3. Reengineering databases to support data fusion

120

4. Reverse engineering within the life cycle of a project
5. Reverse engineering to hunt for errors or flaws, or in debugging

6. Reverse engineering source code from one language to another

In conclusion of reverse engineering definition, it was stated that reverse engineering
is a technique beneficial to solving system-specific requirements that cannot be
achieved by traditional means. The main goal of reverse engineering is to increase
productivity through improved documentation. Reverse engineering requires highly
professional practitioners. When applied with caution and thorough planning, reverse

engineering can be very effective and profitable (Ingl94].

Current Status of Software Reverse Engineering

In the early 1990%, interest shifted to maintaining code rather than developing new

systems. This is considered a blossoming area for reverse engineering [Amo94].

Part of reverse engineering is evolving to utilize old code, that can be implemented
through code clustering. Because of the importance of reverse engineering and code
clustering, some automation processes have been written to accommodate certain
needs, such as platform or operating system migration of a software system. Most of
these packages were written to accommodate the reengineering of some particular
application. All practitioners who were involved claimed the benefit and time
reduction of using reverse engineering methods and tools for achieving their goals.
These automation packages may not be general enough; however, they serve their
intended purposes and have proven advantages in organizing and utilizing time more
effectively. Two of these packages and some pervious work are explained in Tools of

Code Clustering chapter.

Rationale for Software Reverse Engineering

There are many appealing reasons for reverse engineering. These reasons include:

1.

Cost of developing new software applications

It is neither easy nor cheap to develop a new software
application. It is not practical to maintain old, out of date
software, either [Mack95], [Prem94], [Tile95]. Reverse
engineering has to be implemented over legacy systems to be
able to take advantage of earlier development, reduce the cost,

and improve software quality [Mack95], [Prem94].

The nature of software and hardware

Software is not catching up with hardware advancements.
Usually organizations upgrade their hardware regularly in order
to keep up with technology; however, the software upgrade is
much less frequent because software is more difficult and
costly to modify. With time, software becomes old and
obsolete. In many cases, the original hardware that drove the

initial software design does not exist anymore so that people

123

are faced with different technology. In these cases, reverse
engineering is needed to upgrade the old system to take

advantage of the new hardware [Mack95].

There are two attributes of old code that make it arduous to
comprehend and reuse [Ning94]. The first attribute is that most
of the code is machine dependent [Mack95], which is useless
across different platforms. The second is that older programs
are not structured [Ning94] and lacks software engineering
disciplines. The benefit of reverse engineering in this case is to
get the reusable components as well as organizing the code for

more flexibility and reduced expenses [Mack95], [Ning94].

Another nature of software is that almost 80% of it is not fully
utilized [Tile95]. Reverse engineering could be employed to
extract the remaining 20% out of the original code and try to

enhance it and gear it toward perfection [Mak95].

Enhancing maintainability of software systems
Maintenance is the modification of a software product after

delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a changed environment
[Bank93]. Besides the reasons mentioned earlier, re-marketing

could be another driver of software reengineering [Samu90].

Maintaining old unstructured software is not cost effective and
causes chaos [Mack95], [Prem94]. Enhancement may include
reusability, modularity, maintainability, etc. Also, Chikofsky
supports this enhanced maintainability of software systems by
defining reverse engineering as a way to better comprehend the
system, which leads to more appropriate modifications applied
over the system of interest [Chik90]. Even if the software is
well written, grouping (clustering) processes will allow better

control [Raz 93].

Software reverse engineering should be implemented over
complex and pivotal applications in order to enhance

maintainability as well as reducing the complexity [Mack95].

In its general sense, reverse engineering can be implemented
over a system to discover some of the project pitfalls that were
overlooked during the software design [Ingl94], which in turn

helps reduce the cost of maintenance.

F{

-

Enhancing reusability of system components

Reusability is the ability of software products to be reused, in
whole or in part, for new applications (Meye88]. Reusability is
a driving force behind reverse engineering a system [Prem94].
As it is almost impossible to run software in a totally different
heterogeneous environment without involving emulators,
which are impractical in many cases, breaking down the system
to make use of its operational functions is indispensable. For
example, developers cannot take a mainframe-based system
and migrate it to a client/server-based system without fishing
for reusable constituents by implementing RCR (i.e. reusable
component recovery) concepts. RCR should produce
components that have a higher reusability rate than the system

as a whole [Ning94].

