Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning

Sadiq M. Sait, Aiman H. El-Maleh, Raslan H. Al-Abaji
\{sadiq, aimane, raslan\}@ccse.kfupm.edu.sa
King Fahd University of Petroleum & Minerals, Computer Engineering,
Dhahran - 31261, Saudi Arabia

Abstract. The problem of partitioning appears in several areas ranging from VLSI, parallel programming, to molecular biology. The interest in finding an optimal partition especially in VLSI has been a hot issue in recent years. In VLSI circuit partitioning, the problem of obtaining a minimum cut is of prime importance. With current trends, partitioning with multiple objectives which includes power, delay and area, in addition to minimum cut is in vogue. In this paper, we engineer three iterative heuristics for the optimization of VLSI netlist bi-Partitioning. These heuristics are based on Genetic Algorithms (GAs), Tabu Search (TS) and Simulated Evolution (SimE). Fuzzy rules were incorporated in order to handle the multiobjective cost function. For SimE, fuzzy goodness functions are designed for delay and power, and proved efficient. A series of experiments are performed to evaluate the efficiency of the algorithms. ISCAS-85/89 benchmark circuits are used and experimental results are reported and analyzed to compare the performance of GA, TS and SimE.

Further, we compared the results of the iterative heuristics with a modified FM algorithm, named PowerFM, which targets power optimization. PowerFM performs better in terms of power dissipation for smaller circuits. For larger sized circuits SimE outperforms PowerFM in terms of all three, delay, number of net cuts, and power dissipation.

Keywords: Genetic Algorithms, Tabu Search, Simulated Evolution, multiobjective, Fuzzy Logic, Netlist partitioning.

1. Introduction

VLSI circuit design has various objectives. Until the beginning of this decade, two main objectives of VLSI circuit design were the minimization of cutset and the improvement of timing performance. A large number of efforts targeting either one (especially cutset) or both of the above objectives are reported in the literature (Sait, 1995; Toulouse, 2002). The power consumption of the circuit was not of main concern while trying to optimize the above two objectives, nevertheless quite a reasonable number of techniques aiming at low power objective are proposed for all phases in physical design including partitioning of circuit, floorplanning, placement and routing (Sait, 1995).

As different techniques are applicable and have been reported at different steps of the VLSI design process (Pedram, 1995), few performance-
driven partitioning techniques at physical-level design exist in the literature. Therefore, the need for a system which incorporates all the three aspects of the design process (delay, cut, power) is increasing. In standard CMOS VLSI circuits, switching activity of circuit nodes is responsible for most of the power dissipation. It is reported in (Kuroda, 2001) that this switching activity contributes 90% to the total power dissipation in the circuit. Therefore, most of the reported techniques focus on this aspect (Devadas, 1995).

For the partitioning phase, two low-power oriented techniques based on Simulated Annealing (SA) algorithm have recently been presented in (Choi, 1999). An enumerative optimal delay partitioning algorithm targeting low power is proposed by Vaishnav et al. in (Vaishnav, 1999). A circuit partitioning algorithm under path delay constraints is proposed by Tetsushi et al. in (Tetsushi, 1998). Drechsler et. al. (Drechsler, 2002) have presented a new recursive bi–partitioning algorithm that is especially applicable, if a large number of final partitions, e.g. more than 1000, has to be computed. A two step algorithm is implemented for the proposed approach. Further, the problem is divided into several sub-problems based on recursive splits, but with increasing recursion depth more run time is invested. Recently, Mardhana and Ikeguchi have proposed a neurosearch based method for solving a VLSI netlist partitioning problem (Mardhana, 2003). They explain the key concepts of neurosearch and methods to support a VLSI netlist partitioning program. The designed library consists of novel data structure management and basic functions for a move-based search which depends on moves generated by a neural network.

In this work, we address the problem of optimizing delay, power and cutset in the partitioning step at the physical level. Three iterative approaches based on Genetic Algorithm (GA), Tabu Search (TS) and Simulated Evolution are presented to solve the multiobjective optimization problem of partitioning. The following section gives a brief overview of methods for solving multi–objective problems, the details for which can be found in (Sait, 1999).

1.1. Methods for Solving Multi–Objective Problems

In this section we present various competing methods to solve multi-objective problems. Ideas discussed here can also be used with other non–deterministic iterative heuristics.

Ad-Hoc Weights

One way to solve multi-objective problems is to assign a constant weight to each of the multiple objective functions. The weight assigned
will depend on the importance of the objective. Assuming that all objectives are to be maximized, the fitness of an individual (solution) can be expressed as

\[f(x) = w_1 \cdot f_1(x) + w_2 \cdot f_2(x) + \cdots + w_n \cdot f_n(x) \]

(1)

Where \(x \) is a string, \(n \) is the number of objective functions, \(f(x) \) is a combined fitness function, \(f_i(x) \) is the \(i \)th objective, and \(w_i \) is the weight of the \(i \)th objective. The problem with multi-objective functions is the difficulty in determining suitable weights. This is because, in most practical problems, no two objectives are related.

Pareto Optimality

A notion of optimality that respects the integrity of each of the separate criteria is the concept of Pareto optimality. Here, suppose we wish to minimize two objectives, expressed as \(f_1 \) and \(f_2 \). Let A, B, C, D, E, and F, be six possible solutions to our optimization problem, with the following fitnesses:

- A : (10, 90)
- B : (20, 70)
- C : (08, 75)
- D : (15, 60)
- E : (09, 65)
- F : (14, 63)

That is, solution A has a value of \(f_1=10 \) and \(f_2=90 \). If we plot the 6 points \(f_1 \) versus \(f_2 \), obviously those that are lower and on the left are regarded as the best. Points C and D are good choices since there are no points better than these in both the criteria. C is best with respect to \(f_1 \) and D with respect to \(f_2 \). On the other hand, A and B are poor choices.

