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Chapter 1

Introduction

In Very Large Scale Integration (VLSI) circuit design, Placement is the process of
arranging circuit blocks on a layout. In standard cell design, where circuit blocks
are of fixed height and variable widths, placement consists of determining optimum
positions of all blocks on the layout to satisfy a number of objectives [1, 2]. The
simplest version of the placement problem is the optimization of wire length for one
dimensional placement. Even this simplified version is NP-Hard [3, 4]. More complex
versions of this problem are characterized by multiple objectives and constraints such
as interconnect timing delay, area, wire length etc. It is not possible to enumerate
all combinations and come up with the best solution. Therefore we have to use
some intelligent methods known as “heuristics”, to get near optimal solutions in
reasonable amount of time. These heuristics fall into two categories: constructive

and iterative.



Constructive heuristics produce a complete solution by making deterministic
moves. Some examples of constructive schemes are force directed placement, nu-
merical optimization, min-cut placement etc. These schemes are reviewed in [1, 2].
Constructive techniques are fast but fall short of generating good layouts. It is due
to the fact that they always have local view of the search space [3].

Iterative heuristics attempt to improve a complete solution by making con-
trolled stochastic moves [5]. Generally, we can classify iterative schemes into two
subclasses. Schemes which always accept good solutions like local search, force
directed interchange etc., and schemes which can accept bad solutions probabilis-
tically like simulated annealing [6], genetic algorithms [7], simulated evolution [8]
and stochastic evolution [37]. Probabilistic iterative schemes generally outperform
constructive and greedy schemes because their hill climbing property (i.e., accepting
bad solutions) saves them from getting trapped in local optima [3].

Iterative heuristics have been used for the VLSI cell placement. The use of ge-
netic algorithm (GA) for placement is proposed in [9, 10, 11, 12, 13]. Similarly use
of simulated annealing (SA) [6] for VLSI cell placement is discussed and reported
in [1, 2, 14, 15, 16]. There are some concerns about the execution time of these
schemes [17] and premature convergence of GA [18]. In order to overcome these
problems, Kling and Banerjee proposed the Simulated Evolution (SE) heuristic [19],
which combines iterative improvement and constructive perturbation. It saves itself

from getting trapped in local optima by using stochastic selection of design compo-



nents for perturbation. The advantage of this heuristic is reduced execution time
than simulated annealing and genetic algorithm [8].

For multiobjective optimization, fuzzy logic provides an easy way of expressing
expert human knowledge in decision making process of any iterative heuristic. The
advantage of fuzzy logic over classical crisp logic is that it establishes an approximate
truth value of propositions in accordance with the rules designed by the expert, while
in crisp logic the proposition will be either true or false. Furthermore, it provides a

rigorous algebra for dealing with imprecise information.

Objectives of Research

In this thesis we present a Fuzzy Simulated Evolution Algorithm for multiobjective
optimization of VLSI Standard Cell Placement. In our scheme we minimize three
cost parameters of the placement layout: interconnection wire length, delay and
layout width. We propose a novel way of identifying the best solution generated
by the SE algorithm. This scheme uses a fuzzy goal-based cost measure which com-
bines multiple cost parameters into a scalar cost measure. Apart from proposing
this fuzzy cost measure, we have also investigated the fuzzification of other stages
of the algorithm. The SE algorithm consists of three distinct steps: evaluation,
selection and allocation. We propose fuzzification of allocation and evaluation
stages of the simulated evolution algorithm. We propose a “fuzzy controlled stochas-

tic allocation” instead of the previously purely constructive sorted individual best



fit allocation strategy. The experiments show that the proposed fuzzy allocation
scheme based SE algorithm (FSE_FA) results in an overall improved solution qual-
ity compared to a weighted average allocation based algorithm (FSE_WA) as well
as wire length based single objective SE algorithm (SE) as originally proposed by
Kling and Banerjee [8]. Our proposed fuzzy evaluation scheme combines wire length
and net delay bounds for evaluating placement of a circuit block in a location. The
experiments indicate that for bigger circuits the proposed evaluation scheme based
SE algorithm (FSE_FE) results in a reduction in circuit delay compared to the wire
length only evaluation scheme.

Selection bias is a parameter of the SE algorithm. We have investigated the
effects of this parameter on the simulated evolution algorithm. We propose three
dynamic bias variants. The results of our modifications are compared with fixed

bias [8] and normalized goodness measure [20].

Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 gives preliminary informa-
tion helpful in understanding the rest of the thesis. This chapter formally defines the
VLSI cell placement problem, describes the standard cell layout style and placement
problem, computation of cost function and contains a review of fuzzy logic. It also
reviews the classical simulated evolution algorithm.

In Chapter 3 we review related literature. This chapter covers VLSI cell place-



ment schemes, fuzzy logic based placement schemes and different studies which use
SE in computer aided design problems.

In Chapter 4 we propose fuzzy goal-based cost measure. Furthermore, fuzzy
allocation and evaluation schemes for the simulated evolution algorithm for VLSI
cell placement are also proposed. Details of our implementations of these schemes
are given. We compare and contrast these schemes with multiobjective weighted
average SE algorithm and single objective SE implementation similar to the one
proposed by Kling and Banerjee [8].

In Chapter 5 we investigate the effect of selection bias on simulated evolution
algorithm. In this chapter we have proposed variable bias concept. Our proposals
allow a bias which is a function of the problem instance. We also compare results
of proposed scheme with the existing schemes like fixed bias [8] and normalized

goodness [20]. The thesis ends with conclusion and future work in Chapter 6.



Chapter 2

Preliminaries

2.1 Introduction

Necessary problem specific information is included in this chapter. This informa-
tion is needed to understand concepts, terminology and related work described in
the subsequent chapters. We formally define the VLSI cell placement problem in
Section 2.2. We will also describe the Standard Cell Placement (Section 2.3) and
cost computation functions for such a placement (Section 2.4). We have used net
delay bounds in our implementation of the simulated evolution algorithm. The
transformation of the path constraints into net delay bounds is given in Section 2.5.
Details of the environment used in our experiments are given in Section 2.6.

This research is based on the use of the simulated evolution algorithm. Thus,

a quick review of this heuristic is given in Section 2.7. A primer on fuzzy logic is



given in Section 2.8. The chapter ends with a conclusion in Section 2.9.

2.2 Problem Definition

Given a set of modules M = {m,, m,, ..., m, } and aset of signals S = {S;, Ss, ..., Sk},
we associate with each module m; € M a set of signals S,,, where S, C S. Similarly
with each signal S; € S we associate a set of modules M,;, where My; = {m;j|s; €
Smj}. M,; is said to be a signal net. We are also given a set of slots or locations
L = {Ly,L,,...,L,}, where p > n. The placement problem is to assign each m; € M
to a unique location L; such that some objectives are to be optimized [1]. Generally,
minimization of interconnect wire length has been widely used as the objective of
VLSI placement. However, advancement in technology has resulted in reduction in
gate switching delay making the interconnect delay a prominent factor in overall
circuit delay [21]. Reduction of interconnect delay and layout area along with wire
length are important objectives in the placement stage of the VLSI physical design

automation process.

2.3 Standard Cell Layout

In standard cell design all the cells are constrained to have the same height, while
width of the cell is variable and depends upon its complexity [1]. Cells are placed

in horizontal rows and the cell rows are separated by horizontal routing channels.



In order to connect cells within a row or cells from two different rows, channels
are used for running interconnect wires. Connecting cells from two non-adjacent
rows, requires feed through cells in intermediate rows. The feed through cells allow
running vertical wires from cell rows. Figure 2.1 shows block diagram of a standard

cell layout.

s Feedthrough cell

Row of cells

P

B

<«— Routing Channel

Figure 2.1: Layout of a standard cell placement.

2.4 Cost Function

In this section we will review the estimation models for finding the cost of a VLSI
placement layout. As mentioned earlier, in this work we attempt to minimize three
quantities: wire length, interconnect delay, and area, The following text describes

the estimation schemes used in our implementations for these three parameters.



2.4.1 Wirelength Estimation of VLSI Layout

Usually, layout placement generators optimize the total interconnect wire length.
Reduction in wire length results in cost reduction, reduced chip area in standard
cell design and improvement in circuit delay. The cost of a solution due to wire
length is determined by adding the wire length estimates for all the nets in the
circuit.

Different estimation schemes for net length have been used in the placement
algorithms. For example (a) semi-perimeter method, (b) complete graph, (c) min-
imum chain, (d) source to sink connection, (¢) minimum spanning tree, and (f)
minimum Steiner tree are used to estimate net length [2]. A Steiner tree is the
shortest route for connecting a set of pins [1]. However, determination of minimum
steiner tree is known to be NP-Complete [1]. Therefore, in this work we approximate
the steiner tree using following technique.

Steiner tree approximation is a quick and accurate way to estimate net length.
Figure 2.2 illustrates this approximation method. For each net, a bounding rectangle
is determined. The rectangle is partitioned into two parts depending upon the
smaller dimension. If the width (height) of the rectangle is more than the other
dimension, then the rectangle is partitioned into two parts by a horizontal (vertical)
line passing through the center of the net. The length of the tree will be the distance

of the bisecting line and the summation of all the projections from the center of
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net blocks to the bisecting line. In Figure 2.2 rectangle is partitioned horizontally
because the width of the rectangle is more than the height. This scheme provides a

quick and good estimation of the wire length.

h3 h5

h1

Figure 2.2: Steiner tree approximation for estimation of interconnect length. The
length of the tree is distance of the bisecting line (W) and depth is 37, h;.

2.4.2 Layout Area

In standard cell design, circuit blocks have fixed height and variable widths. Blocks
are placed in rows with routing channels separating two adjacent rows. The overall
layout area is represented by the rectangle, which bounds these rows and routing
channels. In our work, the heights of routing channels are initially estimated and
assumed to be fixed. This leaves only width of layout that can be minimized resulting
in reduced area. If cells are placed in such a way that all the rows have approximately

the same width, then the placement is considered to be good with respect to area.



11

2.4.3 Circuit Delay

From the perspective of a layout generator, the VLSI circuit consists of circuit blocks
and interconnection between the blocks. A net is an equipotential interconnect of
pins on different cells. One circuit block can be part of many nets. A path is an
alternating sequence of blocks and nets from source net to sink net. A source net
can be either input pad or output of memory element whereas the sink net can
be output pad or input of memory element. Both source and sink of a path are
controlled by the same clock.

The overall performance of the VLSI circuit depends upon how fast it can
process signals i.e., its clock speed. The propagation delay of signals of a VLSI
circuit consists of two elements, switching delay and interconnect delay. Due to
improvement in technology, gate switching delays have considerably decreased. The
effect of this decrease is that the wiring delay factor becomes prominent in the overall
chip delay. The layout generator is concerned with reducing the interconnect delay.

Let path 7 consist of nets {vy,vs,...., Uk}, then its path delay Ty is expressed

by the following equation.

k—
T, = 21 (CD,, + IDy,) (2.1)

=1

where CD,, is the switching delay of the cell driving net v; and ID,; is the inter-

connect delay of net v;. The overall circuit delay is equal to the T, where path 7,
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is the longest path in the layout (the most critical path).

For a layout generator the switching delay is constant, while the interconnect
delay depends on the distance between the members of the net. Using the (lumped)
RC delay model, this delay is due to interconnect resistance and capacitance. Since
the effect of interconnect resistance is very negligible, we can ignore it. The delay

due to interconnect capacitance for net v; is given by Equation 2.2.

ID,, = LF,, x Cy (2.2)

where LF,, is load factor of the driving block and C,, is the interconnect capacitance.
The load factor is independent of the layout. The interconnect capacitance depends
upon the distance between the blocks of the respective net. If two layers of metal are
used for routing the nets then following set of equations show how the interconnect

capacitance of a net v; is computed.

Cy; =Co+Cf (2.3)
C% = (Cmy X L + Cmy X L) X w (2.4)
Cl =2x ((w+L}) xCp, +(w+L5) xCpy (2.5)

where

Co. = Interconnect capacitance of net v;.
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C2 = Area Capacitance of net v;.

Cf{ = Fringe Capacitance of net v;.

Cn, = Plate capacitance per unit area of metal 1.

Cm, = Plate capacitance per unit area of metal 2.

C;, = PFringe capacitance per unit length of perimeter of metal 1.
Cr, = Fringe capacitance per unit length of perimeter of metal 2.
w = Width of metal 1 or metal 2.

L} = Length of metal 1 used in connecting net v;.

L = Length of metal 2 used in connecting net v;.

In Equations 2.3 to 2.3, w, Cm,,Cm,,Cy,, Cy, are technology dependent parameters.

Section 2.6 gives the characteristics of the technology used in this work.

2.5 Net Delay Bounds

As we have seen in Section 2.4.3, the delay of a VLSI circuit depends on the sum
of interconnect delay and switching delay of the longest path. A circuit will be free
from long-path problems if, for all paths 7 € II, SLACK, > 0. A negative slack
indicates that circuit will not be able to propagate the signal through path within

the required time. The SLACK, is computed as follows.
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SLACK, = LRAT, - T, (2.6)

where LRAT, and T, are the “latest required arrival time” and the “actual arrival
time” of the signal to the sink of path #. T is computed as given in Equation 2.1
while LRAT, depends on the clock period and some technology dependent param-
eters like clock skew and setup time at the path sink.