New developments

New developments and new requirements will exist as long as
computers and users exist [Phil96], [Tile95]. In the contrary,
the software productivity is not catching up with current

demands [Mili95]. A very effective way of taking advantage of

126

an old system is by reverse engineering the old system and
utilizing its useful features and reusable components [Mack95],

[Samu90].

Collecting already existing pieces that are sound and do not
need testing will not only effectuate the life cycle of software
[Benn95], but will also improve the total quality of the

software as well as cutting down expenses [Haag96].

Inter-program interface

In practice, there are many cases where a different program
interface is required than the one provided. One of the ways to
know about a third party system is to reverse engineer it.
Another reason to reverse-engineer software is to discover how
the program’ interface is constructed so developers can
develop programs that will be compatible with that program

[Samu90].

Disclosing the idiosyncrasies of a system
Disclosing the idiosyncrasies of a system is necessary

sometimes for peaceful (i.e. education) or violent (ie. war)

directions. Apart from modifying and developing a new
program, another category of things one might do with the
results of reverse engineering would be to disclose those results
to other people, for example, by publishing an article about

them [Samu90].

Sometimes, the essential data of a project or a system could be
lost for one reason or another (i.e. the destructicn of some vital
data for Kuwait during Gulf War in 1990). Implementing

reverse engineering is a must in such a case to reduce damage

(Ingl94].

The growth of software systems

The size of a system could grow very large. Dividing a large
system will allow it to be better controlled. Many large
companies are facing a problem: their legacy systems are
inhibiting their business growth and capacity to change
[Ning94]. The most effective way of dividing large systems is
by reverse engineering them for all the reasons mentioned

earlier.

Reusability

Definition

Reusability’ is the ability of software products to be reused, in whole or in
part, for new applications [Meye88], [Tull89]. Reusability is the creation and
consumption of reusable elements (Fafc94]. Reusability has been given
special attention in the past, present, and most probably in the future.
Reusability was a driving force behind the development of object-oriented
paradigm. Reusability is driven by quality, productivity, and economical
reasons [Budd91, Frak96, Henr95, Isak96, Lim 94, Mili95, Pfle96], and as
stated that “... reuse technology has the greatest potential to reduce the cost of
software” [Card94]. Also, reusability can dramatically affect efficiency, as
stated that “Reuse is a tool that can help organizations provide speedy and
effective solutions ..."” [0’Co94]. Reusability is important to the extend of
writing new projects with reusability intentions. [Even governments and

companies have been involved to support reusability [Isak96].

? It is important to note that reusability is not limited only to software components [Roge95]; however,
in this context, reusability is mainly concerning software components.

b)

Advantages

In this context, reusability, that is analogous to software recycling, is needed
to alleviate the effect of the obstacles mentioned previously. Reusability
improves maintenance by injecting already tested and proven functions into a
software body [Lim 94]. Reusability helps with redevelopment when the right
components are there to reuse. Reusability has been a driving force behind
reverse engineering [Prem94]. Whenever migrating, the more that can be
reused, the more successful the migration project will be. It will be more
successful in terms of economics, productivity, and quality. Wrapping is
already reusing existing components of a legacy system. Wrapping cannot
achieve its goals unless it reuses whatever is available. Inregrating a system
under a new environment is a process of reusing this system in whole. New
paradigm, i.e. Object-Oriented [Faya96], has surfaced because it supports

reusability. Data warehousing is reusing already existing data.

Disadvantages

Reusability has to be treated with care in order to get advantage of it, not the
oﬁposite [Budd91], [Frak94], [Isak96], [Pfle96]. Creating reusable code is not
an easy task and requires astute professionals to accomplish the intended goal

safely. Furthermore, sometimes, extravagant reusability intentions (i.e. object-

130

oriented multiple inheritance), cause a lot of overhead, sophistication and

complexity [Budd91].

131

D. Coupling and Cohesion

Coupling is a measuring attribute of the interaction level between/among a software
system segments. Also, it is stated that coupling is the degree of external interactions
between/among modules of a given software system [Your79]. Cohesion is another
attribute that goes along with coupling, and it is defined to be the level of internal
interactions within a specific module [Your79]. Coupling is a detested characteristic,

whereas, cohesion is a desired virtue [Offu93], [Your79].

