
ARABIC TEXT STEGANOGRAPHY USING MULTIPLE DIACRITICS

Adnan Abdul-Aziz Gutub, Yousef Salem Elarian, Sameh Mohammad Awaideh, Aleem Khalid Alvi

Computer Engineering Department, King Fahd University of Petroleum & Minerals, Saudi Arabia

ABSTRACT

Steganography techniques are concerned with hiding the
existence of data in other cover media. Today, text
steganography has become particularly popular. This
paper presents a new idea for using Arabic text in
steganography. The main idea is to superimpose multiple
invisible instances of Arabic diacritic marks over each
other. This is possible because of the way in which
diacritic marks are displayed on screen and printed to
paper. Two approaches and several scenarios are
proposed. The main advantage is in terms of the arbitrary
capacity. The approach was compared to other similar
methods in terms of overhead on capacity. It was shown
to exceed any of these easily, provided the correct
scenario is chosen.
Keywords— Arabic; capacity; diacritic marks;
steganography; text hiding.

1. INTRODUCTION

Since ancient times, people and nations seek to keep
some information secure. Steganography is the approach
of hiding the very existence of secret messages, hence
securing them [16]. Steganography has gained much
importance today, in the era of communications and
computation. Figure 1, from [1], point out a classification
tree of steganography.

 The first category in the classification divides
steganography according to the cover message type. We
are proposing two approaches that would fit the text and
image classes, according to these categorizations. The
linguistic categorization exploits the computer-coding
techniques to hide information [1]. Semagrams hide
information through the use of signs and symbols.
According to this second classification, we fit the text and
visual semagrams class.
 In the following section, we present some background
information on Arabic script. In the next section, we
review work related to Arabic script steganography. Next,
the Approach section is devoted to describe our two
approaches and compare them to each others. Afterwards,
we show the results of some testing. Finally, we
conclude, acknowledge and provide a list of references.

2. BACKGROUND ON ARABIC SCRIPT

The Arabic alphabet has Semitic origins derived from the
Aramaic writing system. Arabic diacritic marks decorate
consonant letters to specify (short) vowels [2]. Those
marks, shown in Figure 2, normally come over/beneath
Arabic consonant characters. Arabic readers are trained to
deduce these [3, 4]. Vowels occur pretty frequently in
languages. Particularly in Arabic, the nucleus of every
syllable is a vowel [5]. Inside the computer, these are

Steganography

Data Linguistic

Images TextAudio Semagrams

Visual Text

Covered
ciphers

Open Ciphers

Jargon

Phonetics Misspellings

Figure 1. The classification tree of steganography [1].

 represented as characters [6]. The use of diacritics is an
optional, not very common, practice in modern standard
Arabic, except for holy scripts.
 Dots and connectivity are two inherent characteristics
of Arabic characters. We describe them here for the
convenience of Sections 3 and 5. We use the word dots to
refer to any separate stroke that comes over or beneath
otherwise identical glyphs to differentiate among them.
This includes any single, double, and triple points,
besides the zigzag shapes called Hamzahs, and Maddahs.
Out of the Arabic basic alphabet of 28 letters, 15 letters
have from one to three points [7, 10], four letters can
have a Hamzah, and one can be adorned by Maddah [8].
Ancient Arabs used to omit and deduce dots in the same
manner in which standard Arabic treats diacritics today.

Figure 1. Arabic diacritic marks.

 Connectivity is a result of the cursive nature of Arabic
script. However, 8 out of the 28 Arabic letters do not
connect to subsequent letters. Besides, even connectable
letters do not connect to subsequent letters when the end
of the word has been reached. These issues also restrict
the insertion of the connectivity elongation redundant
character, Kashida.