Path slacks represent the upper constraints on the delay of respective paths.
These constraints can be transformed to the net constraints. However, for a layout
to be free from long path problems, net constraints need not be satisfied in their
entirety. We have used net bounds obtained by minimaz-PERT algorithm [22],
that transforms path constraints into net bounds. These bounds are used in fuzzy
logic based selection scheme in the simulated evolution algorithm (proposed in Sec-
tion 4.2.3). Following is a brief description of the problem of determining net con-
straints and the approach used by minimaz-PERT algorithm.

The key idea of finding net constraints is that a net v; belongs to several paths.
Thus, the net constraints for this net must satisfy the longest path traversing this
net. Let m be a path in circuit represented as graph G = (V, E) and V; is the set
of vertices it traverses. The delay along path = is given by the Equation 2.1. The
switching delay is independent of the layout. Therefore, for the final layout to be

free from long path problems, the interconnect delays must satisfy the following



constraint:

Y ID,, <LRAT,— 5. CD,, Vrell (2.7)

vievl' vEV,
where II is the set of all paths in circuit graph G. The net constraints must satisfy
the inequality 2.7. Using minimaz approach, the timing bound for each net v; on

path 7 is assigned as follows.

v (2.8)

T
u® = Slack, x
v i zueV, Wy

Where

Wy, = the weight of net v;

LF,, x AcLy,

Let IT, be the set of paths going through net v;. A consistent bound will be minimum
of u}. bounds for all IT, paths. We can represent this bound as follows:

u;, = min ug, (2.9)

The problem of finding u, requires enumerating all the paths in the design. This
is an NP-Hard [23]. Minimaz-PERT algorithm approximates these bounds after
enumerating a polynomial number of paths using a PERT-like trace of the graph.

Interested reader can consult [22] for description of this algorithm.
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Metal Type w Sheet Resistance | Area Capacitance | Fringe Capacitance
(micron) Q/0 10~* pF / u? 107*pF / 1
Metal 1 4.0 0.06 0.26 0.82
Metal2 4.0 0.033 0.15 0.85

Table 2.1: Technology parameters used in this research.

2.6 Technology Details

In our work we have adopted standard cell design using a 2 p p-well CMOS technol-
ogy. The parameters for cells like timing characteristics and dimensions are given
in [24]. Furthermore, it is assumed that two layers of routing are used. Metal 1 is
used for routing of horizontal tracks and metal 2 is used for routing of vertical tracks.
The values of capacitances and resistances of these layers are available in [25]. The
values used in our computation are given in Table 2.1. Since the sheet resistance
values are very negligible compared to capacitance values, we ignore the effect of
resistance on delay.

In order to make interconnect delay as a prominent factor in the overall circuit
delay, we have reduced the switching delay (CD,;) in Equation 2.1 by a factor of 4.
It is done to emulate a high speed advanced technology in which switching delays

are major portion in the overall circuit delay.



17

2.7 Simulated Evolution (SE) Algorithm

Simulated Evolution (SE) is a general iterative heuristic proposed in [19]. It falls
in the category of algorithms which emphasize the behavioral link between parents
and offspring, or between reproductive populations, rather than the genetic link [18].
This scheme combines the iterative improvement and constructive perturbation and
saves itself from getting trapped in local minima by using stochastic approach. [t
iteratively operates a sequence of evaluation, selection and allocation (perturbation)
on one solution. Using a time homogeneous irreducible Markov chain, Kling and
Banerjee [26] showed that algorithm converges in the limit to a global minimum
with probability one.

In this section we will review simulated evolution (SE) algorithm in detail, as

given in [8].

2.7.1 Description of SE Algorithm

The Simulated Evolution is a general heuristic for solving a variety of combinatorial
optimization problems. The SE proceeds as follows. It starts with a randomly gen-
erated valid initial solution. The main loop of the algorithm consists of three steps:
evaluation, selection and allocation. These steps are carried out repetitively in
a main loop until some stopping condition is satisfied. Other than these three steps,

some input parameters for the algorithm are initialized in an earlier step known as
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initialization. Following is the description of these procedures. The pseudo code

of the algorithm is given in Figure 2.3.

Initialization

Initialization step is carried out only once. It consists of selecting a starting valid
solution for the problem under consideration. This solution can be generated ran-
domly or the output of any constructive heuristic. The other important parameters
which can be initialized in this step are a stopping condition and selection bias (B).
Different stopping conditions can be used. For example, the stopping condition can
be a fixed number of iterations of the main loop or a function of improvement in the
solution cost. Selection bias is used to compensate errors made in the estimation
of the optimum cost used in the computation of goodness (see the evaluation stage
below). The selection bias controls the magnitude of the perturbation of current
solution. It effects the overall execution speed of the algorithm and the quality of
the final solution. A carefully selected value of the bias results in a good quality

solution.

Evaluation

In this step, each individual member of the solution is evaluated on the basis of
problem constraints and objectives. This evaluation is represented by the goodness

for each element of the current solution. The goodness of an element of the design



Algorithm Simulated_Evolution(B, ®;nitiar, StoppingCondition)
NOTATION
B= Bias Value. &= Complete Solution.

e;= Individual cell in ®. O;= Lower bound on cost of it* cell.

C;= Current cost of i** cellin ®.  g;= Goodness of i** cell in &.

S= Queue to store the selected cells.

ALLOCATE(e;, ®;)=Function to allocate e; in partial solution ®;
Repeat

EVALUATION: ForEach e; € @ DO

begin
gi = %}
end
SELECTION: ForEache; € @ DO
begin

IF Random > Min(g; + B, 1)
THEN  begin
S=S U e; Remove e; from &.
end
end
Sort the elements of S
ALLOCATION: ForEache; € S DO
begin
ALLOCATE(e;, ®;)
end

Until Stopping Condition is satisfied

Return Best solution.
End (Simulated_Evolution)

Figure 2.3: Structure of the simulated evolution algorithm.
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is defined as follows.

gi=— (2.10)

where o; is the optimum value on the cost of element i and a; is the actual cost
estimate for this element in the current design. The goodness represents a measure of
how near each element is to its optimum position. As is obvious from Equation 2.10,
the goodness of an element is between 0 and 1. A value of goodness near 1 means

that element  is near its optimum location.

Selection

The goodness is used to probabilistically select elements in the selection step. Ele-
ments with low goodness have a higher probability of getting selected for reposition.
Selection bias (B) is used to compensate errors made in estimation of the optimum
cost. Its objective is to inflate or deflate the goodness of elements. A high positive
value of bias decreases the probability of selection or vice versa. A carefully tuned
bias value results in good solution quality and reduced execution time [26]. The
selection step results in a partial solution of only unselected elements, while selected

elements are saved in a queue for allocation.

Allocation

The purpose of the allocation is to perturb the current solution in such a way

that the selected elements are assigned to better design positions. The allocation
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function affects the quality of solution as well as convergence of the search. Different
constructive allocation schemes are proposed in [8]. One such scheme is sorted
individual best fit, where all the selected elements are sorted in descending order
in a queue with respect to their connectivity with the partial solution. The sorted
elements are removed one at a time and trial moves are carried out for all the
available empty positions at that time. The element is finally placed in a position
where maximum reduction in cost for the partial solution is achieved. This process
is continued until the selected queue is empty. Figure 2.4 illustrates this scheme for
VLSI cell placement. There are four selected VLSI cells and and as many empty
locations in the layout. The head of line cell (cell 1) is tried in all four locations and
finally placed in slot number 3 because the reduction in cost is maximum. Then
second cell is tried on remaining slots and placed in slot 4. This process is repeated
for all the remaining selected cells. The overall complexity of this algorithm is O(s?)
where s is the number of selected elements. Other more elaborate allocation schemes
are weighted bipartite matching allocation and branch-and-bound search
allocation [8]. However, these schemes are more complex allocation strategies than
“sorted individual best fit”, but result in comparable solution quality [8]. In this

work we have used a fuzzy sorted individual best fit allocation scheme.
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Figure 2.4: Sorted individual best fit placement.

2.8 Fuzzy Logic

2.8.1 Fuzzy Set Theory (FST)

A crisp set is normally defined as a collection of elements or objects £ € X that
can be finite, countable or uncountable. Each single element can either belong to
a set or not. However, in real life situations objects do not have crisp (1 or 0]
membership criteria. Fuzzy Set Theory (FST) aims to represent vague information,
like “very hot” and “quite cold”, which are difficult to represent in classical (crisp)
set theory. In fuzzy set an element may partially belong to a set. Formally, a
fuzzy set is characterized by a membership function which provides a measure of
the degree of presence for every element of the set [27, 28]. A fuzzy set A of a
universe of discourse X is defined as A = {(z,a(z))| all z € X}, where ps(z)
is a memerbership function of z € X being an element in A [29]. Figure 2.5 shows
one example of a membership function.

Like crisp sets, set operations such as union, intersection, and complementation
etc., are also defined on fuzzy sets. There are many operators for fuzzy union and

fuzzy intersection. For fuzzy union, the operators are known as s-norm operators
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degree of membership
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Universe of discourse X

Figure 2.5: Membership function for a fuzzy set A.

(denoted as ). While fuzzy intersection operators are known as t-norm (denoted
as *). Some examples of s-norm operators are given below, (where A and B are

fuzzy sets of universe of discourse X) [27].
1. Maximum. [p, ) p(z) = max{pa(z), na(z)]]-
2. Algebraic sum. 415 5(2) = pa(2) + #5(2) — pa(@)s(@) |
3. Bounded sum. [ pa()p(2) = min(1, pa(z) + pa(x))]-

4. Drastic sum. | ,uAUB(x) = pal(z) if pg(r) = 0, pp(x) if pa(z) =0, 1 if
pa(z), us(z) > 0.
An s-norm operator satisfies commutativity, monotonicity, associativity and u AlJo = Ha

properties. Following are some examples of fuzzy intersection operators known as

t-norm.
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1. Minimum. [p, p(z) = minfpa(z), ()]l
2. Algebraic product. iy (@) = pa(@)us(@) 1
3. Bounded product. [ s p(z) = max(0, pa(z) + pa(z) - 1)]-

4. Drastic product. [ panp(z) = palz) if ps(z) =1, pp(z) if pa(z) =1, 0 if

pa(z), pe(z) < 1J.

Like s-norms, t-norms also satisfy commutativity, monotonicity, associativity and
Baf1 = Ha properties. Additionally, the membership function for fuzzy comple-

mentation operator is defined as.

pg(z) =1 — up(z)

Ordered Weighted Averaging Operator

Generally, formulation of multi criteria decision functions do not desire pure “and-
ing” of t-norm nor the pure “oring” of s-norm. The reason for this is the complete
lack of compensation of t-norm for any partial fulfillment and complete submis-
sion of s-norm to fulfillment of any criteria. Also the indifference to the individual
criteria of each of these two forms of operators led to the development of Ordered
Weighted Averaging (OWA) operators [30]. This operator allows easy adjustment of
the degree of “anding” and “oring” embedded in the aggregation. According to [30],

“orlike” and “andlike” OWA for two fuzzy sets A and B are implemented as given



in Equations 2.11 and 2.12 respectively.
1
pays(z) = B8 x max(pa, pg) + (1 — ) x 5(#A + up) (2.11)

bars() = B x min(ua, ps) + (1 = 8) X 5(ka + is) (212)

B is a constant parameter in the range [0,1]. It represents the degree to which OWA

operator resembles a pure “or” or pure “and” respectively.

2.8.2 Fuzzy reasoning

Fuzzy reasoning is a mathematical discipline invented to express human reasoning in
vigorous mathematical notation. Unlike classical reasoning in which propositions are
either true or false, fuzzy logic establishes approximate truth value of propositions
based on linguistic variables and inference rules. In order to represent imprecise
ideas, Zadeh [31] introduced the concept of linguistic variable. A linguistic vari-
able is a variable whose values are words or sentences in natural or artificial language
[32]. The set of values a linguistic variable can take is called a term set. This set is
constructed by means of primary terms and by placing modifiers known as hedges
like “more”, “many”, “few” etc., before primary terms. The term set represents a pre-
cise syntax in order to form a vast range of values the linguistic variable can take.
The linguistic variables can be composed to form propositions using connectors

like AND, OR and NOT. Formally, a linguistic variable comprises five elements [33].
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1. The variable name.

2. The primary term set.

3. The Universe of discourse U.

4. A set of syntactical rules that allows composition of the primary terms and

hedges to generate the term set.

[J]]

. A set of semantic rules that assigns each element in the term set a linguistic

meaning.

For example, wire length can be used as linguistic variable for VLSI cell placement
problem. According to the syntactical rule, the set of linguistic values of wire length
may be defined as very small wire length, small wire length, somewhat small wire
length, large wire length. The universe of discourse for linguistic variable is possi-
ble range of wire length for some designs. For instance, universe of discourse for
linguistic variable wire length can be the interval [100000 z, 150000 y]. The set of
semantic rules define fuzzy sets for each linguistic value. A linguistic value is char-
acterized by its corresponding fuzzy set. The membership in fuzzy set is controlled
by membership functions like Figure 2.5. It shows the designer’s knowledge of the

problem.
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2.9 Conclusion

In this chapter we have seen relevant material necessary to understand subsequent
chapters. We have defined the VLSI cell placement problem and reviewed the cost
functions with respect to interconnect wire length, layout area and circuit delay. We
have also seen the transformation of path delay constraints into net constraints. We
will later use these constraints in the SE based placement scheme to improve the
circuit delay. The technology dependent constants and parameters are also given .
In this chapter we have also reviewed the simulated evolution heuristic and
fuzzy logic. This heuristic is a powerful stochastic iterative heuristic for general
combinatorial optimization problems. It is based on the analogy between optimiza-
tion and evolutionary processes. Underlying principle of this heuristic is that evo-
lutionary system be subjected to the evaluation process such that it stochastically
discards inferior parts and retains superior parts of the system. The constructive
perturbation in allocation stage ensures that the algorithm will converge to a sub-
optimal solution. On the other hand, fuzzy logic provides a convenient algebra of

combining conflicting objectives and expert human knowledge.



