
Interconnect-Efficient LDPC Code Design

Aiman El-Maleh, Basil Arkasosy, M. Adnan Al-Andalusi

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

aimane@ccse.kfupm.edu.sa, basil_arkasosy@hotmail.com, andalusi@kfupm.edu.sa

Abstract—In this paper, we present a new, hardware-oriented
technique for designing Low Density Parity Check (LDPC)
codes. The technique targets to achieve an interconnect-
efficient architecture that reduces the area and delay of the
decoder implementation while maintaining good error
correction performance. With a fully parallel implementation
of the LDPC decoder, the proposed design assumes a
constraint on the interconnect wire length which has a direct
impact on the maximum signal delay and power dissipation.
Furthermore, this design approach is shown to lower
interconnect routing congestion, and hence reduce the chip
area and maximize chip utilization.

I. INTRODUCTION
orward Error Correcting (FEC) codes are an essential
component of modern state-of-the-art digital
communication and storage systems. In many of the

recently developed standards, FEC codes play a crucial role
for improving the error performance capability of digital
transmission over noisy interference-impaired
communication channels.

The two leading families of FEC codes are widely
considered to be Turbo Codes [1] and Low Density Parity
Check codes (LDPCs) [2]. Both families demonstrate
performance very close to the information-theoretic bounds
predicted by Shannon theory, while at the same time having
the distinct advantage of efficient, near-optimal iterative
decoding.

Recently, the trend in error correcting code
implementation is focused on using custom chips for codecs.
This is motivated by the need to maximize performance and
increase codec throughput. This is particularly true for
coding schemes which can use the parallelism offered by
hardware: by using more devices, frequency can be reduced,
and voltage scaled, thereby achieving the same throughput
for less power [3]. In this regard, the sum-product iterative
algorithm used in LDPC decoding is found to be amenable to
high parallelization, thus offering a clear advantage over
turbo decoders that use more sequential processing [4], and
hence, don’t fully benefit from hardware implementations.
Recently, practical implementations of LDPC codecs with
high throughput levels were reported [4, 5].

Most of LDPC code designs are based on random code
generation which may result in long interconnect wires.
Long interconnect wires increase the load capacitance
resulting in slower designs and higher power dissipation. In
addition, random code design results in interconnect routing
congestion which reduces the chip area utilization. In [5],
based on a parallel implementation of LDPC codes, it is
reported that routing congestion has resulted in 50% chip
area utilization and that most of the power dissipation is due
to the switching activity of the long interconnect wires. In
[6], an algorithm is proposed to generate LDPC codes with a
bound on the ‘height’ of the VLSI layout of the decoder. It
is shown that this approach limits the routing congestion
with little impact on error correcting capability of the code.

In this paper, we present a new technique to design
LDPC codes that are interconnect-efficient, which translates
into substantial reduction in chip area and decoding latency.
These advantages are also achieved while maintaining good
error correction performance by constraining the girth
(minimum loop size) of the codes’ bipartite graph, as will be
discussed in the subsequent sections.

II. LDPC CODES
LDPC codes have been recently re-discovered and are

undergoing very active research after their original
introduction by Gallager in 1962 [3]. A tutorial review of the
work of Gallager that highlights the powerful, capacity-
achieving performance of LDPC codes can be found in [7].
LDPC codes are a type of linear block codes, and can be
decoded by an efficient, linear-complexity decoding
algorithm known as the belief propagation (or sum-product)
algorithm, and shown to achieve near optimal performance
approaching that of maximum likelihood decoding (when the
code is cycle-free, as will be described next) [7].

An LDPC parity check matrix H represents the parity
equations in a linear form, where any given codeword c
satisfies the set of parity equations H c = 0. Each column in
the matrix represents a codeword bit while each row
represents a parity check equation. The 1’s in this matrix
indicate a relationship between the column and the row that
contains this 1. For example, if a 1 exists in the ith row and
the jth column, then the jth codeword bit is contained in the

F

mailto:aimane@ccse.kfupm.edu.sa
mailto:basil_arkasosy@hotmail.com
mailto:andalusi@kfupm.edu.sa

ith parity check equation. LDPC codes can be classified as
regular or irregular. The associated parity check matrix is
said to be (Wc,Wr)-regular Parity Check when each parity
check code contains the same number of codeword bits, Wr,
and each codeword bit is contained in the same number of
parity check equations, Wc.