Coupling is classified to be:

1. Content coupling

Content coupling is the reference (modification) of local data

of a module by another module.

2. Data coupling
Data coupling is passing homogenous data from one module to
another that operates upon the passed data, which can be a
simple element or an array whose all elements will be used by

the referenced module.

—
J
(3]

Stamp coupling
Stamp coupling is the concept of passing a compound data
structure (e.g. Pascal record) from one module to another that

will operate only upon some elements of the passed structure.

Common coupling

Common coupling, as taken from FORTRAN COMMON
block, allows different modules to operate upon global

(external) data.

Control coupling

Control coupling is controlling the logic of a certain module
throughout passing specific flags from a different module, e.g.
fopen(“fileName”, "r”), which means open a file for read by
passing “r” as the second argument. The way a file is accessed
can be changed by passing “w” instead in order to grant writing

capabilities to the opened file.

Cohesion is ranked, from lowest to highest preferred [Mart85, Scha%0, Your79], 1o

be:

1. Coincidental cohesion

Coincidental cohesion is arbitrary execution of unrelated
statements, that is mixing /O with computational statements,

for example.

2. Logical cohesion

Logical cohesion is performing series of related functions by
invoking other modules to do some desired task while
performing some local statement. In other words, it is dividing
the load between the active module and an external module to

complete a certain task.

3. Temporal cohesion
Temporal cohesion is the execution of sequential statements
that are related in time, such as calculating the sum of one array

and then calculating the sum for another array.

Procedural cohesion

Procedural cohesion is mostly procedures invoking (calling) to
acquire data, then manipulating the data locally, then sending
the calculated result through other procedures. This can be
seen in dealing with databases where calling a routine to
acquire certain record data is performed, then iocally modifying
some data attributes, then invoking another procedure(s) to

store the result into the database.

Communication cohesion

Communication cohesion is the sequence of procedure calls to
perform a desired task by communicating data from a source to
destination, such as printing employees cheques, using a printer

after querying the employees data from a corporate database.

Information cohesion

Information cohesion is the idea of blocking procedures
(functions) to operate upon related data structure(s). This can
be seen in Pascal procedure blocking mechanism when dealing
with a stack or queue data structure. Also, this can be seen in a

class defined in an object-oriented language such as C++.

—
(V8)
(¥

Functional cohesion

Functional cohesion is performing a single simple task by a
function, such as returning the cosine result of a value (e.g.
cos(0)), or drafting a graphical line on the screen (e.g.

line([0,01,{1,1D).

References

[Abd-96]

[Abde96]

[Acke89]

[Adhi96]

Salwa K. Abd-El-Hafiz and Victor R. Basili, “A Knowledge-Based
Approach to the Analysis of Loops”, I[EEE TRANSACTION OF
SOFTWARE ENGINEERING, Vol. 22, No. 125 pp. 339-360, May

1996.

Tarek K. Abdel-Hamid, “The Slippery Path to Productivity

Improvement”, IEEE Software, Vol. 13, No. 4, pp. 43-52, July 1996.

A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski,
“Software Inspections: An Effective Veriﬁéation Process”, IEEE

Software, pp. 31-36 , May 1989.

Richard Adhikari, “Migrating legacy data: how to get there from here”,

Software Magazine, Vol. 16, No. 1, pp. 75-79, January 1996.

[Adol96]

[Aike94]

[Amo94]

[Ball96]

[Bank93]

[Bart94]

W. Stephen Adolph, “Cash Cow in the Tar Pit: Reengineering a

Legacy System”, IEEE Software, pp. 41-47, May 1996.

Peter Aiken et al, “DoD Legacy Systems Reverse Engineering Data
Requirements”, COMMUNICATIONS OF THE ACM, Vol. 37, No. 5,

pp. 26-41, May 1994.

Robert S. Arnold, “Viewpoints”, COMMUNICATIONS OF THE

ACM, Vol. 37, No. 5, pp. 13-14, May 1994.

Thomas Ball, and Stephen G. Eick, “Software Visualization in the

Large”, COMPUTER, pp. 33-42, April 1996.

Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig,
“SOFTWARE COMPLEXITY AND MAINTENANCE COSTS”,
COMMUNICATIONS OF THE ACM, Vol. 36, No. 11, pp. 81-94,

November 1993.

John J. Barton, Scientific and Engineering C++, ADDISON WESLEY

PUBLISHING COMPANY, INC,, U.S.A, 1994.

[Baum95]

[Baum96]

[Benn95]

[Boeh88]

[Boeh96]

[Booc94]

138

David Baum, “New life for legacy épplications”, Data Based Advisor,

Vol. 13, No. 6, pp. 85-90, July 1995.

David Baum, “Legacy systems live on; but updating host apps to
distributed computing can be a huge undertaking”, Information Week,

No. 572, pp. 10A-12A, March 25, 1996.

Keith Bennett, “Legacy Systems: COPING WITH SUCCESS”, [EEE

Software, Vol. 12, No. 1, pp. 19-23, January 1995.

Barry W. Boehm, “A Spiral Model of Software Development and

Enhancement”, COMPUTER, pp. 61-72, May 1988.

Barry Boehm, “Anchoring the Software Process”, IEEE Software,

Vol. 13, No. 4, pp. 73-82, July 1996.

Grady Booch, OBJECT-ORIENTED ANALYSIS AND DESIGN, second
edition, The Benjamin/Cummings Publishing Company, Inc.,

Redwood City, California, U.S.A, 1994.

[Brod95]

[Broo87]

[Broo95]

[Budd91]

[Budd97]

[Cand96]

Michael L. Brodie and Michael Stonebraker, MIGRATING LEGACY
SYSTEMS, Morgan Kaufmann Publishers, Inc., San Francisco,

California, U.S.A, 1995.

Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accident of

Software Engineering”, COMPUTER, pp. 10-19, April 1987.

Frederick P. Brooks, Jr., THE MYTHICAL MAN-MONTH.

ADDISON-WESLEY PUBLISHING COMPANY, USA, 1995.

Timothy Budd, AN INTRODUCTION TO Object-Oriented
Programming, Addison-Wesley Publishing Company, Inc., US.A,

1991.

Timothy Budd, An Introduction to Object-Oriented Programming,

Second Edition, Addison-Wesley Longman, Inc., U.S.A, 1997.

James W. Candler, Prashant C. Palvia, Jane D. Thompson, and Steven
M. Zeltmann, “The ORIOEN Project: Stages Business Process
Reengineering at FedEx”, COMMUMINCATON OF THE ACM, Vol.

39, No. 2, pp. 99-107, February 1996.

[Canf92]

[Card94]

[Char95]

[Chen90]

[Chik90]

Gerardo Canfora, Aniello Cimitile, and Ugo de Carlini, “A Logic-
Based Approach to Reverse Engineering Tools Production”, I[EEE
TRANSACTION OF SOFTWARE ENGINEERING, Vol. 18, No. 12,

pp. 1053-1064, December 1992.

Dave Card, and Ed Comer, “WHY DO SO MANY REUSE
PROGRAMS FAIL?”, I[EEE SOFTWARE, pp. 114-115, September

1994,

Michael Charter, “The love/hate legacy debate”, Computing Canada,

Vol. 21, No. 22, p. 47, October, 25, 1993.

YIH-FARN CHEN et al, “The C Information Abstraction System”,
IEEE TRANSACTION ON SOFTWARE ENGINEERING, Vol. 16, No.

3, pp. 325-334, March 1990.

Elliot J. Chikofsky, and James H. Cross II, “Reverse Engineering and
Design Recovery: A Taxonomy”, IEEE Software, pp. 13-17, January

1990.

[Cimi96]

[Clin95]

[Cons95]

[Cowa95]

[Cox 96]

[Davi9s]

idl

Daniela Cimino, “Grappling with clientserver ‘gotchas:’
heterogeneity, legacy integration still daunting”, Sofrware Magazine,

Vol. 16, No. 1, p. 32, January 1996.

Marshall P. Cline, and Greg A. Lomow, C++ FAQs, ADDISON

WESLEY PUBLISHING COMPANY, INC,, U.S.A, 1995.

Paul Constance, “DOD wants to stop maintaining legacy maintenance
systems”, Government Computer News, Vol. 14, No. 20, p. 58 .

September 18, 1995.