Chapter 3

Literature Review

3.1 Introduction

The VLSI cell placement problem is an NP-hard problem [34]. The simplified version
of this problem is the optimization of wire length for one dimensional placement of
cells. Even this simplified problem of optimally placing n cells requires enumeration
of n! options. This is impractical even for circuits having few hundred cells. Because
of exponential complexity of this problem, clever techniques known as “heuristics”
are used to generate near optimal solutions in reasonable amount of time.

In this chapter, we review some of the important studies carried out in this area.
Section 3.2 reviews placement techniques which use crisp knowledge for decision
making. Fuzzy logic allows a convenient way of combining human expert knowledge

in decision making. Therefore, several studies have used fuzzy logic based decision

28
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making in placement techniques. These studies are reported in Section 3.3. As
this research is based on Simulated Evolution Algorithm (described in Section 2.7),
therefore we have reviewed the applications of SE on computer-aided design (CAD)

problems. This review in reported in Section 3.4.

3.2 General Placement Techniques

3.2.1 Constructive Placement

Constructive placement schemes build a placement in a piecewise manner. These
schemes assign cells one by one cells are placed. The algorithm starts with an initial
solution known as seed. Then other cells are selected (one at a time in order of
their connectivity to the placed modules) and placed at a vacant location near to
the already placed cells [2]. This process continues until all cells are placed. Such
schemes are very fast but fall short of good placement. This is due to the fact that
these schemes make decision about placing a cell in a location on the basis of partial
placement only. Secondly, once a decision is made, no matter how bad it is, there is
no mechanism to reverse it. Therefore, these schemes may remain trapped in local
minima.

These algorithms are generally used to generate initial solutions for iterative
algorithms. The reason of using these techniques is their fast execution time. Other

examples of constructive placement techniques are numerical optimization, place-



30

ment by partitioning and force directed scheme. These heuristics are surveyed in [2].

3.2.2 Iterative Placement Schemes

In contrast to the constructive techniques, iterative schemes require enormous com-
putational time to generate good placement. Iterative techniques start with an
initial solution and repeatedly modify the solution in each iteration until no more
improvement occurs. The modification in solution is intended to reduce the cost
of the solution. Iterative schemes can be further classified on the basis of whether
they can accept bad solutions probabilistically or not. Those iterative algorithms
which allow acceptance of bad moves probabilistically fall in the sub-category of
“stochastic iterative algorithms”. This property is called “hill climbing property”.
It saves algorithms from getting trapped in local minima. However, it is required
that the acceptance of bad moves be controlled to avoid random traversal of search
space. Examples of such probabilistic iterative schemes are simulated annealing
(SA), genetic algorithm (GA) and simulated evolution (SE).

There are iterative heuristics which do not allow acceptance of bad moves.
These schemes are known as “deterministic iterative techniques”. Examples of
such techniques are min-cut, force directed interchange and local search etc. These

schemes are discussed in [1, 2].
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Stochastic Iterative Schemes

Three stochastic iterative algorithms have been successfully applied on the VLSI
cell placement problem. These algorithms are simulated annealing (SA) (6], genetic
algorithm (GA) [33], and simulated evolution (SE) [19]. Following is a brief review

of these implementations.

Simulated Annealing

Simulated Annealing is a popular combinatorial optimization algorithm proposed
by Kirkpatrick et. al. [6]. It is derived from the analogy of the physical annealing
process of metals. SA works on a single solution. The neighborhood state of the so-
lution is generated by randomly selecting modules and interchanging their positions.
All good moves are accepted. However, bad moves are stochastically accepted. The
acceptance probability of bad moves is controlled by a cooling schedule. In early
stages of the search, number of bad moves are accepted with high probability. How-
ever, as search progresses, cooling temperature decreases, so does the probability of
accepting bad moves. In the last part of the search, SA behaves as a greedy algo-
rithm, accepting only the good moves. For details of simulated annealing algorithm
interested readers are referred to [5].

Sechen [36] used SA to solve the VLSI placement problem. Their implemen-
tation is known as Timberwolf. The algorithm performs placement and routing in

three stages. The first stage is concerned with the cell placement in order to reduce
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interconnect wire length. A neighbor function produces new states by making a
random selection from three perturb functions i) move a single cell to a new loca-
tion ii) swap two cells iii) mirror a cell about the x-axis. The cost function contains
total estimated wire length, penalty for cell overlap and length of the row exceed-
ing (or falling short of) the expected length. The annealing process is started at a
very high temperature. Initially the temperature falls very rapidly. In intermediate
range the temperature is reduced slowly and in the final stage it again falls rapidly.
Most of the improvement in the quality of solution is achieved in the intermediate
temperature range. The remaining two stages of the algorithm are concerned with
routing.

In order to reduce the execution time of SA, Mallela et. al. [15] proposed a
clustering based SA for the standard cell placement. In the first stage, using SA
they place clusters of cells formed on the basis of interconnections. In the second
stage, the clusters are broken into individual cells and then cells are placed using SA.
This hierarchal SA reduces the problem size without compromising on the quality
of solution.

Simulated annealing is a very successful heuristic for combinatorial optimiza-
tion. However, it suffers from two major drawbacks. It requires careful tuning
of its control parameters and it also needs excessive computation time [37]. Tao
et. al., in [17] have shown that SA takes more execution time due to non aggres-

sive neighborhood search. During each iteration of SA, algorithm chooses a random
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neighboring solution which is not always most profitable one. The real cost improves

mostly in a narrow time range.

Genetic Algorithm

Genetic Algorithm (GA) is another powerful and popular optimization algorithm
which works by emulating the natural process of evolution as a means of progressing
toward the optimum. It was invented by Holland [35]. Unlike SA which works
repeatedly on single solution, GA works on a set of solutions in parallel. The set
of solutions are known as a population. Each solution is represented by a string of
symbols known as chromosome. Four genetic operators namely selection, crossover,
mutation and inversion are repeatedly applied on a collection of solutions to generate
new offsprings. Extensive literature is available on genetic algorithms and their use
in combinatorial optimization problems. Interested reader is referred to [5, 7}
Cohoon et. al. [38] used GA for VLSI cell placement. They proposed an al-
gorithm with the name “Genie”. In their algorithm, initial population is a mix
of individuals generated by two methods. They have used randomly generated in-
dividuals along with individuals generated by a greedy constructive heuristic. If
the entire population consists of individuals generated using a greedy constructive
heuristics then genetic algorithm converges prematurely to a local minimum. The
presence of random layouts in initial population provides diversification. Fitness of

individual solution is determined on the basis of interconnect wire length only. The
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fitness function does not account for possible cell overlaps or variation in row length.
Different types of parent choice functions, crossover operators and individual sur-
vival functions were tested. They compared results of GA with that of SA for five
circuits. GA was able to generate same quality solution in two cases while in other
three tests quality was up to 7% worse than SA.

Shahookar et. al., [2, 9] also implemented GA for the VLSI placement and
compared the performance of their algorithm using different crossover operators, like
partially mapped (PMX), cycle and order crossover. They used an initial population
of randomly generated individuals. The fitness function of an individual was equal to
the reciprocal of its total interconnect wire length estimate. Inversion or mutation
genetic operators were also used with different probabilities. After crossover the
fitness of offspring is evaluated and the population for the next generation is selected
from the population of offsprings and parents. According to their study, PMX or
cycle crossover performed best, while order crossover was the worst. The quality of
final solution generated by GASP was comparable with the results of Timberwolf (2,
9] .

Khalid [39] investigated the use of GA for multi-objective optimization of the
VLSI cell placement. Not only wire length but also circuit delay and layout area
was optimized. The crossover operators were geared to transfer information about
satisfied paths (sequence of nets from input to output which transfer signal in same

clock pulse) to next generation. This resulted in timing improvement of up to 17%



against a min-cut placer.

Holt et. al. [12] proposed GEEP, a GA based low power layout system. GEEP
reduces interconnect capacitance by an average of 20% over recursive min-cut area
optimizing placement. They included the low population diversity in GA to achieve
fast execution time.

Genetic algorithm requires extensive computational time and high memory.
Furthermore, when population has individuals with equal fitness then it is likely

that GA will converge prematurely [18].

Simulated Evolution

Simulated Evolution (SE) is also an iterative heuristic proposed by Kling and Baner-
jee [8]. This algorithm is inspired by the simulated annealing. However, instead of
carrying out a random selection and stochastic perturbation as in the case of SA,
simulated evolution uses stochastic selection based on individual goodness and con-
structive perturbation. Due to these characteristics SE can generate near optimal
solutions in reduced execution time than SA. Kling and Banerjee applied SE for VLSI
placement problem and achieved solution quality comparable to SA in considerably

less execution time. Simulated Evolution algorithm is described in Section 2.7.
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3.3 Fuzzy Logic Based Placement Schemes

VLSI cell placement problem contains multiple conflicting objectives. As an exam-
ple, if we are optimizing wire length and layout area, it is possible that one particular
move in an iterative algorithm reduces area but increases wire length. It is difficult
to decide whether this type of move is good or bad. Use of crisp logic for such
situations will not be able to represent the expert opinion. Therefore, fuzzy logic
provides an alternative reasoning mechanism which can satisfy conflicting objectives
by using expert human knowledge [32]. Fuzzy logic has been used in VLSI design
automation problems. Most of the schemes proposed in the literature use fuzzy logic
in constructive heuristics. Following is a brief review of some of the schemes.

Lin et. al., in [32] discuss their implementation of fuzzy rule based sea of gates
placement mechanism. It is a constructive cluster growth heuristic in which deci-
sions regarding which cell to select, and where to place it, are carried out using fuzzy
logic. Fuzzy logic was used to facilitate multi-objective decision making among con-
flicting placement objectives like reducing wire length, layout area and circuit delay.
Similarly in [40], constructive placement scheme is described in which fuzzy logic
is used to construct a connection matrix to represent the ‘true’ degree of connec-
tivity between cells. The extension of this work is reported in [41]. The authors
have proposed a hierarchical placement strategy. In the first stage, a connection

matrix is formed which is used in the fuzzy similarity process for clustering. In the
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second stage, final placement is carried out by using fuzzy c-means clustering and
linear ordering process to partition the modules. It is reported that this constructive
algorithm has overall complexity of O(n®®) where n is the number of modules.

Ball et. al., in [42] describe two methods of constructive partitioning and place-
ment. Both schemes are based on fuzzy c-means algorithm. The first method min-
imizes wire length by force directed relaxation and fast clustering technique. The
second method uses fuzzy similarity relation for specifying similarities between the
cells. The set of modules are partitioned into subsets based on their characteristic
features such as connectivity, size, aspect-ratios, power consumption etc.

Mackey et. al., in [43], describe a performance driven macro cell placement
algorithm. Their technique optimizes inter-device delay by using a quad-partitioning
algorithm with tabu search and fuzzy cost function. The algorithm repeatedly quad-
partitions the layout, places the cells in regions and optimizes the regions by doing
cell movements and cell swaps across the regions. This partitioning and optimization
continues until the number of cells in each region is small enough to be easily placed.
Three values contribute to fuzzy cost of a solution: total path length cut by region
boundaries, maximum path length cut by region boundaries and total number of
paths cut by region boundaries. It is claimed that fuzzy based cost function improves
the placement by shortening the longest path through the circuit.

Yukimatsu et. al., in [44] give the description of hierarchical fuzzy expert system

for placement of parts on printed circuit board. Their scheme starts with dividing the
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set of parts into several blocks. The presence of parts in the blocks is given by fuzzy
values, which represent the degree of belonging (DOB). Each block is represented by
one major component. In the first stage of placement, these blocks are placed on the
layout using simulated annealing, ignoring the area of blocks. Then placement areas
are assigned taking into consideration the DOBs of the components. These areas
can overlap. In the second stage parts are placed based on the rough placement
according to their DOBs to the blocks. Each position of the device is optimized
using constructive heuristics. Results show that the final solution is feasible.
Hakeem [45], used fuzzy logic based genetic algorithm (GA) for the floorplan-
ning problem. Floorplanning problem is also a hard problem of VLSI physical design
stage. It is carried out before placement and finds locations of macro blocks on a
layout. His proposed fuzzy GA scheme used the fuzzy decision making approach for

cost computation. He reported comparable results to a weighted sum approach.

3.4 Applications of SE algorithms

Simulated Evolution (SE) was proposed as a general iterative heuristic. It has
been used in optimization of number of problems related to computer-aided design
(CAD). Following is a brief review of some studies which use SE for combinatorial

optimization problems in CAD.

Ly et. al. [46] have used SE for high level synthesis problem. A high level
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synthesis tool maps the abstract behavior specifications (like algorithm) represented
by control/data flow graphs (CDFG) into data path circuit and a finite state machine
(FSM) description. The FSM specifies the controller required to sequence the data
path through control steps. The synthesis task can be divided into two sub-tasks
namely scheduling and allocation. The scheduling is concerned with assignment of
each node of CDFG to a control step such that all conflicts due to data/control flow
dependencies are resolved. The allocation task is concerned with assigning hardware
cells to CDFG nodes and edges so that resulting circuit can implement the algorithm.
In [46] authors have formulated scheduling and allocation steps of high level synthesis
as optimum assignment problem. SE algorithm is applied for both steps. Scheduling
is carried out first and then allocation is determined so that hardware (or area) is
reduced. The results of experiments show that SE based synthesis requires less run
times to generate designs as well as quality of final generated solution is comparable
to existing schemes.