LDPC codes can also be graphically represented by a
special type of graphs called Tanner Graphs. A Tanner
Graph is a bipartite graph that contains two types of vertices
(or nodes): Bit Vertices and Check Vertices, with edges
connecting them. Rows in the LDPC parity check matrix are
represented by Check Vertices and columns are represented
by Bit Vertices.

 In the parity check matrix, the presence of 1’s indicates
the existence of an edge (or connection) between a given Bit
Vertex and Check Vertex. Another parameter of interest is
the code rate defined as the ratio of the number of
information bits to the total number of bits in the codeword.
This is also given by the ratio of the number of check nodes
to the number of bit nodes in the code’s Tanner graph.

III. PROPOSED INTERCONNECT-EFFICIENT LDPC
CODES DESIGN

It is known that randomly designed LDPC codes achieve
good error correction performance. In this paper, different
LDPC code constructions are investigated where some are
purely random, while others are designed with a specified
degree of randomness that is confined to a limited area of
parity matrix (or code graph). The different scenarios that
have been used to design these codes are described in the
following sections.

A. Cycles-Free LDPC Codes
A cycle or a loop of size K in a given graph is a closed

path that is composed of K edges that visit a given vertex
more than once, while visiting each edge in this path only
once. Since we are dealing with a Bipartite Graph with bit
nodes connecting only to check nodes, the possible loops are
of even sizes, starting by four.

Previous studies have demonstrated that the existence of
loops in LDPC codes decreases their efficiency [7]. Thus, we
have considered the design of LDPC codes that are free from
loops (or of reduced loops count) of different sizes and tested
the performance of these codes.

Our objective in the first set of experiments was to design
(3,6)-regular LDPC codes that are four-loops free. The rate
of the graph was 1/2 of 1024 bit nodes. Connections between
bit nodes and check nodes are made randomly as long as no
4-loops are created. The algorithm used to detect if a four
loop will result after making a connection is given in Fig. 1.
Similarly, in the second set of experiments we considered the
design of (3,6)-regular LDPC codes that are six-loops free.
The algorithm used to detect if a six loop will result after
making a connection is given in Fig. 2. The third set of
experiments was to design (3,6)-regular LDPC codes that are

eight-loops free. We found that it is not possible to generate
a (3,6)-regular eight-loops free LDPC codes with 1024
variable nodes, and a rate of 1/2. This is consistent with the
results reported in [8]. Thus, we considered the design of
(3,6)-regular LDPC codes that are four- and six-loops free
and have minimal eight loops. The algorithm used for
detecting an eight loop is similar to the six-loop detection
algorithm with two more steps.

Checking if an edge between the ith bit node and the jth check
node creates a four loop:
1. Find the set of all bit nodes K to which the jth check

node is connected.
2. For each bit node k in K ≠ i), find all the check (k

nodes L that are connected to that node.
3. For each check node l in L (l j), find all the bit nodes ≠

M that are connected to that node.
4. If node i is in M, then a four loop is detected and the

edge should be removed.

Fig. 1 Four-loop detection algorithm.

Checking if an edge between the ith bit node and the jth check
node creates a six loop:
1. Find the set of all bit nodes K to which the jth check

node is connected.
2. For each bit node k in K ≠ i), find all the check (k

nodes L that are connected to that node.
3. For each check node l in L (l j), find all the bit nodes ≠

M that are connected to that node.
4. For each bit node m in M (m {i , k}), find all the ∉

check nodes N that are connected to that node.
5. For each check node n in N (n ∉ {j , l}), find all the bit

nodes O that are connected to that node.
6. If node i is in O, then a six loop is detected and the edge

should be removed.

Fig. 2 Six-loop detection algorithm.

B. Area-Constrained LDPC Codes
The design of LDPC codes that are free from loops of

different sizes showed good error correcting performance
results. However, due to the random connections between
nodes, this might lead to an inefficient design, in terms of the
area used and the delay.