3. RELATED WORK

Little has been proposed on Arabic script steganography.
Two inherent properties of Arabic writing, however, have
been proposed: dots and connectivity. Dots are interesting
for their frequent occurrences in Arabic text. A first
proposal of their use has tackled the character design
itself [9]. In this method, the position of dots is changed
to render robust, yet hidden, information. The method
needs special fonts to be installed and give different
codes to the same Arabic letter depending on the secret
bit it hides. A more practical way has been suggested in
[10] and [15]. It distinguishes the secret-bit-hiding dotted
letters by inserting Kashidah’s before/after them. A small
drop in capacity occurs due to restriction of script on
Kashidah insertion from one side, and due to the extra-
Kashidah’s increasing the overall size of text, on the
other side. A variation to the work of [10] and [15] that
simply inserts a Kashidah after an extendible character to
represent a binary bit, regardless of the previous
character’s dots, might achieve better capacity.

Aabed et al. [11] have made use of the redundancy in
diacritics to hide information. By omitting some
diacritics, meaningful streams in them can be kept. This
paper shares the base idea and extends it to the usage of
multiple instances of diacritic marks, benefiting from the
display characteristics of such marks.

4. APPROACH

The idea emerges from the way how computers
display/print Arabic diacritic marks. For most Arabic
fonts, when the code of a diacritic mark is encountered,
the image of the corresponding stroke is rendered to the
screen/printer without changing the location of the cursor.
Such displaying without displacing leads to the
possibility of typing multiple instances of a diacritic in an
almost invisible way. A computer program aware of the
presence and meaning of such diacritics can detect and
interpret them. For example, a program can be aware that
a multiple diacritics exist in a message. It then can easily
extract them, as Figure 3 suggests.

(a)

(b)

Figure 2. Diacritics of enciphered text: (a) before & (b) after

in circle: uncovering the last extra diacritic.

 We emphasize on the word almost when qualifying
the invisibility of extra diacritics. This fact is because the
multiple typing of a diacritic character might have an
effect on the displayed/printed output in some fonts. In
fact, fonts range from making all diacritics completely
invisible to revealing them all in an apparent unfolded
manner. In between, there are two interesting cases: the
one of revealing only the first diacritic mark, and hiding
extra strokes, and the one of darkening the diacritics with
extra strokes.
 We provide two approaches to exploit the ideas
above: The textual approach and the image approach.
Each approach has its advantages in terms of the typical
steganography metrics [10]: security, capacity, and
robustness [12]. Tradeoffs between the metrics in the
approaches are discussed after their presentation. The
textual approach chooses a font that hides extra (or
maybe all) diacritic marks completely. It, then, uses any
encoding scenario to hide secret bits in an arbitrary
number of repeated but invisible diacritics. Clearly, a
softcopy of the file is needed to retrieve the hidden
information (by special software or simply by changing
the font).

4.1 The Textual Approach

The Direct and Blocked Value Scenarios

There are several scenarios to make use of this approach.
One extreme scenario of this method achieves an
arbitrary capacity: The whole message can be hidden in a
single diacritic mark by hitting (or generating) a number
of extra-diacritic keystrokes equal to the binary number

representing the message. For example, to hide the binary
string (110001)b = 49d, we can follow the step below with
n = 50. We get the result in Table 1.
 This number n might be huge! One solution can be to
perform the previous scenario on a block of limited
number of bits. For this scenario, consider the same
example of (110001)b as a secret message, we repeat the
first diacritic 3 extra times (3 = (11)b); the second one, 0
extra times (0 = (00)b); and the third one, 1 extra time
(1=(01)b). Figure 4 manifests the pseudo-code of such
general case. A second scenario can be analogous to the
run-length encoding (RLE) compression approach.

Figure 4. Pseudo-code for the value scenarios.

The RLE Scenario

In the RLE (run-length encoding) scenario, we repeat the
first diacritic mark in text as much as the number of
consecutive, say, ones emerging in the beginning of the
secret message stream. Similarly, the second diacritic is
repeated equivalently to the number of the consecutive
zeros in the secret text. In the same way, all oddly-
ordered diacritics are repeated according to the number of
next consecutive ones, and all the evenly-ordered ones
repeat according to the zeros. Figure 5 presents a pseudo-
code describing this method.