Asynchronous pipeline design requires a well-designed interconnection circuit.
This design results in high speed performance by eliminating the clock skew prob-
lems of synchronous system. Kuw et. al. have reported study of partitioning and
scheduling of asynchronous pipelines [47]. The scheduling of operations into stages
is carried out by using simulated evolution algorithm. For two test cases, their
implementation was able to achieve sub-optimal solutions.

In [48] SE algorithm is used to solve gate-matrix layout problem. The gate-
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matrix layout problem is solved as a one-dimensional transistor gates placement
problem. After generating a constructive solution, the algorithm repeatedly works
on it by removing ill fit designs based on their individual goodness and re-allocating
them to empty slots. As reported in {48] authors obtained good results.

Routing of VLSI circuits is another NP-complete problem [1]. There are sev-
eral studies in recent years which use SE in one form or the other to solve this
problem. For example Wang et. al. have used SE for rip-up and re-route steps in
order to resolve the channel capacity violations of initial routing step [49]. In order
to decrease path delays of circuit, their implementation works on critical path based
routing rather than net based routing. Similarly Yuh et. al. have used SE based
performance and routability driven router algorithm for field programmable gate
arrays (FPGAs) [20]. In the first stage of the algorithm, nets are routed sequen-
tially according to their criticality. In the second stage, violating nets/paths with
respect to routing resource and timing constraints are ripped up and re-routed. For
this stage SE heuristic is used to find near optimal solution. Experimental results
show that their implementation gives better results with respect to reduction in de-
lay and improvement in routability over many existing routing algorithm. Similarly

in [50, 51, 52] SE has been used for VLSI routing problem.
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3.5 Conclusion

In this chapter we reviewed VLSI placement schemes. One can broadly classify
these schemes on the basis of how they build the solution. Constructive schemes
use a piece wise placement strategy in which individual cells are placed one by
one until complete layout is ready. Iterative schemes work on a complete solution
and repeatedly try to improve the quality of layout. If the selection of a move is
greedy i.e., always accepting good moves, then such a scheme is sub-classified as
deterministic iterative heuristic. Constructive schemes and deterministic iterative
heuristics are likely to be trapped in local minima because of their narrow view and
limited traversal of search space.

Stochastic iterative heuristics are iterative heuristics which allow probabilistic
acceptance of bad moves. Although these heuristics are very time consuming, they
guarantee generation of sub-optimal solution. One characteristic of these schemes is
that they carry out a controlled walk in the search space. Examples of such heuristics
are simulated annealing, genetic algorithm, simulated evolution etc. Detail reviews
of these and other algorithms are found in [5].

In this chapter we have also reviewed applications of simulated evolution on

number of CAD problems.



Chapter 4

Fuzzy Logic Based Simulated
Evolution Algorithm For VLSI

Cell Placement

4.1 Introduction

In [8], Simulated Evolution (SE) algorithm was applied for VLSI cell placement prob-
lem. The objective function in that study was to reduce interconnect wire length.
However, with the advancements in technology, gate sizes have decreased resulting
in low switching delays and driving strength. This made the propagation delays
of interconnects relatively more dominant. For standard cell design, where modules

have variable widths, placement is also concerned with minimizing layout area. This

42
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makes VLSI placement a multiobjective optimization problem. In our scheme, we
minimize three cost parameters of the layout: interconnection wire length, circuit
delay, and layout width.

During placement process, all desirable objectives can only be imprecisely esti-
mated. Fuzzy logic provides a rigorous algebra for dealing with imprecise informa-
tion. Furthermore, it is a convenient method of combining conflicting objectives and
expert human knowledge. From the pseudo code of the SE algorithm given in Fig-
ure 2.3, it is clear that there are two stages of the algorithm, which can be modeled
to include multiple objectives. These stages are evaluation and allocation. We
have used fuzzy logic based reasoning in these two stages. The proposed schemes are
compared with weighted sum allocation based SE (FSE_WA) and single objective
original SE (SE) as proposed by Kling and Banerjee [8]. The FSE_WA uses a wire
length based evaluation stage and multiobjective weighted average allocation stage.

In order to identify the best solution for a multiobjective optimization problem,
one has to tradeoff between various objectives. In this work we adopt a goal directed
search approach, where the best placement is the one that satisfies as much as
possible a user specified vector of fuzzy goals. This is achieved by a using a fuzzy
goal-based cost measure.

In this chapter we describe our proposed schemes, details of implementation
and results of experiments. This chapter is organized as follows. In Section 4.2, we

give our proposed schemes and step by step details of implementation of different
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stages of the SE algorithm. After describing the generation of initial solution in
Section 4.2.1, we describe our approach of fuzzy goal-based cost computation in Sec-
tion 4.2.2. In Section 4.2.3 we describe the proposed fuzzy evaluation scheme as well
as classical evaluation scheme. After covering the selection process in Section 4.2.4,
we describe the allocation stage of the SE algorithm in Section 4.2.5. In this sec-
tion, we describe our proposed fuzzy controlled stochastic sorted individual best fit
allocation strategy. A weighted sum sorted individual best fit allocation scheme is
also described. Section 4.3 reports and discusses the results of different experiments.

The chapter ends with conclusion (Section 4.4).

4.2 Proposed Scheme and Implementation De-
tails

In this section we give our proposals of fuzzification of different stages of the SE
algorithm. This description is combined with details of implementation of the SE

algorithm for VLSI cell placement problem.

4.2.1 Initial Solution

Initial layout is generated randomly in which fixed number of cell rows are con-
sidered, with no limitation on the width of the cell row. The intermediate routing

channels have fixed heights equal to the average height of routing channels generated



by a min-cut based placer.

4.2.2 Fuzzy Goal-based Cost Measure

VLSI placement is a multiobjective combinatorial optimization problem. A place-
ment is evaluated against several objective criteria such as, wire length, delay and
layout width. The best placement is the one which scores lowest with respect to
all objectives. However, such a solution most likely does not exist. Omne usually
has to tradeoff these various objectives. In such a case, the concept of optimum is
not clear. Traditional approach consists of combining all objectives in a weighted
sum cost function, and the placement with lowest weighted sum is reported as the
best solution [21, 53]. This approach is at best controversial. Furthermore, the
individual placement objectives are very imprecise. In this work we adopt a goal
directed search approach, where the best placement is the one that satisfies as much
as possible a user specified vector of fuzzy goals. This scheme is inspired by the
work reported in [54, 35].

Let there be I solutions generated by the SE algorithm. Assume that we are
optimizing a p-valued cost vector given by C(z) = (Ci(z),Ca(z), ..., Cp(z)) where
z € I'. Assume that a vector O = (O, 0o, ...,0,) gives lower bound estimates on
individual objectives such that O; < Ci(z) Vi, Vz € I'. These are lower bounds on
each objective which usually are not achievable in practice. Further, assume that

there is a user specified goal vector G = (g1, g2, ---, gp) Which indicates the relative
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acceptable limits for each objective. It means that z will be an acceptable solution
if Ci(z) < g; x O; where Vi, g; > 1.0. For a two dimensional optimization problem,

Figure 4.1 shows the region of acceptable solutions.

Ca(x)
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Figure 4.1: Range of acceptable solution set.

In our proposed scheme, the acceptable solution set is a fuzzy set. For VLSI cell
placement problem of minimizing three parameters, we propose the following rule to
determine membership in the fuzzy set acceptable solution. This rule is implemented

by Equation 4.1.

Rule 4.1: IF a solution is within acceptable wire length
AND within acceptable circuit delay AND within acceptable width

THEN it is an acceptable solution.

3
HE(&) = 6° x min(ui(z), (), () + (1= 6) X 3 Do pii(a) (&)

i=1
where p°(z) is the membership value for solution z in the fuzzy set acceptable so-

lution. While ¢ for i = {1,2,3} represents the membership values of solution z
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in the fuzzy sets within acceptable wire length, within acceptable circuit delay and
within acceptable width respectively. The solution which results in the maximum
value for Equation 4.1 is reported as the best solution found by the SE algorithm.
In Equation 4.1 3¢ is an averaging constant in the range [0,1]. The superscript ¢
stands for “cost” and it is used to differentiate similar variables used in the alloca-
tion and evaluation stages. Membership function for a general criterion ¢ is shown

in Figure 4.2. Mathematically we can write it as follows.

1 if &= < 1.0
¢ = Ci(z)—-0; : Ci(z)
Hi (1:) § 1.0-— (SJT‘(TM if1.0 < 0. < g; (42)
| 0 if &2 > g;

I
1.0
1iS(x)
Hi®(x)
: Cy/Oi
1.0 A g gi
Ci(x)/O;

Figure 4.2: Membership function within acceptable range. By lowering the goal g
to g; the preference for objective “i” has been increased.

In this work, the lower bounds on objectives are computed at initialization by

the placement program. We have used the following expressions to compute the
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lower bounds for wire length (O;), circuit delay (O-), and layout width (Os).

O, = Z L;' Vu; € {vl, U2y eeey v,.} (43)
=1
k
0, =Y.CD,; V{v,vy,...,v¢} nets in path = (4.4)
j=1

O3 = [ i=1 W ] (4.3)

# of cell rows in layout

Qe

where
O = Lower bound for interconnect wire length.
(03 = Lower bound for circuit delay.
O3 = Lower bound for layout width.
n = Number of nets in the layout.
L;, = Optimum wire length for net v;.

CD,, = Switching delay for the cell driving net v;.

k = Number of nets in the longest path =.
T = Longest path in the layout with respect to switching delay.
W,, = Width of individual cell driving the net v;.

The goal vector G = (g1, g2, gs) specifies relative acceptable ranges for wire
length, delay and width criteria. Since it is relative information with respect to the

lower bounds, it is easy for the user to enter these limits. User preferences can be
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easily expressed in the goal vector (G). For example, by decreasing the goal value
gi to g; in Figure 4.2, the subsequent membership value i *(z) for objective ¢ will

decrease. This might dictate the acceptance or rejection of solutions.

4.2.3 Proposed Evaluation Scheme

In this stage of the algorithm, individual cell goodness is computed. The classical
goodness measure proposed in [8] computes the cell goodness on the basis of one
parameter i.e., wire length. For such a measure, goodness of cell ¢; which is a part

of {vy, vs, ..., U} nets is computed as follows.

L™ min (22, 1.0 46
gCn_Ejzlmln ijV . (')

where L. and L, are respectively optimum and actual wire length of net v;. The
L;, is computed by placing the cells of a net next to each other on the layout surface
and then estimating the wire length.

With the classical goodness measure, it is possible that a cell satisfying wire
length might be violating net delay bound. This will negatively affect the overall
circuit delay. Thus, inclusion of a penalty for not satisfying the corresponding net
bound in goodness measure will increase the chances of selection of such cells. It is
expected that during re-allocation stage, the selected cell will satisfy corresponding

net delay bound. This will result in an improvement in the circuit delay. In order to
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achieve this objective, we modified the goodness computation method. In the mod-
ified fuzzy evaluation scheme, satisfaction of the optimum wire length and the net
delay bounds are combined using fuzzy logic. The following rule and the subsequent

equation are used for this purpose.

Rule 4.2: IF a solution is near optimum wire length
AND near net delay bound

THEN it has high goodness.
ge; = p5(z) = B° x min(pi(z), p3(z)) + (1 = 8°) x 5 Z#. (2) (4.7)

The superscript e stands for evaluation and it is used to distinguish similar notation
in other fuzzy rules. In Equation 4.7, u®(z) is the fuzzy set of high goodness, g, is
goodness value and 3¢ is a constant. The p§(r) and p$(z) represent the memberships
in the fuzzy sets near optimum wire length and near net delay bound. The member-
ship functions for these sets are given in Figure 4.3. The base values are computed
as follows. If a cell ¢; drives a net identified by v; which is a part of {v;,ve,..., vk}
nets , then base values X¢(z) for the fuzzy set near optimum wire length and X3(r)

for the fuzzy set near net bound are computed as given in Equations 4.8-4.9.

5 i (1) )

J—l

X5 = 75 (4.9)
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where u;, is the net constraint for net v;. Net constraints are compute using
minimax-PERT algorithm [22].

A near optimum wire 1126“ near net delay bound

L 0 ] S - 10f----- .

10 ry 1.0 Xg®
(a) (b)

Figure 4.3: Membership functions used in fuzzy evaluation stage. (a) function for
near optimum wire length (§) (b) function for near net delay bound (p3).

4.2.4 Selection

In this stage of the algorithm, for each cell ¢; = {c1, ¢, ..., cn} @ random number in
the range [0,1] is generated and compared with g, + B, where B is selection bias.
If the generated random number is greater than the g., + B then cell ¢; is selected

for the allocation and removed from the layout. The location of cell ¢; is marked as

empty.