Solution A(10,90) is dominated by solution C(08,75), since 10 > 8 and 90 > 75. (If any solution \(p \) is to the right and top of another solution \(q \), then we say \(p \) is dominated by \(q \).) A is also dominated by E. Similarly, B(20,70) is dominated by D(15,60), E(09,65) and F(15,60). The set of solutions that are not dominated by any other solution is \{C, D, E, F\}. In this problem, as in any other multi-objective optimization problem, such a set of solutions comprises the Pareto-optimal (P-optimal) set. It is from this set that the decision maker has to make a choice. The Pareto optimality concept does not assist in making a single choice.

VEGA

In VEGA (Schaffer, 1985), the population is divided into equally sized, disjoint sub-populations, each governed by a different objective function. Selection is performed independently of each criteria; however crossover is performed across sub-population boundaries. The problem with this scheme is, independent selection of best solution in each criterion results in potential bias against middle solutions (such as E and
F in our case). That is, those which are good but not the best with respect to any single criterion.

MOGA

Recently, Murata and Ishibuchi proposed a Multi-Objective GA (MOGA) (Murata, 1995) which uses a weighted sum of multiple objective functions to combine them into a scalar fitness function. The key feature of MOGA is that the weights attached to the multiple objective functions are not constant but randomly specified for each selection. Therefore, the direction of search in MOGA is not fixed.

Fuzzy Logic Approach

For many problems, two distinct forms of problem knowledge exist:

1. Objective knowledge which is used a lot in engineering problem formulations (e.g., mathematical models, etc.),

2. Subjective knowledge which represents linguistic information that is usually impossible to quantify (e.g., rules, expert information, etc.).

Subjective knowledge is always ignored at the front end of engineering designs; but it is frequently used to evaluate such designs. The two forms of knowledge can be coordinated in a logical way using fuzzy logic. Fuzzy Logic plays a pivotal role in computing with words. The computation with words finds its motivations when the available information is too imprecise to justify the use of numbers and also when there is a tolerance for imprecision which can be exploited to achieve tractability, robustness, low solution cost, and better rapport with reality. In our work, we will adopt the fuzzy logic approach for the multi-objective netlist partitioning problem.

2. **Problem Formulation and Cost Functions**

This work addresses the problem of VLSI netlist partitioning with the objective of optimizing power consumption, timing performance (delay), and cutset while considering the Balance constraint (same as area constraint as unit area is assumed for every gate). Formally, the problem can be stated as follows: Given a set of modules \(V = \{v_1, v_2, ..., v_n\} \), the purpose of partitioning is to assign the modules to a specified number of clusters \(k \) (two in our case) satisfying prescribed properties. In general, a circuit can have multi-pin connections (nets) apart from two-pin and therefore it is better to represent it by a hypergraph. A hypergraph \(H(V,E) \) is defined where \(V \) is a set of nodes and \(E \) is
a set of hyperedges. Node \(v_i \in V \) corresponds to an element (e.g., a gate) in the circuit, and hyperedge \(e_i \in E \) corresponds to a net in the circuit. Hyperedge \(e_i \) consists of the signal source node \(S(e_i) \) and a set of destination nodes \(D(e_i) \) and \(e_i = (S(e_i), \{D(e_i)\}) \). The signal source node \(S(e_i) \) of the net \(e_i \) corresponds to the output of a gate and the set of destination nodes \(D(e_i) \) corresponds to the inputs of the gates. Given a hypergraph \(H(V, E) \) with \(E = \{e_1, e_2, \cdots, e_m\} \) being the set of signal nets, each net is a subset of \(V \) containing the modules connecting the net. It is assumed that for each hyperedge \(e \in E, |e| \geq 2 \) (it connects at least two nodes). Our task is to divide \(V \) into 2 subsets (clusters) \(V_0 \) and \(V_1 \) in such a way that the objectives are optimized, subject to some constraints. Extension to multi-way partitioning is possible and the details can be found in (Al-Abaji, 2002).

Cutsize: The set of hyperedges cut by a cluster \(C \) is given by \(E(C) = \{e \in E : 0 < |e \cap C| < |e|\} \) i.e., \(e \in E(C) \) if at least one, but not all, of the pins of \(e \) are in \(C \). The set of nets cut by a partitioning solution \(p^k \) can be expressed as \(E(p^k) = \bigcup_{i=1}^{k} E(e_i) \) or equivalently \(E(p^k) = \{e \in E : \exists u, v \in e, h \neq l \text{ with } u \in C_h \text{ and } v \in C_l\} \). We say that \(|E(p^k)|\) is the cutsize of \(p^k \). The cost function can be written as follows:

\[
 f = \sum_{e \in \psi} w(e)
\]

where \(\psi \subset E \) denotes the set of off-chip edges, i.e., nets cut. The weight \(w(e) \) on the edge \(e \) represents the cost of wiring the corresponding connection as an external wire. If all weights equal one, the cost function becomes simpler:

\[
 f = |\psi|
\]

where \(|\psi|\) denotes the cardinality of the set \(\psi \).