Figure 5. Pseudocode for the RLE scenarios.

 For seek of completeness, we reproduce the example for the
RLE case, as well. The algorithm will imply repeating the first
diacritic 2 times (2 = number of 1’s in (11)b); the second one, 3
times (3 = number of 0’s in (000)b); and the third one, 1 time
(for 1).

4.2 The Image Approach

The image approach, on the other hand, selects one of the
fonts that slightly darken multiple occurrences of
diacritics. Figure 6 (a) shows how black level of the
diacritics is darkened by multiple instances. Figure 6 (b)
quantizes the brightness levels of such diacritics by
adding the 24 colour-bits of each as one concatenated
number. Notice that the less the brightness level, the more
the darkness is.
 This approach needs to convert the document into
image form to survive printing. This step is necessary
because the printing technology differs from the
displaying technology in rendering such Arabic complex
characters [12]. We found that printing doesn’t darken

For block bi containing a number nd
 Repeat the ith diacritic nd times.

While(secret.hasMore & cover.hasMore
 b = b^
 While(secret.b = b)
 Type diacritic

 (a) (b)

Figure 6. (a) The image of diacritics, from a single instance in first row up to 5 repetitions in the fifth 2, 3, 4 and 5
times each (presented from the leftmost to the right most column of each diacritic).

 (b) Quantization of the brightness levels of such diacritics by adding the 24 color-bits.

extra diacritic instances of text, even when the display
does. This unfortunate fact reduces the possible number
of repetition of a diacritic to the one that can survive a
printing-and scanning process (up to 4 as the last two
columns of the first diacritic in Figure 3 (b) suggest).

Table 1. Results of encodings of the binary value 110001
according to the two scenarios of the first approach

Scenario Extra diacritics
1st scenario (stream) 49.
1st scenario block size=2 3 + 0 + 1 = 4.
2nd scenario (RLE start=1) (2-1) + (3-1) + (1-1) = 3.

These limitations force us to stick to the first encoding
scenario with a small block size (up to 2, perhaps). More
catastrophically, yet, the size of the image containing text
is, typically by orders, larger than that of the text it
represents! However, if the media is paper, this capacity
measure re-considers the number of characters in a
printed page rather than the number of bits. This method
can also be considered for printing watermarking. It’s
worth mentioning that to increase security it’s best to
transform the text or image into a common format, such
as PDF, for example. This act not only hides some
information regarding the original type and size of files,
but also prevents from accidental or intentional font
changes, which can have catastrophic impact on text
messages.
 Notes on the capacity, robustness and security of each
approach are summarized in Table 2. The image approach
has two entries: one assuming a softcopy of the document
image is distributed and the other one assuming a printed
version is. The text approach is not, generally, robust to
printing. However, it is capable of achieving arbitrarily
high capacities. The file size might deteriorate the
security level, however, if this approach is abused. The
image approach is, to some extent, robust to printing. The
softcopy version is only mentioned for completeness. It
has a very low capacity. Its security is also vulnerable
since text isn’t usually sent in images. The hardcopy
version of the image approach intents to achieve
robustness with good security.

Table 2. Comparison between the two approaches in terms of

capacity, robustness and security.
Approach Capacity Robustness security
Text +
softcopy

High, up to infinity
in 1st scenario.

Not robust
to printing.

Invisible,
in code.

Image +
softcopy

Very low, due to
image overhead.

Robust to
printing.

Slightly
visible.

Image +
hardcopy

Moderate, 1st
scenario, block of 2

Robust to
printing.

Slightly
visible.