4.2.5 Allocation

During the allocation stage of the algorithm, the selected cells are repositioned
on empty locations in such a way that they result in overall better solution. As

described in Section 2.7, “sorted individual best fit” is an allocation scheme for the
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SE algorithm. In this scheme, we identify the best location for head-of-line cell in
selected queue which results in the maximum reduction in cost. The best location
is removed from the list of empty locations. For single objective minimization, it is
straightforward to identify such location. The original SE (SE) proposal {8] places
the cell on a location which results in the maximum reduction in wire length cost.
However, for multiple and conflicting objectives, the decision to identify the best
location for selected cell will require many tradeoff. One solution to this problem is
to use weighted average of multiple objectives. For each trial placement, reduction
in cost due to individual objective is estimated, normalized and summed together
using weights assigned for each objective. The selected cell is finally placed in a
position which results in the highest value for the overall reduction in cost.
Assuming a cell ¢; is temporarily placed in a location [ during the mth iteration
of the SE algorithm. This cell is part of {vy, ..., v} nets. Let r be the row number

of the cell location [. The quality of this trial placement can be measured as follows.

3
gain®™;, = wf X AL+ ws X ADey+ws x AWy > wi =1.0(4.10)
h=1

where AL, AD.,1,andAW,,, are respectively measure of gains in wire length,

delay and width of the layout for the trial placement of cell ¢; on location I. These



gains are computed as follows:

iyt = LY

— i=1
AL, = ;?:l LZ}_I (4.11)
Zf:l(D:;_l - D7)
ADc‘v,l = ‘?:1 D:,'r;—l (4.12)
w,,.,—wm
AW, = ¢ "r .
ol o (4.13)

In Equation 4.11, L,’,’;‘l and Lv”‘j are respectively wire length estimates for net v; in
m — 1°t and m*? iterations of the SE algorithm. Similarly D,',’J‘_'1 and D7 in Equa-
tion 4.12 are propagation delays for net v; in m — 1% and mth iterations respectively.
The W, in Equation 4.13 represents the optimum row length (lower bound on
maximum row length) for the layout. It is computed by adding the widths of all the
cells and dividing it by the number of cell rows. The W™ is the row length of row
r during the trial placement of cell c;.

The above weight based sorted individual allocation scheme has two problems.
1. It is difficult to come up with appropriate weights for Equation 4.10.

2. It is possible that head-of-line cell will block optimum positions for remaining

selected cells.
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The use of proper fuzzy rules and membership functions can overcome the first
problem. One solution to the second problem is to allow creation of empty space
by shifting other cells. However, this will disturb many well placed cells resulting
in reduction in overall quality of solution. We propose a fuzzy allocation scheme

which is characterized by the following two properties.

1. It uses fuzzy rules and membership functions to combine multiple objectives.

2. It adds a controlled randomness in placing a cell on an empty location. In this
scheme, it is possible that a cell is placed anywhere on a set of empty locations
within a fuzzy window. The fuzzy window contains locations which result in

near identical reductions in cost.

The logic behind the controlled randomness is that it decreases the chances of block-
ing an optimal location for the rest of the selected cells by the head-of-line cell. In

the following text we describe the proposed fuzzy allocation scheme.

Fuzzy Allocation Scheme

Following the sorting of selected cells in descending order with respect to their
connectivity with partial placement, the head-of-line cell is trial placed on all the
available empty locations at that time and the membership of these locations in a
fuzzy set of good locations is computed. The fuzzy subset of good locations falling

within a fuzzy window is identified and is called favorable locations. The cell will



be randomly placed on any location within this fuzzy subset. Following is the

description of how these sets are formed and the rules that govern them.

Good Locations

Assume E is the set of empty locations and S is the set of selected cells. A location
| € E will be a member in the fuzzy set good locations for cell ¢; € S with member-
ship function & (I). The determination of this membership function is carried out

through the following rule and it evaluated by using the Equation 4.14

Rule 4.3: IF a location results in small length AND reduced timing

AND small layout width THEN it is a good location.

3
e 1) = % x min(ud (D), (1), 15(D) + (1 — 8% x 3 3 20 (4.14)

i=1
where p2(l) is the fuzzy set of good locations and 3¢ is a constant parameter in
the range [0,1]. The values p$(!), pg(l) and p§(l) represent the membership values
of location [ in the fuzzy sets small length, reduced timing and small layout width
respectively.

The base values X¢(1), X§(!) and X§(!) for corresponding membership func-
tions p2(1), u3(l) and p3(l), are computed below using the notation of Equations4.11-

4.13.

o i, Lr ;
Xl (l) = E—,C-JTI:L—mi—f (4.10)
j=1"v;
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After computing the base values, memberships in respective fuzzy sets are deter-

mined using the functions given in Figure 4.4.

#1, | Small length 1"% Reduced timing 1#3‘ Small layout width

0.75

10 1.5 X 05 10 15 Xz 075 125 X3
(B) (b) (C)

Figure 4.4: Membership functions for three fuzzy variables used in Fuzzy Allocation
Scheme of the SE algorithm.

Favorable Locations

From the fuzzy set good locations a a fuzzy subset of favorable locations is defined as
follows. The upper and lower boundaries for the favorable locations are determined
by a fuzzy window. For a cell ¢; € S, location ! € E will fall within the fuzzy window

if it satisfies the following inequality.

of unplaced cells a a
# of unp b <pmuae w9

{gg(#“ () {1'0 —wx # of selected cells
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where E is the set of empty locations, S is the set of selected cells and w is a small
positive value which determines the lower limit of p (I) for presence in the fuzzy
window. It controls the randomness in the fuzzy allocation scheme. All locations
falling in the fuzzy window will be identified as favorable locations. The cell will
be placed randomly in any of the locations within this set. The presence of the
ratio of number of unplaced cells to selected cells will make sure that the size of
favorable locations set will decrease as allocation progresses. Since the head-of-line
cell is strongly connected with the partial layout, there are many locations with near
identical gains. We can place the cell on any of these locations without adversely
affecting the quality of solution. Thus, a bigger subset is identified for leading cells.
The cells at the end of the selected queue are sparsely connected. For this reason, a
narrow favorable locations set is used for them.

We experimented with different values for w in our proposed fuzzy allocation
scheme. It is observed that for small values of w in the range (0.05,0.1), the quality
of solutions improves. However, as the value of w is increased the quality decreases

due to increased randomness.

4.2.6 Stopping Criterion

In our experiments, we have used a fixed number of iterations as a stopping cri-
terion. We experimented with different values of iterations and found that for all

the available test circuits, the SE algorithm converges within 5000 iterations or less.



58

A major reduction in cost occurs in the first 2000 iterations while refinements are

achieved in the rest of the iterations.

4.3 Experiments and Results

This section summarizes experimental study of the varieties of SE algorithms im-

plemented in this work, namely

1. Wire length based simulated evolution algorithm implementation similar to
one proposed by Kling and Banerjee [8]. This implementation is labeled as

SE.

2. Fuzzy goal based simulated evolution algorithm using weighted sum allocation

scheme. This algorithm is identified with code FSE_WA.

3. Fuzzy goal based simulated evolution algorithm using fuzzy controlled stochas-

tic allocation scheme. This algorithm is identified as FSE_FA.

4. Fuzzy goal based simulated evolution algorithm using fuzzy evaluation scheme.

The algorithm is labeled as FSE_FE.

The characteristics of above listed algorithm variations are summarized in Table 4.1.
The parameter values for different stages of the SE algorithm are summarized in
Table 4.2. For example, weighted sum allocation scheme in FSE_-WA was tuned after

several combinations of allocation averaging weights (wf, w§, w$) were tested on one
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circuit (c499). The best solution reported by the fuzzy goal-based cost measure
for each weight combination is given in Table 4.4. The weight arrangement of row
number 6 in Table 4.4 results in the maximum membership value for the fuzzy goal-
based set: acceptable solution (Equation 4.2). As a result, the weights of w{ = 0.6,
wg = 0.1 and w§ = 0.3 are used in subsequent runs of FSE_.WA for all circuits.

We tested our implementations of the simulated evolution algorithms on eight
ISCAS-89 circuits. The characteristics of these circuits and layout parameters are
listed in Table 4.3. The smallest circuit has 56 cells and the largest has 2243 cells.
We are using 2u p-well CMOS technology (Table 2.1) and place all the cells of circuit

except input output pads. Following sets of experiments are carried out.
1. Understanding the effect of the size of the fuzzy window on FSE_FA.
2. Comparing SE, FSE_.WA and FSE_FA.

3. Comparing FSE_.WA and FSE_FE.

[ Algorithm | Evaluation | Allocation | Cost |
SE Wire length Wire length Wire length

FSE_.WA Wire length Weighted sum Fuzzy-goal based
(length,delay,width) | (length, delay, width)

FSE_FA Wire length Fuzzy Fuzzy-goal based
(length,delay,width) | (length,delay,width)

FSE_FE Fuzzy Weighted sum Fuzzy-goal based
(length,net bounds) | (length,delay,width) | (length,delay,width)

Table 4.1: Classification of our SE implementations



Stage

Parameters

Fuzzy-goal based Cost

,Bc = 0.6, (g1 = 2.0, g = 3.0,g3 = 1.1)

Weighted Allocation (w? = 0.6, w§ =0.1,wi = 0.3)
Fuzzy Allocation 3°=07,w=0.1
Fuzzy Evaluation 3¢ =07

Stopping Condition Fixed 5000 iterations

Initial Solution Random
Bias (B) Fixed

Table 4.2: Parameter values for different stages of the SE algorithm
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Circuit Layout
Name | # of Cells | # of IO | # of Rs | LH | Avg. RCH O 0 O3
highway 56 11 3 284 55.0 7136 | 3.91 | 312
fract 149 24 5 556 66.5 28207 | 7.97 | 784
c499 283 73 6 750 80.4 43583 | 8.17 | 1176
cH32 395 43 7 703 49.5 64674 | 17.83 | 1152
c880 784 86 9 1034 64.0 123616 | 16.8 | 1824
cl355 1451 73 13 1557 66.9 273138 | 13.62 | 2304
struct 1952 64 15 2102 88.0 432096 | 13.54 | 3280
c3540 2243 72 17 2480 93.4 500157 | 23.26 | 3096

Table 4.3: The characteristics of circuits and layouts used in our experiments. (LH
= layout heights in micron, Avg. RCH = average routing channel height in micron,
O, = optimum wire length in micron, O = Sum of the switching delay of the longest
path in nsec, O3 = optimum row length of the layout in micron.)

Allocation Weights | Cost of best Layout

w Jwg | w | L(w[D(s) [W (g
0.2]0.1 0.7 64035 | 16.5 | 1200
03102 0.5 58949 | 15.8 | 1208
03]0.1 0.6 61692 | 18.3 | 1200
04]0.1 0.5 59544 | 15.9 | 1200
04102 0.4 60659 | 15.2 | 1200
06 0.1 0.3 59278 | 14.5 | 1200

Table 4.4: Results of FSE_WA for different weights for circuit c499




61

4.3.1 Effect of the Size of the Fuzzy Window on FSE_FA

In our proposed fuzzy allocation scheme, the presence in the fuzzy set favorable
locations is bounded by Equation 4.18. The size of this window is controlled by a
parameter w. For example if w = 0.1 and max(u3(e)) = 0.7 then the lower range
for the fuzzy window will start from 0.63. It means that all the locations with
membership functions in fuzzy set good locations in the range [0.63 — 0.7] will be
member of favorable locations. For higher values of w, the size of fuzzy window will
increase or vice versa. In order to understand the effect of the size of this window
on quality of solution, we executed FSE_FA algorithm on benchmark circuits with
different values of w. The three cost parameters: length (L), delay (D), width (W)
of the best solution found by FSE_FA and corresponding execution times (T°) are
given in Table 4.5. From this table, it is clear that by increasing the value of w, the
algorithm spends more time. This is because of additional computation carried out
to maintain the fuzzy set of favorable locations. For many circuits, the quality of
final solution for small values of w is better than the solution generated by w = 0.
This improvement is due to the fact that we probabilistically allow few best locations
to remain empty for remaining cells in the selected queue. This allows some of the
remaining cells to be better placed, resulting in improvement in the quality. At the
same time, the window size for leading cells is small in the range [0.05, 0.1]. It makes

sure that these cells will be placed in near identical quality positions with respect
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to the best position. However, for high values of w, quality of the best reported
solution decreases. This decrease is due to the size of the fuzzy window. For large
fuzzy window allows the presence of bad locations in the set favorable locations. This
will make the allocation more random, resulting in near random walk in the search
space. From extensive experiments, we observed that, a small value of w (0.1) gives
better results for most test circuits. This value has been used in subsequent runs of

the fuzzy allocation based simulated evolution algorithm.

4.3.2 Comparison of SE, FSE_WA and FSE_FA

In order to see the performance of our proposed fuzzy allocation scheme (FSE_FA),
we compare it with SE as originally reported in [8]. This is a single objective
(optimization) simulated evolution algorithm. SE tries to optimize wire length only
and reports the solution with the minimum wire length cost. We also compare
FSE_FA with FSE_WA which is a multiobjective optimization algorithm and uses
weighted average allocation scheme. Both FSE_FA and FSE.WA use a uniform
fuzzy-goal based cost computation to identify the best generated solution.

