Real-Time Performance Evaluation Of A Genetic-Algorithm-Based Fuzzy Logic Controller For IPM Motor Drives

Uddin, MN; Abido, AA; Rahman, MA

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS; pp: 246-252; Vol: 41

King Fahd University of Petroleum & Minerals

http://www.kfupm.edu.sa

Summary

This paper presents a novel speed control scheme using a genetic-based fuzzy logic controller (GFLC) for an interior permanent-magnet synchronous motor (IPMSM) drive. The proposed GFLC is developed to have less computational burden, which makes it suitable for real-time implementation. The parameters for the GFLC are tuned by genetic algorithm (GA). The complete drive incorporating the GFLC is successfully implemented in real-time using a digital signal processor board DS 1102 for a laboratory 1-hp interior permanent magnet motor. The efficacy of the proposed GFLC-based IPMSM drive is verified by simulation as well as experimental results at various operating conditions. A performance comparison with a conventional proportional-integral controller is also provided to show the superiority of the proposed controller. The proposed GFLC is found to be robust for high-performance industrial drive applications.

References:

1. *DSPACE GMBH, 1996, DIG SIGN PROC CONTR
2. *MATHWORKS INC, 1997, MATL SIM US GUID
3. BLASCHKE F, 1972, SIEMENS REV, V39, P217
6. CERRUTO E, 1997, IEEE T POWER ELECTR, V12, P1028
8. ERENAY K, 1998, P INT C EL MACH IST, P1231
13. Slemmon GR, 1992, Elect Machines Drive, P503

For pre-prints please write to: muddin@lakeheadu.ca; rahman@engr.mun.ca