Donald D. Cowan and Carlos J. P. Lucena, “Abstract Data Views: An
Interface Specification Concept to Enhance Design for Reuse”, IEEE
TRANSACTION OF SOFTWARE ENGINEERING, Vol. 21, No. 3, pp.

229-243, March 1995.

John Cox, “Legacy transition tools aid move to client/server”,

Network World, Vol. 13, No. 5, p. 33, January 29, 1996.

Beth Davis, “Legacy-SNMP integration confronted”, Communications

Week, No. 562, pp- 1-3, June 19, 1995.

[Dede95]

[DeMa%6]

[Dods96]

[Ecke95a]

[Ecke95b]

[Edge95]

Guido Dedene and Jean-Pierre De Vreese, “Realities of Off-Shore
Reengineering”, IEEE Software, Vol. 12, No. 1, pp. 35-45, January

1995.

Tom DeMarco, and Ann Miller, “Managing Large Software Projects”,

IEEE Software, Vol. 13, No. 4, pp. 24-27, July 1996.

Bill Dodson, “Inheriting a legacy system”, Data Based Advisor, Vol.

14, No. 3, pp. 102-104, March 1996.

Wayne W. Eckerson, “Building the legacy systems of tomorrow:
recipes for prevention and integration, part I", Open Information

Systems, Vol. 10, No. 11, p. 2, November 1995.

Wayne W. Eckerson, “Building the legacy systems of tomorrow”,

Open Information Systems, Vol. 10, No. 12, p. 2, December 1995.

EDGE: Work-Group Computing Report, “Legacy migration: CST
slﬁps powerful legacy migration software; unique tool migrates legacy

applications into Visual Basic applications for a client/server

[Fafc94]

[Faya96]

[Fole90]

{Frak94]

[Frak96]

environment 100 percent automatically”, EDGE Publishing, Vol. 6,

No. 278, p. 56, September 18, 1995.

Danielle Fafchamps, “Organizational Factors and Reuse”, [EEE

Software, pp. 31-41 , September 1994.

Mohamed E. Fayad, Wei-Tek Tsai, and Milton L. Fulghum,
“Transition to Object-Oriented Software = Development”,
COMMUMINCATON OF THE ACM, Vol. 39, No. 2, pp. 108-121,

February 1996.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes, Computer Graphics: Principles and Practice, second edition,

ADDISON WESLEY PUBLISHING COMPANY, INC,, U.S.A, 1990.

William B. Frakes, and Sadahiro Isoda, “Success Factors of
SYSTEMATIC REUSE”, IEEE Software, pp. 14-19 , September

1994.

William B. Frakes, and Christopher J. Fox, “Quality Improvement

Using A Software Reuse Failure Modes Model”, IEEE

[GeoQ96]

[Gris95]

[Haag96]

[Hamm93]

[Hear86]

144

TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. 22, No. 4,

pp. 274-279, April 1996.

GeoQuest, First In Data Management Service Solutions,

Schlumberger, GMP-6601, July 1996.

William G. Griswold and Darren C. Atkinson, “Managing Design
Trade-Offs for a Program Understanding and Transformation Tool”, J.

SYSTEMS SOFTWARE, Vol. 30, pp.99-116, 1995.

Stephen Haag et al, “Quality Function Deployment”,
COMMUNICATION OF THE ACM, Vol. 39, No. 1, pp. 41-49,

January 1996.

M. Hammer, and J. Champy, Reengineering the Corporation,

HarperBusiness, New York, USA, 1993.

Donald Hearn, and M. Pauline Baker, COMPUTER GRAPHICS,

Prentice-Hall, U.S.A, 1986.

[Henr95]

[Hsia96]

[Ingl94]

[Isak96]

[Kasp94]

[Koen91]

145

Emmanuel Henry, and Benoit Faller, “Large-Scale Industrial Reuse to
Reduce Cost and Cycle Time”, IEEE Software, pp. 47-33, September

1995.

Pei Hsia, “Making SOFTWARE DEVELOPMENT Visible”, [EEE

Software, pp. 23-26, March 1996.

Kathryn A. Ingle, Reverse Engineering, McGraw-Hill, Inc., USA.

1994.

Tomas Isakowitz, and Robert J. Kauffman, “Supporting Search for
Reusable Software Objects”, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, Vol. 22, No. 6, pp. 407-423, June 1996.