The cost parameters of the best layout generated by all three schemes are re-
ported in Table 4.6. It is clear that except for few cases (like ¢532 and c880) the
proposed fuzzy allocation scheme (FSE_FA) is able to generate a better quality solu-
tion in terms of reduced wire length cost (L) than FSE_WA.. The wire length increase

for ¢532 and c880 can be attributed to the fact that the weight combination in the
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FSE_FA (w = 0.0) FSE_FA (w = 0.03)
Cret| T [ D [ W] T | T [ D[ W | T
highway | 7665 | 5.80 | 520 | 0.36 | 7678 | 3.74 520 0.51
fract 32625 | 13.55| 784 | 3.5 | 30732 | 1298 | 792 2.86
c499 56970 | 14.67 | 1184 | 7.5 | 542020 | 15.24 | 1192 | 13.5
c532 76182 | 36.71 | 1160 | 11.0 | 73983 | 37.38 | 1160 | 36.28
c880 139632 | 32.05 | 1856 | 33.76 | 142736 | 31.09 | 1856 | 33.38
cl1355 | 304094 | 26.04 | 2320 | 135.0 | 291250 | 26.65 | 2320 | 117.0
struct | 704889 | 31.07 | 3344 | 167 | 700370 | 28.57 | 3344 | 176.0
c3540 | 7752721 49.33 | 3152 | 436.0 | 801476 | 55.15 | 3176.0 | 660.0
(a)
FSE_FA (w =0.1) FSE_FA (w = 0.2)
Circuit L | D | [ T L | D | W | T
highway | 7735 | 5.56 | 520 | 0.5 7863 | 5.69 | 520 | 0.65
fract 31528 | 13.62| 784 | 4.0 | 34596 | 13.533 ] 792 | 5.71
c499 56506 | 14.13 | 1200 | 7.5 | 63597 | 15.54 | 1208 | 15.3
c532 80779 | 37.96 | 1160 | 16.0 | 81468 | 39.57 | 1160 | 20.5
c880 137309 | 29.46 | 1872 | 45.7 | 139021 | 32.7 | 1840 | 54.0
c1355 | 290221 | 27.05 | 2320 | 144.0 | 322039 | 27.6 | 2352 | 207.0
struct | 667850 | 28.8 | 3336 | 161 | 689286 | 28.87 | 3368 | 221.0
c3540 | 750153 | 46.01 | 3152 | 674 | 858277 | 533.71 | 3168 | 990.0
(b)
FSE (w = 0.3)
Circuit L | D | W | T
highway | 7991 2.7 | 520 0.7
fract 36851 | 13.5 | 792 10.7
c499 62284 | 15.7 | 1208 | 19.0
c532 90042 | 39.7 | 1184 | 26.5
c880 151689 | 31.1 | 1896 | 56.5
c1355 | 385238 | 32.2 | 2416 | 366.0
struct | 687552 | 27.7 | 3376 | 281.0
c3540 | 924542 | 57.0 § 3176 | 1369.0

(c)

Table 4.5: Results of FSE_FA for different sizes of fuzzy window (w). Where wire
length (L) and layout width (W) are in micron. The circuit delay (D) and execution
time of the algorithm (T°) are in ns and minutes respectively.
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FSE_WA allocation strategy is suitable for medium range circuits only. For smaller
circuits (like highway) or bigger circuits (like c3540) these weight combinations
do not perform well. Furthermore, for ¢532 and c880, the reduction in the circuit
delay compensates the loss in wire length. When we compare the best generated
solution for the delay (D) objective, FSE_FA surpasses FSE_WA for almost all cir-
cuits. The struct circuit is an exception because it is a structured multiplier where
all the paths are of similar complexity; therefore, reduction in the net delays of all
nets forming those paths is required to achieve overall reduction in the circuit delay.
The layout width of both schemes is comparable for all circuits. This is due to the
fact that the widths of generated layouts are very close to the respective lower bound
on the maximum width.

We observed that both FSE_FA and FSE_WA were able to generate better
quality solutions than SE. It is clear from the Table 4.6 that FSE_FA generates
solutions with reduced wire length and delay costs than SE. This trend is valid for
all of the test cases except c532, where SE is able to generate solution with less wire
length cost. In spite of this, the circuit delay cost of FSE_FA generated solution for
¢532 is less than SE and it compensates the loss in wire length. The difference in
the delay cost between both schemes increases as the complexity of the test circuit
increases. It means that FSE_FA is more adaptable to the size of the circuit. This
improvement in solution quality is due to the use of problem specific intelligence

added in FSE_FA algorithm. On the other hand, SE relies only on minimization
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of wire length with an expectation that it will also reduce delay and area. SE
generates less wire length cost solutions for most of the cases than FSE_WA. This
is due to the fact that SE uses only wire length reduction as a measure in allocation
stage and identifies the best solution as the one with the minimum wire length.
While FSE_WA does tradeoff between multiple objectives in allocation stage as well
as identifying the best solution. Therefore, we see that the wire length cost of
FSE_WA generated best solutions is more than SE generated solutions. However,
we observe that FSE_WA is able to give reduced circuit delay solutions than SE for
all circuits except for highway and ¢532. The difference in the delay cost for ¢532
is negligible therefore we ignore it. The highway is the smallest circuit and we have
observed that the allocation weights used in our experiment were not suitable for

small size circuit. Therefore, in this case, FSE_WA does not perform well.

FSE_FA FSE_WA SE

Circuit | L (1) [D(ns) [W () | L(w) [D(ns) [W(p) [ L(p) [D(ns) | W (u)

highway | 7735 5.56 520 9919 6.15 520 8109 5.85 520

fract 31528 | 13.62 784 37285 | 14.58 800 35945 | 14.76 792

c499 56506 | 14.13 | 1200 | 59278 | 14.51 1200 | 57194 | 15.85 | 1216

c532 80779 | 37.96 | 1160 | 72789 | 38.55 | 1184 | 75872 | 38.46 [ 1168

c880 137309 | 29.46 | 1872 [ 135509 | 30.92 | 1848 | 144501 | 35.36 | 1848

cl355 | 290221 | 27.05 | 2320 | 335589 | 28.41 | 2344 | 297677 | 32.05 | 2336

struct | 667850 | 28.8 3336 | 685328 | 26.65 | 3312 | 672735 | 32.70 | 3344

c3540 | 750153 | 46.01 | 3152 | 844069 | 54.03 | 3152 | 787199 | 58.72 | 3136

Table 4.6: Best layout found by SE, FSE_ZWA and FSE_FA.

In order to compare the quality of search space between FSE_FA, FSE_WA and

SE, we plot different cost parameters versus iteration count of the algorithm for the
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circuit ¢3540. Figure 4.5 shows the wire length cost of solutions found after every
20 iterations. From these plots, it is clear that FSE_FA is able to generate reduced
wire length cost solutions than SE and FSE_WA. On the other hand, SE produces
solutions with less wire length than FSE_WA. This is due to the fact that it only
optimizes wire length while FSE_WA tries to minimize multiple cost parameters.
Figure 4.6 plots circuit delay cost for these schemes. Again, FSE_FA generates less
delay cost solutions than SE and FSE_WA. FSE_WA performs better than SE be-
cause it is a multiobjective optimization algorithm, minimizing length, delay and
width. Figure 4.7 plots respective layout width for these schemes. From this plot we
conclude that all three schemes result in comparable layout width. After comparing
individual cost parameters, overall solution quality (cost) is compared in Figure 4.8.
This figure gives the membership values of solution in the fuzzy set acceptable so-
lutions. We have used the fuzzy-goal based cost measure to quantify the quality of
generated solutions. We are maximizing the membership in the fuzzy set acceptable
solution. The graph in Figure 4.8 shows that FSE_FA is able to generate overall bet-
ter quality layouts than other two schemes, and FSE_WA generates slightly better
quality layouts than SE. Figures 4.9(a) and (b) plot the behavior of current average
goodness and best average goodness for these schemes. The average goodness of
FSE_FA plot is better than FSE_WA and SE because the former scheme is able to
find solutions with less wire length. Since SE is able to find better wire length solu-

tions than FSE_WA, its average cell goodness is better than FSE_WA.. This behavior
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is due to the wire length based goodness measure in these algorithms. This figure
also shows that quality of solution is improving, since, as the algorithm progresses,
more and more cells are approaching their respective near optimal positions in the
layout. It also shows that the algorithm converges because less number of cells are
selected for perturbation.

In order to show the stability of our implementations, we plot the cardinality
of selection set against the number of iterations of the algorithm. Figure 4.10 shows
such a graph for the circuit ¢3540. From the graph, it is clear that for all imple-
mentations of the simulated evolution algorithm i.e., SE, FSE_FA, and FSE_WA, the
size of the selection set is decreasing with the increase in the number of iterations.
This shows that the goodness of cells is increasing resulting in improved cost and

smaller number of perturbations.

4.3.3 Comparing FSE_WA and FSE_FE

The objectives of the third set of experiments are to see the effect of:
1. Using net timing constraints in VLSI cell placement process.
2. Fuzzification of evaluation stage on the simulated evolution algorithm.

In order to achieve the above objectives we compare the results FSE_FE and FSE_WA
variations of simulated evolution algorithm. Table 4.1 gives the characteristics of

these algorithms. FSE_FE uses a fuzzy evaluation scheme in which goodness of an
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Figure 4.5: Wire length costs of solutions against iteration count: (a) length of the
current solution (after every 20 iterations) (b) length of the best solution
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Figure 4.6: Circuit delay of solutions: (a) delay of the current solution (after every
20 iterations) (b) delay of the best solution.
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Figure 4.7: Layout width against iteration count: (a) width of the current solution
(after every 20 iterations) (b) width of the best solution.
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Figure 4.8: Overall cost of the solutions represented as membership values of solu-
tions in fuzzy set acceptable solution: (a) current membership values (after every 20
iterations) (b) best membership values.
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Figure 4.9: Average cell goodness against iteration count: (a) cell goodness of the
current solution (after every 20 iterations) (b) goodness of the best solution.
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Figure 4.10: Cardinality of selection sets of FSE_FA, SE and FSE_WA.

individual cell has two components. One component is satisfaction of wire length
and the second component represents the satisfaction of the net timing bounds (con-
straints). These two components are combined using the fuzzy rule and membership
functions, as described in Section 4.2.3. For Equation 4.7 we used 3¢ = 0.7. While
FSE_WA uses only one component, that is, satisfaction of optimum wire length.
Both these algorithms use a weighted average allocation scheme described in Sec-
tion 4.2.5. The values of allocation weights are wi = 0.6, w§ = 0.1 and w§ = 0.3.
The results of our experiment are compared and summarized in Table 4.7.
Generally, Fuzzy Evaluation (FSE_FE) gives inferior results than FSE_WA with
respect to wire length. However, if we compare these algorithms with respect to

circuit delay, FSE_FE is able to reduce the circuit delay for most of the circuits. We
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have following explanation for this behavior.

1. The wire length cost of FSE_FE increases because cells are not selected on the
basis of wire length only. Having a component for the net constraints satis-
faction in cell goodness results in non-selection of many wire length violating
nets. On the other hand, many nets satisfying wire length constraints were se-
lected because they were violating the net constraints. These factors resulted

in the increase in wire length.

2. The delay of a circuit is due to overall path delay of the longest path. While
in our scheme, we are trying to select nets violating timing constraints and
expect that the net might be placed in a location which improves the timing
delay. We have got an improvement in the timing delay of most of the circuits.

For big circuits this improvement is significant.

From this experiment we conclude that net constraints when used with wire length
constraints in selection stage of the simulated evolution algorithm result in marginal
improvement in circuit delay. On the other hand, they cause increase in wire length.
Thus, we have not used the fuzzy evaluation scheme in our final version of Fuzzy

Simulated Evolution Algorithm (Section 3.5).



Fuzzy Evaluation (FSE_FE) | Weighted sum (FSE_WA) % Gain
Circuit | L(p) [D(ns)| W(u) [L(g) [D(ns) | W | L [D | W
highway | 9503 6.74 328 9919 6.15 520 42 |[-96]| -1.5
fract 35635 | 13.50 808 37285 | 14.58 800 44 |-22]-1.0
c499 60964 | 14.83 1192 59278 | 14.51 1200 -28 |-22)] 0.6
cd32 75216 | 35.80 1200 72789 | 38.95 1184 33171 (-13
c880 137838 | 29.03 1852 135509 | 30.92 1848 |-1.71 | 6.1 | -0.2
cl355 | 349953 | 28.23 2368 335589 | 28.41 2344 -42 |06 {-1.0
c3540 | 883503 | 52.59 3128 844069 | 54.03 3152 -46 | 2.6 | 0.76

Table 4.7: Best layout found by FSE_FE and FSE_WA.

4.4 Conclusion

The VLSI placement is a hard and ill-defined problem with many conflicting objec-
tives. In order to identify the best solution generated by the placement algorithm,
we proposed a novel approach of fuzzy goal-based cost measure. This approach avoids
the problems associated with the controversial weighted sum approach. It also al-
lows easy incorporation of user preferences for different objectives. Furthermore,
we proposed fuzzification of evaluation and allocation stages of the simulated
evolution algorithm.

The fuzzy evaluation scheme uses a parameter for satisfaction of net timing
constraints in the goodness computation of cells along with classical wire length
measure. It results in improvements in circuit delay but slight increase in the wire
length cost.

The proposed fuzzy allocation scheme combines controlled random move in a




76

purely constructive sorted individual best fit allocation technique. The identification
of favorable locations for a cell is carried out through the use of fuzzy rule and
membership functions. Being the most important stage of the SE algorithm, fuzzy

allocation results in noticeable overall improvement in the quality of final solution.



Chapter 5

Effect of Selection Bias on

Algorithm Efficiency

In the simulated evolution (SE) algorithm, Kling and Banerjee have proposed the use
of fixed selection bias [8]. The selection bias provides a mechanism of compensat-
ing any errors made in the estimation of the optimum cost used in the computation
of goodness. Furthermore, it is used to limit the size of the selection set i.e. con-
trolling the magnitude of the perturbation of current solution. In case of a fixed
selection bias, the user provides the bias value before the execution of the algo-
rithm. The bias effects the execution time as well as the quality of final solution.
According to Kling and Banerjee, a low bias value takes more execution time than a
high bias value. This is due to the large selection sets in case of low bias values [26].