5. COMPARISON TO SIMILAR TECHNIQUES

We compare the capacity of our approach to the dots
approach [9] and to the Kashidah approach [10]. First, we
need to note that in our, as well as the Kashidah
approach, hiding a bit is equivalent to inserting a
character (a diacritic mark in our case and a Kashidah in
the Kashidah method). The dots approach doesn’t suffer
such increase in size due to hidden message embedding.
In fact, the dotted approach can be viewed as an ideal
(hence, unpractical) case for the Kashidah method.
 Since there are several scenarios to implement all
approaches, we count the number of usable characters per
approach, independent from the scenario or the secret
message to be embedded. For this goal to be realistic, we
find utterances in the Corpus of Contemporary Arabic
(CCA), by Al-Sulaiti [14, 15]. The corpus is reported to
have 842,684 words from 415 diverse texts, mainly from
websites. For the diacritic approach, the overhead is easy
to estimate. Besides, it needs a diacratized text to
experiment on. Hence, we use the not-heavily-diacratized
sentence in Figure 7 to extract results.
 We use p for the ratio of characters capable of baring
a secret bit of a given level, and q for the ratio of
characters capable of baring the opposite level. In the
case of the dots approach, dotted characters may
contribute to p while undotted characters may contribute
to q. For the Kashidah method, we study two cases: the
case of inserting Kashidahs before, and the case of
inserting them after, the required character. We count
extendible characters before/after dotted characters for p
and those before/after undotted characters for q. For both
methods, we keep characters with Hamzahs in a separate
class r so as to be added to p or q, whichever is more
convenient. The last column assumes equiprobability
between (p+r) and q. In our case, a diacritic mark can
bare a secret zero or a secret one, hence p = q and r = 0.

 . نَحْمَدُهُ وَنَسْتَعِيْنَهُ وَنسْتَغْفِرُهُ.إِنَّ الحَمْدَ لِلهِ

وَسَيِّئَاتِ وَنَعُوْذُ بِااللهِ مِنْ شُرُوْرِ أَنْفُسِنَا
 .أَعْمَالِنَا

 .مَنْ يَهدِهِ االلهُ فَلا مُضِلَّ لَهُ
 .لَهُ وَمَنْ يُضْلِلْ فَلا هَادِىَ

ريكَ لَه وأشْهَدُ أن لا إِله إِلا االله وَحدَهُ لا شَ
 .وأَشْهَدُ أَنَّ مُحَمَداً عَبْدُهُ ورَسُولَهُ

Figure 7. Moderately diacratized text to find utterances of bit-
baring units in our method.

Table 3. Ratios of the usable characters for hiding both binary
levels of the three studied approaches.

Approach p q r (p+r+q)/2

Dots 0.2764 0.4313 0.0300 0.3689

Kashidah-Before 0.2757 0.4296 0.0298 0.3676

Kashidah-After 0.1880 0.2204 0.0028 0.2056

Diacritics 0.3633 0.3633 0 0.3633

 The figures in Table 3 are quite near. As pointed out
previously, the dots approach is actually the ideal
unpractical case for the Kashidah method. Hence, we
discuss our and the Kashidah methods in depth, here. In a
first glance, our approach might seem to outperform the
Kashidah method for the restrictions on inserting a
Kashidah are more than those on inserting a diacritic:
Almost every character can bare a diacritic on it.
(Although some rare times two diacritics are there, and
some other rare times none is put). However, deeper tests
reveal an inherent overhead to diacritics: they never come
alone; but above/beneath another character. Hence, a
somehow stable overhead of 2 bytes per secret-baring
position is found in our approach.

The advantage of our work, however, is that each
usable character can bare multiple secret bits with 1
character as overhead. Although this same overhead can
be claimed in the Kashidah method, it can’t really be
applied for Kashidah becomes too long and noticeable.

6. CONCLUSION

This paper presents the two text and image approaches to
hide information in Arabic diacritics for steganographic
use. It presents a variety of scenarios that may achieve up
to arbitrary capacities. Sometimes tradeoffs between
capacity, security and robustness imply that a particular
scenario should be chosen. The overhead of using
diacritics was, experimentally, shown very comparable to
related works. The advantage of the method, however, is
that such overhead decreases if more than one diacritical
secret bit is used at once.