Donna Kaspersen, “FOR REUSE, PROCESS AND PRODUCT BOTH

COUNT", IEEE Software, p. 12, September 1994.

J. Koenemann, and S. P. Robertson, “Expert Problem Solving
Strategies for Program Comprehension”, Proc. Human Factors in

Computing Systems, CHI'91, New Orleans, pp. 125-130, May 1991.

[Lede92]

[Lern94]

[Lewi81]

[Lewi96]

[Lewi97]

[Lim 94]

146

Albert L. Lederer, and Jayesh Prasad, “Nine Management Guidelines
for Better Cost Estimating”, COMMUMINCATON OF THE ACM,

Vol. 35, No. 2, pp- 51-59, February 1992.

Moisey Lemner, “Software maintenance crisis resolution: the new IEEE
standard”, Software Development, Vol. 2, No. 8, pp. 65-69, August

1994.

Harry R. Lewis, and Christos H. Papadimitriou, ELEMENTS OF THE
THEORY OF COMPUTATION, Printice-Hall, Inc., Englewood Cliffs,

New Jersey, U.S.A, 1981.

Ted Lewis, “The limits of innovation”, COMPUTER, pp. 7-9, April

1996.

Ted Lewis, “If Java Is the Answer, What Was the Question?”,

COMPUTER, Vol. 30, No. 3, pp. 133-136, March 1997.

Wayne C. Lim, “Effects of Reuse on Quality, Productivity, and

Economics”, IEEE Software, pp. 23-30, September 1994.

[Litt86] D. C. Littman, J. Pinto, and E. Soloway, “Mental Models and Software
Maintenance”, Empirical Studies of Programmers: Fifth Workshop,
Soloway and Iyengar, eds., Ablex Publishing Corporation, pp. 80-98,

1986.

[Loud95] Stephen Loudenrmilk, “Prime paths for SNA routing: options abound
for integrating host-based legacy apps into a PC LAN world”, LAN

TIMES, Vol. 12, No. 14, pp. 86-87 , July 24, 1995.

[Luca%6] Henry C. Lucas, Jr. Donald J. Berndt, and Greg Truman, A
Reengineering Framework for Evaluating a Financial Imaging
System”, COMMUMINCATON OF THE ACM, Vol. 39, No. 5, pp.

86-96, May 1996.

[Lyon95] Daniel Lyons, “Wrapping up legacy code”, InfoWorld, Vol. 17, No.

26, pp. 59-60, June 26, 1995.

[Mack95] Stephen R. Mackey, and Lynn M. Meredith, “Software Migration and
Reengineering: A Pilot Project in Reengineering”, The Journal of
Systems and Software, Vol. 30, No. 1 & 2, pp. 137-150, July-August

1995.

[Mack96]

[Mark95]

[Mart85]

[Mart97]

[Mayr96]

[Meye88]

Karen Mackey, “Why Bad Things Happen to Good Projects”, [EEE

Software, pp. 27-32, May 1996.

Lawrence Markosian, “Salvaging legacy systems”, Computing

Canada, Vol. 21, No. 13, p. 44, June 21, 1995.

J. Martin, and C. McClure. Structured Techniques for Compuring,

Printice-Hall, Englewood Cliffs, new Jersey, USA, 1985.

Robert A. Martin, “Dealing with Dates: Solutions for the Year 20007,

COMPUTER, Vol. 30, No. 3, pp. 44-51, March 1997.

A. von Mayrhauser, and A. M. Vans, “Identification of Dynamic
Comprehension Processes During Large Scale Maintenance”, IEEE
TRANSACTION OF SOFTWARE ENGINEERING, Vol. 22, No. 6, pp.

424-437, June 1996.

Bertrand Meyer, Object-oriented Software Construction, Prentice Hall

International Series in Computer Science, UK, 1988.

[McLe96]

[Mili95]

[Mona95]

[Moor94]

[Mullg9]

139

Jean McLendon, and Gerald M. Weinberg, “Beyond Blaming:
Congruence in Large Systems Development Projects”, [EEE Sofnvare.

Vol. 13, No. 4, pp. 33-42, July 1996.