Delay: In order to deal with a signal path, a hypergraph is decomposed into directed edges \(e_k = (S(e_k), w) \) for \(e_k \in E \) and \(w \in D(e_k) \). Let the graph which consists of a set of nodes \(V \) and a set of decomposed directed edges \(E \) be the directed graph \(G' = (V, E) \). A signal path is represented by an alternating sequence of nodes and directed edges \(v_1, e_1, v_2, e_2, \cdots, v_{k-1}, e_{k-1}, v_k \), where \(e_l = (v_l, v_{l+1}) (1 \leq l \leq k - 1) \) and \(v_i \neq v_j, i \geq 1 , j \leq k , i \neq j \). The path from node \(v_i \) to node \(v_j \) is denoted by \(p_{ij} \). Nodes which are included in the path \(p_{ij} \) are defined as \(V(p_{ij}) \). A path-cut number of path \(p_{ij} \), denoted \(ncut(p_{ij}) \), is the number of nets cut which are included in the path \(p_{ij} \). In the general delay model where gate delay \(d(v) \) and constant inter-chip wire delay are considered, \(d_c \gg d(v) \) where \(d_c \) is due to the off-chip capacitance denoted as \(C_{off} \). Let the delay of node \(v_i \in V \) be \(d(v_i) \) and the delay

\[
\text{journal_subhan.tex; 11/06/2005; 18:24; p.5}
of net $e_k \in E$ which is cut be d_e. Given a partition $\Phi : (V_A, V_B)$, the path delay $d(p_{ij})$ between nodes v_i and v_j is the sum of the node delays $d(v_i) \in V(p_{ij})$ and the delay of nets which are cut. To optimize delay, we need to minimize the following function:

$$d(p_{ij}) = \left(\sum_{v_i \in V(p_{ij})} d(v_i) \right) + d_e \times ncut(p_{ij})$$ \hspace{1cm} (4)

Power: The average dynamic power consumed by a CMOS logic gate in a synchronous circuit is given by:

$$P_{\text{average}} = 0.5 \cdot \frac{V_{dd}^2}{T_{cycle}} C_{\text{load}}^i N_i$$ \hspace{1cm} (5)

where C_{load}^i is the load capacitance, V_{dd} is the supply voltage, T_{cycle} is the global clock period, and N_i is the number of gate output transitions per clock cycle. In our work N_i is calculated using the symbolic simulation technique of (Ghosh et. al, 1992) under a zero delay model. C_{load}^i in Equation 5 consists of two components: C_{basic}^i which accounts for the load capacitances driven by a gate before circuit partitioning, and the extra load C_{extra}^i which accounts for the additional load capacitance due to the external connections of the net after circuit partitioning. Then, the total power dissipation of circuit ζ is:

$$P_\zeta = \beta \cdot \frac{V_{dd}^2}{T_{cycle}} \sum_{i \in \zeta} (C_{\text{basic}}^i + C_{\text{extra}}^i) N_i$$ \hspace{1cm} (6)

where β is a constant that depends on technology.

When a circuit partitioning corresponds to a physical partitioning, C_{extra}^i of a gate that is driving an external net is much larger than C_{basic}^i. The power model given in Equation 6 can be further simplified. It is assumed that the power dissipation contribution due to variations of C_{basic}^i under different partitioning solutions is negligible. Furthermore, considering that the fixed overhead capacitance for an external net is dominant within C_{extra}^i, it can be assumed that C_{extra}^i is identical for each net. This leads to the following objective function (Vaishnav, 1999).

$$O_\zeta = \sum_{i \in \zeta_v} N_i$$ \hspace{1cm} (7)

where ζ_v corresponds to the set of visible gates, i.e., the set of gates that drive a load external to the partition.

Area or Balance Constraint: If we assume that the area of all cells is identical, then the problem reduces to balancing the two partitions.
in terms of the number of cells. The balance constraint is given below:

\[
\frac{|\beta_1 - \beta_2|}{\phi} \leq \alpha \tag{8}
\]

where \(\beta_i\) is the number of cells in partition \(i\), \(\phi\) is the total number of cells in the circuit, \(\alpha\) is the tolerance which is equal zero in case of a perfect balance. When balance is used as cost, it will be \(|\beta_1 - \beta_2|\).

2.1. Overall Fuzzy Cost Function:

In order to solve the multiobjective partitioning problem, linguistic variables are defined as: cutset, power dissipation, delay and balance. The following fuzzy rule is used to combine the conflicting objectives:

Rule 1: IF a solution has Small cutset AND Low power consumption AND Short delay AND Good Balance THEN it is a GOOD solution.

The above rule is translated to and-like OWA fuzzy operator (Yager, 1998) and the membership \(\mu(x)\) of a solution \(x\) in fuzzy set good solution is given as:

\[
\mu^c_{pdbc}(x) = \beta^c \times \min(\mu^c_p(x), \mu^c_d(x), \mu^c_c(x), \mu^c_b(x)) \ + \\
(1 - \beta^c) \times \frac{1}{4} \sum_{j=p,d,c,b} \mu^c_j(x) \tag{9}
\]

where \(\mu^c(x)\) is the membership of solution \(x\) in fuzzy set of acceptable solutions, \(\mu^c_{pdbc}(x)\) is the membership value in the fuzzy sets of “within
acceptable power”, “within acceptable delay”, “within acceptable cut-set” and “within acceptable balance” respectively. \(\beta \) is a constant in the range \([0, 1]\); the superscript \(c \) represents the cost. In this paper, \(\mu^c(x) \) is used as the aggregating function. The solution that results in maximum value of \(\mu^c(x) \) is reported as the best solution found by the search heuristic.