7. ACKNOWLEDGEMENTS

Authors would like to thank King Fahd University of
Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia,
for supporting this research work.
 Special appreciation to all the 2006 second term
students of the course COE 509: Applied Cryptosystems -
Techniques & Architectures for their valuable initiatives
and positive cooperation.

REFERENCES
[1] D. Vitaliev, “Digital Security and Privacy for Human Rights
Defenders,” The International Foundation for Human Right
Defenders, pp. 77-81, Feb. 2007.
[2] A. Amin, “Off line Arabic character recognition: a survey,”
International Conference on Document Analysis & Recognition,
Vol.2, pp. 596 – 599, 18-20 August 1997.
[3] K. Romeo-Pakker, H. Miled, Y. Lecourtier, “A new
approach for Latin/Arabic character segmentation,”
International Conference on Document Analysis & Recognition,
Vol. 2, pp. 874 – 877, 14-16 August 1995.
[4] F. S. Al-anzi, “Stochastic Models for Automatic Diacritics
Generation of Arabic Names,” Journal Computers and the
Humanities, Vol. 38, No. 4, pp. 469-481, November 2004.
[5] Y. A. El-Imam, “Phonetization of Arabic: rules and
algorithms,” Computer Speech & Language, Vol. 18, No. 4, pp.
339-373, October 2004.
[6] G. Abandah, F. Khundakjie, “Issues Concerning Code
System for Arabic Letters,” Direst Engineering Sciences
Journal, Vol. 31, No. 1, pp. 77-165, April 2004.
[7] G. Abandah, M. Khedher, Printed and handwritten Arabic
optical character recognition –initial study, A report on research
supported by the Higher Council of Science and Technology,
Amman, Jordan, August 2004.
[8] M. S. Khorsheed , “Off-line Arabic character recognition –a
review,” Pattern analysis & applications, Vol. 5, pp. 31–45,
2002.
[9] M.H. Shirali-Shahreza, M.Shirali-Shahreza, “A New
Approach to Persian/Arabic Text Steganography,” 5th
IEEE/ACIS International Conference on Computer and
Information Science (ICIS 2006), pp. 310-315, Honolulu, HI,
USA, 10-12 July 2006.
[10] A. Gutub, M. Fattani, “A novel Arabic text steganography
method using letter points and extensions,” WASET
International Conference on Computer, Information and
Systems Science and Engineering (ICCISSE), Vienna, Austria,
May 25-27, 2007.
[11] M.A. Aabed, S.M. Awaideh, M.E. Abdul-Rahman, A.
Gutub, “Arabic diacritics based Steganography,” IEEE
International Conference on Signal Processing and
Communications (ICSPC 2007), pp. 756-759, Dubai, UAE, 24-
27 November 2007.
[12] Correll, S. Graphite: an extensible rendering engine for
complex writing systems.: Proceedings of the 17th International
Unicode Conference. San Jose, California, USA, 2000.
[13] N. F. Johnson, S. Jajodia, “Exploring Steganography:
Seeing the Unseen,” IEEE Computer, Vol. 31, No. 2, pp. 26-34,
1998.
[14] L. Al-Sulaiti, Designing and developing a corpus of
contemporary Arabic, MS Thesis, The University of Leeds,
March 2004.
[15] A. Gutub, L. Ghouti, A. Amin, T. Alkharobi, and M. K.
Ibrahim, “Utilizing Extension Character ‘Kashida’ With Pointed
Letters For Arabic Text Digital Watermarking”, International
Conference on Security and Cryptography - SECRYPT,
Barcelona, Spain, July 28 - 31, 2007.
[16] F. Khan, A. Gutub, “Message Concealment Techniques
using Image based Steganography”, The 4th IEEE GCC
Conference and Exhibition, Gulf International Convention
Centre, Manamah, Bahrain, 11-14 November 2007.