Hafedh Mili, Fatma Mili, and Ali Mili, “Reusing Software: Issues and
Research Directions”, [EEE TRANSACTION OF SOFTWARE

ENGINEERING, Vol. 21, No. 6, pp. 528-562, June 1995.

Curt Monash, “Beyond the myth of legacy migration”, Software

Magazine, Vol. 15, No. 6, pp. 130-131, June 1995.

James W. Moore, David Emery and Roy Rada, “Language-
Independent Standards”, COMMUNICATIONS OF THE ACM, Vol.

37, No. 12, pp. 17-20, December 1994.

Mark Mull, Object-Oriented Program Design With Examples in C++,
Fifth printing, July 1992, Addison-Wesley Publishing Company, Inc.,

U.S.A, 1989.

[Neum95]

[Ning94]

[O’Co9%4]

[Offu93]

[Patr95]

Peter G. Neumann, “Reviéwing the Risks Archives”,
COMMUNICATIONS OF THE ACM, Vol. 38, No. 12, p. 138,

December 1995.

Jim Q. Ning, Andre Engberts, and W. (Voytek) Kozaczynski,
“Automated Support for Legacy Code Understanding”,
COMMUNICATION OF THE ACM, Vol. 37, No. 5, pp. 50-57, May

1994.

James O’Connor, Catharine Mansour, Jerri Turner-Harris, and Grady
H. Campbell, “Reuse in Command-and-Control Systems”, [EEE

SOFTWARE, pp. 70-79, September 1994.

A. J. Offut, M. J. Harold, and P. Kotle, “A Software Metric System for
Module Coupling”, Journal of System and Software, Vol. 20, No. 3,

pp. 295-308, March 1993.

Andy Patrizio, “Magic 6 supports Windows clients: forms editor
available for legacy systems”, PC Week, 1995, Vol. 12, No. 25, p. 27,

June 26.

[Pfle96]

[Phil96]

[Prem94]

[Rama96]

[Raz 93]

[Ricc95]

—
th
r—

Shari Lawrence Pfleeger, “Measuring Reuse: A Cautionary Tale”,

IEEE Software, Vol. 13, No. 4, pp. 118-127, July 1996.

Dwayne Phillips, “Project Management: Filling in the Gaps”, IEEE

Software, Vol. 13, No. 4, pp. 17-18, July 1996.

William J. Premerlani, and Michael R. Blaha, “An Approach for
Reverse Engineering of Relational Databases”, COMMUNICATIONS

OF THE ACM, Vol. 37, No. 5, pp. 42-49, May 1994.

C. V. Ramamoorthy and Wei-tek Tsai, “Advances in Software

Engineering”, COMPUTER, pp. 47-58, October 1996.

Tzvi Raz, and Alan Yaung, “Process Clustering with an Algorithm
Based on a Coupling Metric”,- J. SYSTEMS SOFTWARE, Vol. 22,

pp.217-223, 1993.

Mike Ricciuti, “Rule Finder traces rules in legacy apps.”, InfoWorId,

Vol. 17, No. 42, p. 28, October 16, 1995.

[Ridd89]

[Sage9s]

[Samu90]

{Scha90]

[Semm95]

[Selk96a]

William E. Riddle, *“Session Summary: Opening Session”,
Proceedings of the 4* International SOFTWARE PROCESS
WORKSHOP, ACM SIGSOFT SOFTWARE ENGINEERING NOTES,

Vol. 14, No. 4, pp. 5-10, June 1989.

Andrew P. Sage, “System Engineering and System Management for
Reengineering”, The Journal of Systems and Software, Vol. 30, No. 1

& 2, pp. 3-25, July-August 1995.

Pamela Samuelson, “Reverse Engineering Someone Else's Software: Is

it Legal?”, IEEE Software, pp. 90-96, January 1990.

S. R. Schach, Software Engineering, Richard D. Irwin, and Asken

Associates, Asken Associates Incorporated Publishers, USA, 1990.

R. D. Semmel, and M. Wilson, “Guest Editors’ Corner, Reengineering
Complex Systems”, The Journal of Systems and Software, Vol. 30,

No. 1 & 2, pp. 1-2, July-August 1995.

Ted Selker, “New Paradigms for Computing”, COMMUNICATIONS

OF THE ACM, Vol. 39, No. 8, pp. 29-30, August 1995.