The membership functions for fuzzy sets Low power consumption, Short delay, and Small cutset are shown in Figure 1. We can vary the preference of an objective \(j \) in the overall membership function by changing the value of \(g_j \), which represents the relative acceptable limits for each objective where \(g_j \geq 1.0 \).

The lower bounds \(O_j \) (shown in Fig. 1) for different objectives are computed as follows:

\[
O_b = 1, \quad \text{(to avoid divide by zero)} \quad (10)
\]

\[
O_p = \sum_{i \in \zeta} (C_{i}^{\text{basic}})N_i \quad \forall v_i \in \{v_1, v_2, ..., v_n\}, \quad (11)
\]

\[
O_d = \sum_{j=1}^{k} CD_j, \quad \forall v_j \in \{v_1, v_2, ..., v_k\} \text{ in path } \pi_c, \quad (12)
\]

\[
O_c = 1. \quad (13)
\]

where \(O_j \) for \(j \in \{b, p, d, c\} \) are the lower bounds on the costs for balance, power dissipation, delay and cutset respectively, \(n \) is the number of nets in the circuit, \(CD_j \) is the switching delay of the cell \(j \) driving net \(v_j \), \(N_i \) is the switching probability of net \(v_i \), \(\pi_c \) is the most critical path with respect to optimal interconnect delays assuming that no net on this path is cut, \(k \) is the number of nets in \(\pi_c \). The minimum power is obtained if no net is cut, which means substituting 0 for \(C_{i}^{\text{extra}} \) in Equation 6. The components of the goal vector \(G \) are calculated as follows:

\[
g_{\text{balance}} = \frac{|\zeta|}{O_b} \quad (14)
\]

\[
g_{\text{cut}} = \frac{n}{O_c} \quad (15)
\]

\[
g_{\text{delay}} = \frac{\text{Initial delay}}{O_d} \quad (16)
\]

\[
g_{\text{power}} = \frac{\text{Initial power}}{O_p} \quad (17)
\]

Where \(|\zeta|\) is the number of cells in the circuit. Initial delay and initial power are the values computed from initial solutions.
3. Simulated Evolution (SimE) Approach

The Simulated Evolution algorithm (SimE) is a general search strategy for solving a variety of combinatorial optimization problems.

The pseudo-code of SimE is given in Figure 2 (Sait, 1999). SimE operates on a single solution, termed as population. Each population consists of elements. In case of the partitioning problem, these elements are cells to be moved. The algorithm has one main loop consisting of three basic steps, Evaluation, Selection and Allocation. In the Evaluation step, goodness of each element is measured. Goodness of an element is a single number between ‘0’ and ‘1’, which is a measure of how near is the element from its optimal location. After that comes Selection which is the process of selecting those individuals which are unfit (badly placed) in the current solution. For that purpose, the goodness of each individual is compared with a random number (in the range [0,1]); if the goodness is less than the random number then it is selected. Allocation is the SimE operator that has the most impact on the quality of solution. Its main function is to mutate the population by altering the location of selected cells. The three steps are executed in sequence until no noticeable improvement to the population goodness is observed after a number of iterations or a prefixed number of iterations are completed. A higher value of goodness means that the element is near its optimal location. For single objective optimization, the goodness can be calculated as follows,

\[g_i = \frac{O_i}{C_i} \] (18)

where \(O_i \) is the estimated optimal cost and \(C_i \) is the actual estimate of the cost.

In Selection, an individual having high goodness measure still has a non-zero probability of assignment to selected set. It is this element of non-determinism that gives SimE the capability of escaping local minima.

Cut Goodness: Let \(V_i = \{v_1, v_2, ..., v_k\} \) be the set of nets connected to cell \(i \), and \(U_i \) be a subset of \(V_i \) containing the connected nets to cell \(i \) that are cut. The goodness function for a cell is defined and computed as follows:

\[gc_i = \frac{d_i - w_i}{d_i} \] (19)

Where \(d_i \) is the total number of nets connected to cell \(i \) (i.e., \(|V_i|\)), and \(w_i \) is the number of nets connected to cell \(i \) that are cut (i.e., \(|U_i|\)).

The cut goodness is simply the number of uncut nets over the total nets connected. Since \(gc_i \) is between 0 and 1, we can take the
Algorithm
Simulated Evolution \((B, \Phi_i, SC)\)

- \(B\) = Bias Value.
- \(\Phi\) = Complete Solution.
- \(\Phi_i\) = Initial Solution.
- \(SC\) = Stopping Criterion.
- \(e_i\) = Individual link in \(\Phi\).
- \(O_i\) = Lower bound on cost of \(i^{th}\) link.
- \(C_i\) = Current cost of \(i^{th}\) link in \(\Phi\).
- \(g_i\) = Goodness of \(i^{th}\) link in \(\Phi\).
- \(S\) = Queue to store the selected links.

\(\text{Allocate}(e_i, \Phi_i)\) allocates \(e_i\) in partial solution \(\Phi_i\).

Repeat

Evaluation:
ForEach \(e_i \in \Phi\) DO

- Evaluate \(g_i\)

End

Selection:
ForEach \(e_i \in \Phi\) DO

- If \(\text{random}(1) > \min(g_i + B, 1)\)

Begin

- \(S = S \cup e_i\)
- \(\Phi = \Phi - e_i\)

End

End

Sort(S)

Allocation:
ForEach \(e_i \in S\) DO

- Allocate \((e_i, \Phi_i)\)

End

Until \(SC\) is satisfied

Return (Best solution)

End Simulated Evolution

Figure 2. Structure of the simulated evolution (SimE) algorithm.

