U-Model Based Adaptive Tracking Scheme For Unknown MIMO Bilinear Systems

Azhar, ASS; Al-Sunni, FM; Shafiq, M

IEEE, 2006 1ST IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS,
VOLS 1-3; pp: 1546-1550; Vol: ##

King Fahd University of Petroleum & Minerals

http://www.kfupm.edu.sa

Summary

Bilinear systems are attractive candidates for many dynamical processes, since they allow a significantly larger class of behaviour than linear systems, yet retain a rich theory which is closely related to the familiar theory of linear systems. A new technique for the control of unknown MIMO bilinear systems is introduced. The scheme is based on the U-model with identification based on Radial Basis Functions neural networks which is known for mapping any nonlinear function. U-Model is a control oriented model used to represent a wide range of non-linear discrete time dynamic plants. The proposed tracking scheme is presented and verified using simulation examples.

References:

1. BRUNI C, 1974, IEEE T AUTOMAT CONTR, V19, P334
3. CHEN MS, 2002, IEE P CONTROL THEORY, V149
4. CHEN MS, 2003, INT J ROBUST NONLIN, V13, P1079
5. CHIN MS, 1998, P AM CONTR C PHIL PE
7. FORTUNA L, 2001, IEEE T NEURAL NETWOR, V122, P318
8. GUTMAN PO, 1981, IEEE T AC, V26, P917
9. HAYKIN S, 1999, NEURAL NETWORKS COMP, V2
14. MORARI M, 1997, ROBUST PROCESS CONTR

© Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
15. QUINN JP, 1980, J MATH ANAL APPL, V75, P66
17. SHAFIQ M, 2004, 12 MED C CONTR AUT T
20. ZHU QM, 2002, P I MECH ENG I-J SYS, V216, P467

For pre-prints please write to: abstracts@kfupm.edu.sa