Moreover, the quality of solution also fluctuates with changes in bias values. For

7
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very high and very low bias values, the quality of solution is bad [26]. This poses
one question. How to find out the most suitable bias value in advance, which results
in best solution quality and minimum execution time? One solution to this prob-
lem is to do several trial runs of the algorithm with different bias values. However,
these trial runs will result in finding the best bias value for only one instance of the
problem. As the problem changes or even instance of the problem changes, another
set of trial runs is required to find the best bias value. Therefore, it can’t be used
as a general value for any set of problems. Furthermore, it also causes excessive
execution time for all trial runs. Other researchers have proposed a normalized
goodness scheme with zero bias value [20, 47, 51]. The normalization technique
spreads the individual goodnesses. However, as we will see, even this scheme fails in
our problem of VLSI cell placement. As the size of the circuit increases, normalized
goodness takes excessive execution time and deteriorates quality of the best solution.

In order to overcome these issues, we propose variable bias scheme. In our
proposed scheme, bias value is not arbitrarily set, it depends on the state of the
solution and is a function of the goodness of individual cells.

The variable bias scheme is compared with fixed bias and normalized goodness
schemes by executing the SE algorithm on benchmark circuits of Table 4.3. Except
for the experiments of Section 5.5, following SE algorithm parameters are used for
all other experiments reported in this chapter. The stopping condition was a fixed

number of iterations. From our experience of Chapter 4, 2000 iterations are enough
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to understand the behavior of the algorithm. The wire length based classical eval-
uation and weighted sum based allocation schemes are used. Similarly, to simplify
the analysis, only wire length cost of the best solution is considered as cost mea-
sure. However, in Section 5.5, where proposed fuzzy allocation scheme (Chapter 4)
is combined with the variable bias measure, the SE algorithm parameters are the
same as used for experiments in Chapter 4. The description of these parameters is
repeated in Section 5.5.

This chapter is organized as follows. In Section 5.1, the effect of fixed bias on
quality of solution and execution time is investigated. In Section 5.2, the goodness
of individual cells is normalized as reported in [20] and its effect on performance of
SE algorithm is examined. Section 5.3 describes our proposal of variable bias. The
results of our experiments are discussed and compared in Section 5.4. in Section 5.5,
we combine two schemes of Chapter 4, namely fuzzy goal-based cost measure and
fuzzy controlled random allocation with variable bias scheme in one SE implemen-
tation. This implementation is labeled as FSE_VB. In this section, the results of
FSE_VB are compared with another implementation of SE called as FSE_WA, which
uses a fuzzy goal-based cost, weighted average allocation and fixed selection bias.

We conclude this chapter in Section 5.6.
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5.1 Effects of Bias on Quality of Solution

In this section, the effects of different values of fixed bias on the quality of solution
are described. The SE algorithm was executed on all the circuits of Table 4.3 with
different values of fixed bias. For this experiment we used bias values of 0, 0.1, 0.2,
0.3, 0.4, and 0.5. Table 5.1 shows the results of this experiment. In this table the
wire length cost of the best solution and the corresponding execution time of the
algorithm are given.

Figure 5.1(a) shows the effect of different bias values on the quality of solution
for circuit ¢1355. In this figure, the interconnection length of the best solution
reported is shown against bias values. It is clear that out of many bias values
tested, the value of 0.2 gives best solution. Figure 5.1(b) shows the execution time
for different values of bias. The execution time is high when the bias value is low
and as bias value increases the execution time decreases. It is due to the fact that
by increasing the bias value, a smaller number of cells are selected resulting in less
amount of time spent in trial placement carried out in the allocation stage of the
algorithm. This is also supported by Figure 5.2. In this figure, the cardinality of
selection set is shown against the frequency of the solutions generated by the SE
algorithm for different bias values. For clarity purposes, results for bias values 0.4
and 0.5 are not shown. For low bias values like 0.0 and 0.1, more solutions have

large selection sets. While for higher bias values like 0.3, the frequency of solutions
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(b)

Figure 5.1: The effect of bias on the Simulated Evolution algorithm. (a) quality of
solution generated by SE (b) execution time of the algorithm.
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Figure 5.2: Cardinality of selection set against against frequency of solutions for
different fixed bias SE algorithm.

with smaller selection sets increases.

The effect of bias on the quality of final solution can be described as follows.
When we have very low bias value, a large number of cells are selected in each
iteration. This will decrease the algorithm’s ability to replace cells optimally due
to uncertainty about unplaced cells. It will also increase the execution time of the
algorithm. In contrast, when bias is very high, the algorithm ability to get out
of local minima is restricted because badly placed cells have reduced chances of
selection. Thus, the size of the selection set, execution time as well as the quality of
solution space reached are reduced [26].

This gives rise to the following concern about fixed bias scheme. It is not

practical for the user to determine the best bias value in advance by carrying out
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Circuit | Parameter Bias
0.0 0.1 L_ 02 | 0.3 04 | 0.5
highway L 9093 8702 8042 9898 12816 13431
T 0.2 0.12 0.1 0.09 0.08 0.08
fract L 32140 32641 | 34407 | 39266 | 43449 | 51793
T 3.0 1.5 0.6 0.4 0.32 0.32
c499 L 55523 54187 | 54100 | 62147 | 77624 96112
T 14.6 7.2 3.5 1.7 1.6 1.1
c532 L 71495 70564 | 71344 | 77413 | 96379 | 120084
T 16.8 10.4 4.9 2.6 14 1.2
880 L 133742 | 136451 | 129089 | 150388 | 196548 | 268172
T 124 28.4 12.4 6.4 4.0 2.8
c1355 L 432919 | 329872 | 292861 | 297592 | 429725 | 536780
T 620.0 198.0 74.4 30.0 12.4 5.6
struct L 991684 | 750862 | 675253 | 683596 | 745110 | 936332
T 3045.0 1190.0 | 356.0 87.0 39.6 18.8
¢3540 L 1387513 | 1505863 | 882139 | 857280 | 92666 | 1372237
T 6774.0 | 3369.0 | 1213.0 | 360.0 | 108.0 38.0

Table 5.1: Effect of bias on quality of solution generated and execution time of the
SE algorithm. The wire length cost of the solution (L) is in micron and the execution

time (T) is in minutes.

several trial runs of the algorithm. Furthermore, these runs will be required for each

instance of the problem. For example, for VLSI cell placement problem, different

best bias values are required for different circuit sizes. The results of Table 5.1

confirm this assumption. The best bias values for circuits c1355 and c3540 are 0.2

and 0.3 respectively.

In the following section we will see a scheme, reported in the literature, to

overcome the problems related to the fixed bias scheme. In Section 5.3, we propose

an alternative approach to chose the bias value.
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5.2 Normalized Goodness Values

In the previous section we have seen the effect of fixed bias on quality of solution
and execution time of the SE algorithm. One solution to this problem is to normal-
ize individual goodness. In [20, 47, 51}, researchers have used normalized goodness
measure with zero bias value in their simulated evolution implementations. The
objective of the normalization is to spread the goodness within Upper and Lower
bounds where Upper + Lower < 1.0. In one such implementation, Yuh et. al. [20]
have normalized individual score in the range 0.05 and 0.95. Using their normaliza-

tion method for our problem, we modified individual cell goodness as follows.

— in
Ge; g::n. (5.1)

max __ pmin
gc,- gC.'

gl = 0.05+0.95 x

Where
9e; = actual goodness of cell ¢; as computed by Equation 4.6.
gm"= min (g) Vi
g = max (g;) Vi
g, = normalized goodness of cell c;.

Using the above equation, the best cell in a solution will have a goodness of

0.95. On the other hand, the worst cell will be identified with the goodness of 0.05.
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We tested this normalized goodness on benchmark circuits. In this experiment, zero
selection bias was used. The quality of solution produced and execution time of this
experiment are given in Table 5.2. The results of the best fixed bias SE algorithm are
also reproduced for comparison purposes. From this table, it is clear that for small
circuits the quality of solution of normalized goodness is comparable to that of the
best fixed bias SE algorithm. However, as circuit size increases (e.g., circuit c880
onwards), cost of the (best reported) solution increases. For all cases, normalized
goodness based algorithm takes more execution time than fixed bias SE, one order
of magnitude more for big circuits. The reason for the increased execution time and
bad quality solutions may be attributed for the following.

In case of normalized goodness SE, all cells are exposed for selection. Even the
best located cell has a non-zero probability of selection. This increases the size of the
selection set, forcing the algorithm to spend more time in each iteration. For small
circuits, where layout dimensions are limited, individual cells have higher goodness
values. Therefore, even after normalization, the selection set does not become huge.
However, for bigger circuits, actual wire lengths can be large. Therefore more and
more cells will have low goodness values. When these values are normalized between
the range 0.05 and 0.95, the size of the selection set becomes huge. This reduces
the algorithm’s ability to place cells in correct positions. Therefore, solution quality
deteriorates. The fixed bias algorithm saves itself from this situation by protecting

all the ¢; cells which satisfy the condition g.,+ B > 1.0 from selection and subsequent
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Circuit Fixed Bias Normalized Goodness
B| L T L | T

highway | 0.2 | 8042 0.1 8891 1.0
fract | 0.0 32140 | 3.0 32187 5.4
c499 |[0.2 | 54100 | 3.5 53643 20.4
c532 |[0.1] 69193 | 104 | 65393 24.4
c880 | 0.2]128645| 12.4 | 138467 72.0
c1355 | 0.2|292861 | 74.4 | 402939 648
struct | 0.2 | 675253 | 356.0 | 953478 3180
c3540 | 0.3 | 857280 | 360.0 | 1403252 5760

Table 5.2: Comparison of solution quality and execution times of best fixed bias and
normalized goodness SE algorithm. The wire length cost of the solution (L) is in
micron and the execution time (T) is in minutes. B is best fixed bias value.

perturbation. Therefore, we see as the complexity of the circuit increases, higher
values of fixed bias are required to give better quality solutions. In order to support
the above analysis, we have shown two graphs. Figure 5.3(a) shows the size of
selection set in the normalized goodness and the best fixed bias SE algorithms.
Figure 5.3 (b) gives the cost of the best solution found by both schemes. We see
that the size of selection set for the normalized goodness is bigger than the fixed

bias SE resulting in bad quality of solution.
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Figure 5.3: Comparison of best fixed bias and normalized goodness SE algorithm.
(a) size of the selection set (b) solution quality.
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5.3 Variable Bias: Function of Average Cell Good-

ness (B = F(G))

As a modification to the concept of fixed bias value in the SE algorithm, we propose
a variable bias which will be a function of quality of solution. When the overall
solution quality is bad, a high value of bias will be used, otherwise a low value is
used. The bias value will change from iteration to iteration and will depend on
the quality of solution. Average cell goodness of a solution is a measure of how all
the cells are near to their optimum positions. Therefore, we made the bias value
function of average goodness i.e., for k" iteration of the algorithm, bias By will be

computed as follows.

Bi=1-Gi (5.2)

where Gi_; is the average goodness of all the cells at the end of (k — 1)* iteration

of the SE algorithm.

The advantages of this approach are following.

1. Bias value is not arbitrarily selected and no trial runs are required to find
the best bias value. The variable bias automatically adjusts according to the

problem state.

2. For bad quality solutions, the average goodness is low, resulting in a high bias

value. This will make sure that the size of selection set is not excessively large.
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It will save the algorithm from making big moves.

3. For good quality solutions, the average goodness is high. Therefore, a low bias
value is used. It will result in the selection of sufficient number of cells and

protect the algorithm from early convergence.

The modified algorithm was tried on eight ISCAS-89 benchmark test circuits. The
stopping criteria was a fixed number of iterations. The results of our experiments
are summarized in Table 5.3. Best results of fixed bias SE algorithm (given in
Table 5.1 ) are reproduced here for comparison purpose. The quality of solution
of the modified algorithm is comparable to the best fixed bias SE algorithm. The
execution time of the variable bias SE algorithm is slightly more than the best fixed
bias SE. However, if we consider the time spent in trial runs of the SE algorithm
to find the best bias fixed value, then variable bias outperforms the fixed bias SE
algorithm. There were at least 3 to 4 trial runs with different bias values to identify
the best bias value for each circuit. The other advantage of variable bias is that bias

is no longer a user specified value and there is no need to run several trials.

5.4 Comparison of Bias Schemes

In this chapter we discussed different bias schemes. Two performance metrics i.e.,
best wire length reported by the algorithm and execution time are compared in

Tables 5.1- 5.3. Apart from these two parameters, we also observed other parameters
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Circuit Best Fixed Bias B = F(G)
B] L | T L |
highway | 0.2 | 8042 0.1 8939 0.1
fract |0.0| 32140 | 3.0 | 32907 | 1.0
c499 |[0.2]| 34100 | 3.5 | 55169 | 2.8
c532 |0.1] 69193 | 104 | 73477 | 5.6
c880 |0.2(128645 | 12.4 | 129794 | 17.4
c1355 | 0.2 292861 | 74.4 | 290203 | 93.6
struct | 0.2 | 675253 | 356.0 | 666822 | 222.0
c3540 | 0.3 | 857280 | 360.0 | 877130 | 502.0

Table 5.3: Comparison of solution quality and execution times of best fixed bias and
variable bias (B = F(G)) SE algorithms. The wire length cost of the solution (L)
is in micron and the execution time (T) is in minutes. B is best fixed bias value.

which allow us to compare the quality of search space investigated by each scheme. In
this section we compare the best fixed bias, normalized goodness, and wvariable

bias schemes This comparison is based on the following parameters:
1. Current and best wire length cost of solution.
2. Current and best average cell goodness.
3. Cardinality of selection set.