Fuzzy membership \(\mu_c\) as equal to the goodness \(\mu_c = gc_i\). An example of goodness calculation is shown in Fig. 3; the goodness of cell 5 is calculated as follows: \(gc_5 = \frac{3-2}{3} = 0.33\).

Power Goodness: The power goodness \(gp_i\) of a cell is defined as a measure of how well placed is the cell in its present block according to power consumption and can be computed as follows:

\[
gp_i = \frac{\sum_{j=1}^{k} S_j \ (j \in V_i) - \sum_{j=1}^{k} S_j \ (j \in U_i)}{\sum_{j=1}^{k} S_j \ (j \in V_i)}
\]

(20)

\(S_j\) is the switching probability of the cell that drives the net. The goodness is equal to the sum of the switching probabilities of the cells.
that are driving the uncut nets over the sum of the switching probabilities of the cells that are driving all nets connected. In this way a cell is placed in the partition where the sum of the switching probability of the cut nets is optimized. Results show that this goodness function gives high quality solutions with less power dissipation. Since $0 \leq gp_i \leq 1$ we can take the fuzzy membership $\mu_p = gp_i$. An example of power goodness calculation is shown in Fig. 3; the goodness of cell 5 is calculated as follows: $gc_5 = 0.7 - 0.4 = 0.328$.

The power and cutset objectives are possibly conflicting. Hence it is possible to find alternative solutions for a specific circuit. For example, there may exist a solution with high number of cuts and low power consumption (because the nets cut have less switching probability) and another with lower cuts and higher power consumption.

Delay Goodness: In our problem, we deal with multi-pin nets, which makes it hard to design a suitable and simple delay goodness function. We propose the following delay goodness:

$$gd_i = \frac{|K_i| - |L_i|}{|K_i|}$$

(21)

where gd_i is the delay goodness of cell i. We consider the set of the critical paths passing through i and define the set K_i as the set of all cells connected to these paths. We also define L_i as a subset of K_i, containing those cells which are connected to the critical paths passing through i and are not in the same block as i. This goodness function will tend to drive the cells that are connected by the critical path to the same block, thus minimizing the delay along the path. A cell
Figure 4. Delay Goodness Calculation.

is considered good in its block if the majority of cells connected to all critical paths passing through it are also placed in the block. An example for delay computation is given in Fig. 4. To calculate g_d_4, we first compute $|K_4| = 5$ for the critical path $\{1, 4, 5, 7, 6\}$ which is the only one connected to cell 4. $|L_4| = 3$ which are cells $\{1, 5, 7\}$. This gives $g_d_4 = \frac{5-3}{5} = 0.4$. However, $g_d_5 = 0.6$, and hence is better placed according to the delay consideration.

3.1. Proposed Fuzzy Evaluation Scheme and Selection

With the classical goodness of cut only, it is possible that a cell having a high goodness with respect to cut may not be selected even though it may have low goodness with respect to circuit delay and power. In order to overcome this problem, it is necessary to include power and delay in the goodness measure along with cut goodness. Also, it is not desirable to select all the cells even if they all have a low goodness value. In this case, it is desirable to select those cells which are far from their lower bounds as compared to other cells in the design. For this purpose, the following fuzzy rule is proposed.

Rule R2: (as compared to other cells)

- IF cell i is near its optimal Cutset goodness
- AND near its optimal power goodness
- AND near its optimal net delay goodness

\[g_d_i = \frac{|K_i| - |L_i|}{|K_i|} \]

\[g_d_4 = \frac{5-3}{5} = 0.4 \]

\[g_d_5 = 0.6 \]

\[g_d_5 \] is considered good in its block if the majority of cells connected to all critical paths passing through it are also placed in the block. An example for delay computation is given in Fig. 4. To calculate g_d_4, we first compute $|K_4| = 5$ for the critical path $\{1, 4, 5, 7, 6\}$ which is the only one connected to cell 4. $|L_4| = 3$ which are cells $\{1, 5, 7\}$. This gives $g_d_4 = \frac{5-3}{5} = 0.4$. However, $g_d_5 = 0.6$, and hence is better placed according to the delay consideration.

3.1. Proposed Fuzzy Evaluation Scheme and Selection

With the classical goodness of cut only, it is possible that a cell having a high goodness with respect to cut may not be selected even though it may have low goodness with respect to circuit delay and power. In order to overcome this problem, it is necessary to include power and delay in the goodness measure along with cut goodness. Also, it is not desirable to select all the cells even if they all have a low goodness value. In this case, it is desirable to select those cells which are far from their lower bounds as compared to other cells in the design. For this purpose, the following fuzzy rule is proposed.

Rule R2: (as compared to other cells)

- IF cell i is near its optimal Cutset goodness
- AND near its optimal power goodness
- AND near its optimal net delay goodness

\[g_d_i = \frac{|K_i| - |L_i|}{|K_i|} \]

\[g_d_4 = \frac{5-3}{5} = 0.4 \]

\[g_d_5 = 0.6 \]
OR

\[T_{\text{max}}(i) \text{ is much smaller than } T_{\text{max}} \]

THEN it has a high goodness.

\(T_{\text{max}} \) is the delay of the most critical path in the current iteration and \(T_{\text{max}}(i) \) is the delay of the longest path traversing cell \(i \) in the current iteration.

The above-mentioned fuzzy rule is interpreted as follows:

\[
g_i = \mu_i(x) = \beta \times \min(\mu_{ic}(x), \mu_{ip}(x), \mu_{id}(x)) + (1 - \beta) \times \frac{1}{3} \sum_{j=c,p,d} \mu_{ij}(x)
\]

where

\[
\mu_{id}(x) = \beta_d \times \max(\mu_{dg}(x), \mu_{ipath}(x)) + (1 - \beta_d) \times \frac{1}{2}(\mu_{dg}(x) + \mu_{ipath}(x))
\]

The superscript \(e \) is used here to represent evaluation so that other fuzzy notations in other steps of SimE can be distinguished. The term \(x \) represents the block of cell \(i \), \(\mu_i(x) \) is the membership in the fuzzy set of high goodness and \(g_i \) is the goodness of cell \(i \). \(\beta \) and \(\beta_d \) are constants between 0 and 1 to control OWA operators. \(\mu_{ic}(x) \) and \(\mu_{ip}(x) \) represent the membership in fuzzy sets of near optimum cutset and near optimum power as compared to other cells. Moreover, \(\mu_{id}(x) \) is the overall delay goodness, and represents the membership in fuzzy set of near optimum timing performance. It is obtained after applying “OR-like” OWA to \(\mu_{dg}(x) \) and \(\mu_{ipath}(x) \), which are the memberships in fuzzy sets of near optimum cell delay goodness as compared to other cells and \(T_{\text{max}}(i) \) (most critical path passing through cell \(i \)) is much smaller than \(T_{\text{max}} \) (current most critical path of the circuit). \(\mu_{ipath}(x) \) is included in the computation of \(\mu_{id}(x) \) because if a cell is not in the critical path then it must have high goodness with respect to delay objective. After considerable number of iterations, it is possible that a cell is in the critical path but is also very near to its optimal delay goodness. In that case, it is not possible to optimize it further. At this stage, \(\mu_{dg}(x) \) overrides \(\mu_{ipath}(x) \).

The base values for cutset and power are not needed since the membership is directly computed as described in Section ???. As for cell delay goodness it is composed of net delay \(\mu_{dg}(x) \) which is computed directly by using Equation 21. For computing \(\mu_{ipath}(x) \) we define base value \(X_{ipath}(x) \) for fuzzy set \{ \(T_{\text{max}}(i) \) much smaller than \(T_{\text{max}} \) \}, and is computed in Equation 24:
$X_{ipath}(x) = \frac{T_{\text{max}}}{T_{\text{max}}(i)}$ (24)

The membership function for $X_{ipath}(x)$ is illustrated in Fig. 5. Experimentally we found that a base value of 2 is suitable to quantify that $T_{\text{max}}(i)$ is much smaller than T_{max}. In our implementation, the Biasless Selection scheme proposed by Khan et al in (Khan et. al, 2002) is used. The selection bias B is totally eliminated and a cell is selected if $\text{Random} > \text{goodness}_i$.

4. Genetic Algorithm (GA) and Tabu Search (TS)

In this section, implementation details of the genetic algorithm and tabu search for solving the multiobjective partitioning problem are described. First, the details of the partitioning Genetic Algorithm for Multiobjective optimization are discussed, followed by a brief description of the Tabu Search (TS) implementation.

4.1. Genetic Algorithm (GA) For Timing and Low Power Driven Partitioning

GA algorithm starts with a set of initial solutions called population that is generated randomly. In each iteration (known as generation in GA terminology), all the individual chromosomes in the population are evaluated using a fitness function. Then, in the selection step, two of the above chromosomes at a time are selected from the population. The individuals having higher fitness values are more likely to be selected.
After the selection step, different operators namely crossover, mutation act on the selected individuals for evolving new individuals called offsprings (Sait, 1999). These genetic operators are described below.

In GA implementation, we use an encoded representation of a solution in the form of a simple string made up of symbols called genes. The string of genes is called chromosome.

One important genetic operator is crossover. It is applied on two individuals that were selected in the selection step earlier to generate an offspring. The generated offspring inherits some characteristics from both its parents in a way similar to natural evolution. There are different crossover operators namely simple (single point), order, partially mapped, and cycle. The simple crossover, for instance, works by choosing a random cut point in both parent chromosomes (the cut point should be the same in both parents) and generating the offspring by combining the segment of one parent to the left of the cut point with the segment of the other parent to the right of the cut (Sait, 1999). For description of other crossover operators see (Sait, 1999; Sipakoulis, 1999; Al-Abaji, 2002). In this implementation, the simple crossover is used.

The mutation operator is used to introduce new random information in the population. It is usually applied after the crossover operator. It helps in producing some variations in the solutions so that the search does not get trapped in a local minima. An example of mutation operation is the swapping of two randomly selected genes of a chromosome. However, mutation is applied with a low rate so that GA does not turn into a memory-less search process (Sipakoulis, 1999). In our work, two mutation variations are used, the first one is by random selection of a cell and swapping its partition. The second is by randomly selecting two cells one from each partition and swapping them.