Figures 5.4(a) and (b) compare the search pattern for different bias schemes in
the SE algorithm. Figure 5.4(a) and (b) respectively plots the current wire length
and the best wire length determined by the algorithms. From this figure, it is clear
that the quality of search for best fixed bias (bias=0.2) and variable bias (1 — G)

are almost identical. These schemes decrease the cost sharply and then carry out
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Figure 5.4: Comparison of different bias schemes (a) current wire length cost (b)
best wire length cost
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gradual refinements in the rest of the iterations. We have observed that the fixed
bias value spends more time in earlier iterations because of the large selection sets.
On the other hand, variable bias (1 — G) scheme selects less number of cells than
fixed bias and achieves the same improvement in solution quality. This considerably
saves the execution time of the variable bias SE algorithm. Therefore, variable bias
SE algorithm is able to get comparable quality solutions in reduced amount of time
for most of the test circuits (Table 5.3). In order to support our assumption about
the size of the selection set, Figure 5.5 plots the cardinality of the selection set for
different bias schemes. From this figure it is clear that for variable bias (1 — G),
the selection set remains in a narrow band and slightly more than the selection set
size of best fixed bias scheme . The reason for narrow band is that when average
cell goodness is low, high bias maintains a limited size of selection set. Similarly
when average goodness improves, a low bias does not allow the size of selection set
to considerably decrease. This results in a narrow band for selection set. Due to
this the algorithm does not spend extra time in early iterations.

The normalized goodness scheme tries to make the SE algorithm independent
of the bias value. For small circuits, it results in comparable solutions with slightly
more execution time (Table 5.2). However, for bigger circuits like c1355, c3540
etc., it results in bad quality solution with excessive execution time. The pattern of
search for this scheme is shown in Figure 5.4(a)-(b). The cost decreases in the early

few iterations. This decrease is far less than the decrease obtained with best fixed
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Figure 5.5: Cardinality of selection set against frequency of solutions for different
bias schemes for the SE algorithm.

bias and variable bias (1 —G) schemes. Even thereafter, the normalized goodness SE
algorithm converges to a much higher cost value. This behavior is attributed to the
cardinality of the selection set as shown in Figure 5.5. The normalized goodness SE
algorithm always has a bigger selection set than any of the other schemes. It is due
to the fact that even the best placed cell has a non-zero probability of selection. This
results in unnecessary perturbations of the well placed cells, reducing the quality of
solution and increasing the execution time.

For all bias schemes discussed in this chapter, the current and the best average
cell goodness are compared in Figure 3.6(a) and (b) respectively. For normalized

goodness scheme, the current and best average goodness plots are for goodness
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(b)

Figure 5.6: Comparison of different bias SE algorithms (a) average cell goodness (b)
best average cell goodness
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parameter before normalization. The average cell goodness represents the quality
of the solution. A high average cell goodness means that many cells are able to
achieve optimal positions in the solution. For all schemes, individual cell goodness
represents the fitness of individual cells with respect to wire length cost. Therefore,
we observe that schemes, which are able to find reduced wire length cost solutions,
have higher average goodness values. This is true for best fixed bias and variable
bias schemes. Both results in comparable behavior of average cell goodness. In
contrast, normalized goodness based scheme has very low average goodness values.
This is due to the fact that this scheme could not reduce wire length cost of the

solutions as compared to other two schemes.

5.5 Fuzzy Allocation and Variable Bias SE algo-

rithm (FSE_VB)

In Chapter 4, we proposed fuzzy goal-based cost measure and fuzzy controlled ran-
dom allocation scheme which results in good quality solution. In this chapter, we
proposed a variable bias scheme in which bias is a function of average cell goodness
(B = F(G)). In this section, we combine fuzzy allocation and variable bias concepts
in one algorithm and label is as FSE_VB. In this section we will compare the results
of FSE_VB with a weighted sum best fixed bias SE (FSE_WA) algorithm described

in Chapter 4.
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FSE_VB FSE_WA
Gircuit | L | D [ W [ T |B] L D | W] T
highway | 7978 | 58 | 520 | 0.3 | 0.2] 9919 | 6.15 | 520 | 0.3
fract | 32629 | 14.3 | 784 | 1.9 | 0.0 | 37285 | 14.58 | 800 | 5.5
<400 | 56013 | 14.6 | 1192 | 7.4 |0.2| 59278 | 14.51 | 1200 9.0
532 | 77380 | 35.7 | 1168 | 16.1 | 0.1 | 72789 | 38.55 | 1184 | 23.0
880 | 133729 | 30.0 | 1872 | 50.3 | 0.2 | 135500 | 30.92 | 1848 | 31.0
1355 | 300419 | 25.6 | 2336 | 220.0 | 0.2 | 335589 | 28.41 | 2344 | 180.0
struct | 646727 | 27.6 | 3408 | 500.0 | 0.3 | 685328 | 26.65 | 3312 | 240.0
<3540 | 779995 | 48.7 | 3240 | 907.0 | 0.3 | 844069 | 54.03 | 3152 | 1022.0

Table 5.4: Best layout found by FSE_VB and FSE_WA. The wire length cost (L) and
layout width (W) are in micron. The circuit delay cost (D) is in ns and execution
time of the algorithm (T) is in minutes.

The results of FSE_VB and FSE_WA are compared in Table 5.4. The FSE_VB
is able to preserve all the good characteristics of fuzzy allocation scheme as well as
variable bias scheme. As expected, FSE_VB is able to give good quality solution with
respect to wire length and circuit delay costs. The layout width for both schemes
is comparable. This is in line with our results of Section 4.3.2. Furthermore, the
variable bias value also helps to improve the situation and saves the algorithm from
early convergence. The execution time of the FSE_VB is also comparable to the
FSE_WA algorithm. Also in FSE_VB, the best bias value does not have to be

known in advance and it is automatically set by the algorithm.



5.6 Conclusion

In this chapter we investigated the effect of selection bias on the quality of solution
produced by the simulated evolution (SE) algorithm. We examined two schemes
reported in the literature. One uses a fixed bias value [26] and another uses nor-
malized goodness scheme with zero bias value [20, 47, 51]. The best fixed bias value
results in reduced solution cost as well as reduced execution time. However. finding
out the best bias value is not straightforward. It requires several trials with different
bias values. On the other hand, the normalized goodness avoids the use of bias value
altogether. This scheme performs well for small circuits. As the size of the circuit
increases, it causes excessive execution time and deteriorates quality of solution.
We proposed variable bias concept instead of static bias of [8]. In the proposed
variable bias scheme, bias value is a function of average cell goodness. For each
iteration of the SE algorithm, bias is computed as 1 — G where G is the average
goodness of previous iteration. This makes the algorithm more adaptable to the
overall quality of solution. It also reduces the size of the selection set in early
iterations leading to a considerable saving in the execution time. It also saves the
algorithm from getting trapped in local minima by decreasing the bias value for
higher average goodness solutions. The results of this scheme are comparable to
the best fixed bias scheme. The most important advantage of this scheme is that

the bias is not a preset value. Here, bias adapts itself according to the state of the
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solution.

In the end, we combined our proposals of fuzzy goal-based cost measure. fuzzy
controlled random allocation and variable bias in one SE algorithm and label it as
FSE_VB. The results of this implementation are compared with another implemen-
tation called FSE_WA, which uses fuzzy goal based cost measure, weighted sum
allocation scheme, and best fixed bias values. The results show that FSE_VB gives
better solutions than FSE_WA for wire length and circuit delay cost parameter. For

layout width and execution time both algorithms are comparable.



Chapter 6

Conclusion

The placement problem of Very Large Scale Integrated Circuit (VLSI) consists of
placing circuit modules on a layout in order to reduce cost parameters. Being
NP-Hard, this problem can’t be solved using full enumeration methods. Therefore
intelligent heuristics are used to get sub-optimal solutions for this problem. Simu-
lated Evolution (SE) is a general purpose iterative stochastic heuristic to solve such
problems. It combines the iterative improvement and constructive perturbation. We
have used SE for optimization of multiple objectives in standard cell VLSI placement
problem. We are optimizing wire length, circuit delay, and layout width. We have
used fuzzy logic based reasoning to combine conflicting objectives. In this thesis,
we have fuzzified evaluation and allocation stages of the SE algorithms. Schemes
for Fuzzy allocation and fuzzy evaluation are proposed. In order to compare layouts

with conflicting cost values for interconnect length, delay and width, we have pro-
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posed a fuzzy goal-based cost computation measure. We have also investigated the

effect of selection bias on quality of solution and execution time of the SE algorithm.

We have proposed the concept of variable bias value where bias is not static but

a function of some parameter of layout. Our variable bias scheme makes the SE

algorithm independent from any preset fixed bias value. In this scheme, bias is a

function of average cell goodness and it changes from iteration to iteration.

Following are the conclusions of our research.

e Fuzzy goal-based cost measure allows us an easy to use, multiobjective adapt-
able cost measure. User preferences for any objective will be expressed in the

form of goal vector.

Puzzy Evaluation scheme combines satisfaction of net bounds along with clas-
sical wire length only scheme. This results in reduction in circuit delay. How-

ever, this improvement is achieved at a cost of increased wire length.

Puzzy Allocation scheme combines controlled random move in a purely con-
structive sorted individual best fit allocation technique. The identification of
favorable locations for a cell is carried out through the use of fuzzy rule and
membership functions. Being the most important stage of the SE algorithm,

fuzzy allocation results in noticeable in the quality of final solution.

Variable bias proposal allows the value of bias to be a function of some layout

dependent parameter. This results in making the bias more adaptable param-
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eter to the quality of solution. The performance of variable bias is the best in

terms of solution quality and execution time.

e Combining different proposals in a single version of the SE algorithm. For this
we combined fuzzy goal-based cost measure, fuzzy controlled random allocation
and variable bias schemes in one SE algorithm (FSE_VB). It is compared with
a multiobjective weighted sum allocation based best fixed bias SE algorithm
(FSE_WA). FSE_VB generates good quality results and its execution time is

comparable in most of the cases.

Following is the summary of each chapter of this thesis.

In Chapter 1,we have briefly described the problem of VLSI cell placement and
different solutions of this problem. A brief organization of the thesis is also given in
this chapter.

In Chapter 2, we have included all relevant preliminary information, necessary
to understand subsequent chapters. In this chapter we have formally defined the
VLSI placement problem and reviews the standard cell design style. Cost functions
to estimate the interconnect wire length, circuit delay and layout area are also given.
Net bound computation method and details of technology are listed in this chapter.
In this chapter, we have also reviewed the simulated evolution algorithm and fuzzy
logic.

In Chapter 3, we have reviewed studies relevant to VLSI cell placement. This
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review is classified as “general placement techniques” and “fuzzy logic based place-
ment studies”. Review of applications of the simulated evolution algorithm for
different computer-aided design problems is also given.

In Chapter 4, we propose fuzzy logic based SE algorithm for multiobjective
optimization of VLSI cell placement. A fuzzy goal based cost computation scheme is
proposed. For the evaluation stage of the SE algorithm, we have proposed a fuzzy
evaluation scheme which tries to identify cells violating wire length as well as net
constraints. This scheme is compared with the classical evaluation scheme in which
only violation of wire length is identified. The results show an improvement in circuit
delay at a cost of increased wire length. For the allocation stage of the SE algorithm,
a fuzzy allocation scheme is proposed. This scheme tries to optimize wire length,
circuit delay and layout width. We have also added an additional characteristic of
controlled stochastic move with the help of a fuzzy window. The fuzzy window allows
placement of cell on any of the near identical locations. The results are compared
with a multiobjective weighted average allocation (FSE_WA) and single objective
simulated evolution (SE) algorithm as proposed in [8]. According to the results, the
proposed allocation scheme is able to generate solutions with reduced wire length
circuit delay and comparable layout widths than other two schemes.

In Chapter 5, we investigated the use of selection bias in the SE algorithm. We
studied existing methods and proposed variable bias concept. With our proposed

modification, bias is treated as a dynamic parameter instead of fixed parameter as
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in the case of the classical SE algorithm. Our proposed modification treat bias as
a function average goodness. The results show that variable bias as a function of
average goodness results in comparable execution time and quality of solution with
respect to best fixed bias of classical algorithm. In this chapter we have combined
our proposals of fuzzy allocation scheme, fuzzy goal-based cost measure and variable
bias into one SE algorithm known as FSE_VB. This scheme was tested on benchmark
circuits and compared with another implementation FSE_ZWA, which uses weighted
sum allocation, fuzzy goal-based cost and best fixed bias. This algorithm is able
to preserve the advantages of fuzzy allocation as well variable bias and results in
reduction in solution cost.

In Chapter 6, we have summarized our thesis work. Here we have also men-

tioned some directions for future research.

6.1 Future Research
We think that our work can be extended to cover following issues.

e Path based minimization of circuit delay can be included in our proposed Fuzzy
Simulated Evolution Algorithm. In that case, the allocation and evaluation

stages of the proposed algorithm will be modified.

e Effect of dynamic bias on convergence of the SE algorithm.
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e Implementation of a graphical user interface for our program. This interface
should allow the users to interactively change search parameters online as well

as view the layout characteristic from time to time.
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