For addressing a multiobjective optimization problem to minimize three mutually conflicting objectives, fuzzy membership functions and fuzzy rules are used for evaluating the fitness of a solution. The fitness value of a chromosome is its membership value $\mu(x)$ in the fuzzy set of acceptable solution. This membership is computed using Equation 9. Individuals are selected based on the elitism-random selection (ernd), where the best $\frac{N_p}{2}$ chromosomes are selected and the remaining $\frac{N_p}{2}$ are selected randomly. Based on experimental results, this scheme offers better choice than other schemes, because it provides a balance between greediness and randomness.
4.2. Tabu Search Approach

Tabu Search (TS) is one of the most popular iterative heuristics and there have been many efforts involving application of TS to the partitioning problem (Hammami, 2003). Tabu search starts from an initial feasible solution and carries out its search by making a sequence of random moves or perturbations. A Tabu list is maintained which stores the attributes of a number of previous moves. This list prevents taking the search process back to recently visited states (Sait, 1999). In each iteration, a subset of neighbor solutions is generated by making a certain number of moves and the best move (the move that resulted in the best solution) is accepted, provided it is not in the Tabu list. Otherwise, if the said move is in the Tabu list, it is accepted only if it leads to a solution better than the best solution found so far (aspiration criterion). Thus, the aspiration criterion can override the Tabu list restrictions. The solution encoding and initialization steps are similar to those described above for GA. In each iteration, we generate a number of neighbor solutions by making perturbations as follows: two cells are selected randomly, then their locations are interchanged. The number of neighbor solutions generated in each iteration is dependent on circuit size. The characteristic of the move that we keep in Tabu list is the indices of the cells involved in interchange. The size of Tabu list is taken also depending on the circuit size i.e., 10% of the total number of cells. In this work, short term memory element was used for TS implementation. The aspiration criterion used is as follows: if the current best solution is the best seen so far i.e., better than the global best, then it is accepted and Tabu restriction is overridden.

5. Experimental results

Table I shows the details of the ISCAS-85/89 circuits which are used as benchmarks. The results obtained from GA and TS are compared in terms of the overall quality of the best solution and run time in Table II. $P(sp)$ represents the cost due to power, that is the sum of the switching probabilities of all the cut nets; it has no unit since switching probability has no unit. $D(ps)$ is the delay of the most critical path in picoseconds (ps), $\mu(x)$ is the membership value, $Best(s)$ is the execution time in seconds for reaching the best solution. In both TS and GA each run consists of 10,000 iterations or generations.

The results shown are the best case results obtained after the tuning of various algorithmic parameters of GA and TS (only one time for all circuits). The details of these algorithmic parameters and their fine
tuning are discussed in (Sait, 2003). In the case of GA the population size is 10, the crossover used is simple with a probability equal to 0.99, while for mutation it is 0.01. In case of TS, the size of neighborhood is also 10, while Tabu list size is chosen to be 0.1 the size of the circuit. From the results, it is clear that TS performed better than GA for most of the circuits in terms of the quality of the best solution as well as run time. In terms of quality of solution, the advantage of TS over GA gets emphasized when the size of the circuit gets bigger. Also the execution time of GA increases significantly with the increase in circuit complexity. The higher execution time of GA can be attributed to its parallel nature i.e., a population of solutions is to be processed in each generation. Fig. 6 shows the performance of TS and GA against execution time in seconds for the circuit S13207. It is clearly noticed that TS is by far faster and of better final quality. Fig. 7 and Fig. 8 show the trend of solution’s (a) cutset, (b) delay, (c) power, (d) balance, (e) average fitness, (f) best fitness for GA and TS respectively, in case of circuit S13207. It is clear from the shown plots that TS achieves a membership that is better than that reached by GA.

Comparing SimE to GA and TS, as can be seen from Table 1, SimE achieves significantly better results for most of the circuits. It achieves a higher fitness value in 12 of the 15 circuits than GA or TS. For the circuits S3330, S5378, S9234, and S15850, the values achieved for delay, cutset, and power are significantly better. Figure 6 shows the performance of SimE versus TS and GA with respect to time for the circuit S13207. Clearly, SimE achieves a higher quality solution in much less time. Figure 9 shows the trend of solution (a) cutset, (b) delay, (c) power, (d) cells selected, (e) average cells goodness, and (f) best fitness for the circuit S13207. As can be observed, the cutset, delay, and power reduce at a much faster rate than TS and GA. Also the number of cells selected becomes smaller which indicates that the cells are getting better assigned as the algorithm progresses.

We also made a comparison of Power-only SimE and Multiobjective SimE with a modified version of the FM (Fiduccia, 1982) algorithm, named PowerFM. The details and results for PowerFM can be found in (Sait, 2003). Table III shows a comparison of results between the two SimEs and PowerFM. \(P_{avg} \) refers to the average power of the results obtained from 100 runs of the PowerFM. The notation in Table III is as follows: \(D(ps) \) stands for Delay and it is measured in pico-seconds, \(Cut \) is the number of nets cut, \(P(sp) \) is the power dissipation measured in terms of switching probability, \(T(s) \) is the total time taken by the whole run for PowerFM and SimE respectively.

From Table III it can be seen that Multiobjective SimE performs better than PowerFM in terms of delay \(D(ps) \) and the number of net
Figure 6. Multiobjective SimE, GA and TS performance for the circuit S13207 against time.

Figure 7. Performance of GA for the circuit s13207.
Figure 8. Performance of TS for the circuit s13207.

Figure 9. Multiobjective SimE performance for the circuit S13207.
cuts \textit{Cut} for all benchmark circuits. But PowerFM performs better in terms of power dissipation $P(sp)$ up to circuit S2081 when compared to Multiobjective SimE. For larger sized circuits (from S3330 to S15850) Multiobjective SimE outperforms PowerFM in terms of all three, delay, number of net cuts, and power dissipation. It can also be seen that the Power–only SimE performs well for power when compared to Multiobjective SimE. Power-only SimE shows poor performance for when compared to PowerFM up to circuit S2081. Power-only SimE shows better performance for larger sized circuits (from S3330 to S15850) when compared to PowerFM.

6. Conclusions

In this paper, iterative algorithms for multiobjective optimization namely GA, TS and SimE for VLSI partitioning were proposed. Fuzzy logic is used to integrate the objectives namely power, delay, cutset and balance into a scalar cost value. Fuzzy goodness functions where developed for SimE. It is clear from the results that TS outperforms GA in terms of final solution costs and execution time, and the difference gets higher with the increase in circuit complexity. The superiority of TS can be attributed to its directed search approach and its higher greediness tendency as compared with GA to obtain a good solution. For most of the circuits, SimE achieved significantly better results than TS and GA. For the large circuits, the superiority of SimE in achieving higher quality solutions is highlighted. This is attributed to the smart strategy of the algorithm in selecting badly assigned cells and attempting to assign them in better partitions.

Further, we compared the results of iterative heuristics with the modified FM algorithm, named PowerFM, which targets power optimization. It was observed that SimE performs better than PowerFM in terms of delay $D(ps)$ and the number of net cuts Cut for all benchmark circuits. But PowerFM performs better in terms of power dissipation $P(sp)$ up to circuit S2081 when compared to SimE. For larger sized circuits (from S3330 to S15850) SimE outperforms PowerFM in terms of all three, delay, number of net cuts, and power dissipation.

Acknowledgment

The authors thank King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for support, under Project code COE/ITERATE/221. Special thanks to Abdul Subhan for assisting us in authoring the paper.
Table I. The ISCAS-85/89 benchmark circuits details.

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of cells</th>
<th>Number of nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>S298</td>
<td>136</td>
<td>130</td>
</tr>
<tr>
<td>S386</td>
<td>172</td>
<td>165</td>
</tr>
<tr>
<td>S641</td>
<td>433</td>
<td>410</td>
</tr>
<tr>
<td>S832</td>
<td>310</td>
<td>291</td>
</tr>
<tr>
<td>S953</td>
<td>440</td>
<td>417</td>
</tr>
<tr>
<td>S1196</td>
<td>561</td>
<td>547</td>
</tr>
<tr>
<td>S1238</td>
<td>540</td>
<td>526</td>
</tr>
<tr>
<td>S1488</td>
<td>667</td>
<td>648</td>
</tr>
<tr>
<td>S1494</td>
<td>661</td>
<td>642</td>
</tr>
<tr>
<td>S2081</td>
<td>122</td>
<td>121</td>
</tr>
<tr>
<td>S3330</td>
<td>1962</td>
<td>1888</td>
</tr>
<tr>
<td>S5378</td>
<td>2994</td>
<td>2944</td>
</tr>
<tr>
<td>S9234</td>
<td>5845</td>
<td>5822</td>
</tr>
<tr>
<td>S13207</td>
<td>8652</td>
<td>8530</td>
</tr>
<tr>
<td>S15850</td>
<td>10384</td>
<td>10296</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Simulated Evolution SimE</th>
<th>Genetic Algorithm</th>
<th>Tabu Search</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average $\mu(x)$ 0.776</td>
<td>Average $\mu(x)$ 0.874</td>
<td>Average $\mu(x)$ 0.874</td>
</tr>
<tr>
<td>S298</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S386</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S641</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S832</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S953</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S1196</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S1238</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S1488</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S1494</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S2081</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S3330</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S5378</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S9234</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S13207</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>S15850</td>
<td>1.16</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Average $\mu(x)$ 0.876</td>
<td>Average $\mu(x)$ 0.736</td>
<td>Average $\mu(x)$ 0.774</td>
</tr>
</tbody>
</table>

Table II. Comparison between SimE, GA and TS.
Table III. Comparison between Power-only SimE, Multiobjective SimE, and PowerFM.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>S298</th>
<th>301</th>
<th>21</th>
<th>738</th>
<th>97</th>
<th>26</th>
<th>197</th>
<th>11</th>
<th>837</th>
<th>102</th>
<th>62</th>
<th>301</th>
<th>20</th>
<th>732</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>98</td>
<td>55</td>
<td>17</td>
<td>878</td>
<td>103</td>
<td>5</td>
<td>962</td>
<td>4</td>
<td>40</td>
<td>197</td>
<td>1</td>
<td>347</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Multiobjective SimE</td>
<td>21</td>
<td>83</td>
<td>103</td>
<td>5</td>
<td>962</td>
<td>4</td>
<td>40</td>
<td>197</td>
<td>1</td>
<td>347</td>
<td>20</td>
<td>44</td>
<td>98</td>
<td>55</td>
</tr>
<tr>
<td>PowerFM</td>
<td>55</td>
<td>17</td>
<td>21</td>
<td>83</td>
<td>103</td>
<td>5</td>
<td>962</td>
<td>4</td>
<td>40</td>
<td>197</td>
<td>1</td>
<td>347</td>
<td>20</td>
<td>44</td>
</tr>
</tbody>
</table>

Note: The table compares the performance of different algorithms in terms of various metrics. The columns represent different metrics such as Power, Multiobjective, and PowerFM. The rows correspond to different benchmarks.