As stated earlier, our objective in this work is to design
LDPC codes that result in interconnect efficient decoder
implementations while maintaining a good performance.
This is achieved by the design of LDPC codes with a
constraint on the interconnect wire length. The approach that
we used in this work is to assume that bit nodes and check
nodes are laid out in a two-dimensional structure as shown in
Fig. 3. Then, with a given requirement on the degree of bit
nodes, connections between bit nodes and check nodes will
be constrained within a given window of a specified number
of rows and columns. This guarantees that the wire length
interconnecting a bit node with check nodes is bounded by a

maximum length. For example, as shown in the previous
figure for a ½ rate 32-bit code, bit nodes 18 and 19 with the
given constraint window of two rows and three columns can
only connect to check nodes 4, 5, 6, 8, 9, and 10 bounded
by the specified window. In addition, the code will be
designed taking into account the girth of the graph i.e., it will
be ensured that the designed code has no cycles of a
predetermined length e.g. 4. Connections between bit nodes
and check nodes will be done randomly as long as they do
not violate the specified constraints. We discuss next how to
determine the check nodes bounded by a window constraint
for each bit node.

Fig. 3 Layout representation of a Tanner graph.

Considering the assumed two-dimensional layout of bit

nodes and check nodes, each check node has two logical bit
nodes associated with it. In other words, we can consider that
for each bit node, there is an assigned check node, and every
two bit nodes have a common assigned check node.

Given a layout of N x M bit nodes, N x M/2 check nodes
and a window constraint (R, C), we need to determine the set
of possible check nodes that the ith bit node can connect to.
It should be observed that R is the number of rows of the
given constraint window and should be an even number
including the row of the assigned check node. Furthermore,
C is the number of columns of the given constraint window
and should be an odd number, including the column of the
assigned check node.

The set of check nodes to which the ith bit node can
connect to is determined by the algorithm given in Fig. 4. A
similar algorithm can be used to determine the set of bit
nodes to which the jth check node can connect to. In this
work, we consider the design of LDPC codes with 32x32
layout of bit nodes and 32x16 layout of check nodes. A
constraint window (R, C) =(16, 15) is assumed..

Limiting the area of connections to these dimensions will
guarantee that the wire length does not exceed the length of
eight rows and eight columns of check nodes.

Row#= ⎥⎦
⎥

⎢⎣
⎢

M

i
; Column #= i mod M; Vertical Domain=

2

R

Assigned check node = ⎥⎦
⎥

⎢⎣
⎢ +

2

#*# MRowColumn
; t = 1;

for each t ≤ Vertical Domain
{
 if (assigned check node + (t-1) * (M/2)) < number of check nodes Then
 assigned check node = assigned check node + ((t -1)* (M/2))
 Add_Horizontal(assigned check node , Row# + (t-1))
 if (assigned check node – t * (M/2))≥ 0 Then
 assigned check node = assigned check node – (t * (M/2))
 Add_Horizontal(assigned check node , Row# - t)
 t = t + 1;
}

Add_Horizontal (assigned check node , Row#)
{

Horizontal Domain =
2

1−C
; add the assigned check node; k = 1;

 for each k ≤ Horizontal Domain {
 if (assigned check node + k) < ((M/2) * (Row# +1)) Then
 add the check node whose number is “assigned check node + k”
 if (assigned check node - k) ≥ ((M/2) * Row#) Then
 add the check node whose number is “assigned check node - k”
 k = k + 1;
 }
}

Fig. 4 Set of check nodes for a given bit node.

IV. EXPERIMETAL RESULTS
We have generated randomly a set of five LDPC codes for
each criteria considered i.e. 4-loop free (4L), 6-loop free
(6L), minimized 8-loop (M8L), and window constrained
minimized 8-loop (WM8L). Then, we have selected the
best performing code in each category for comparison
purposes. Our comparison is based on the frame error rate
(FER), the loop count, the area, delay and routing
congestion for the implemented LDPC decoders. FER
performance was obtained using matlab simulations at
different SNR points with stopping criteria of 200 frame
errors at SNR≤2 and 200,000 code words for SNR>2.
Iterative decoding was performed for 64 iterations.

Hardware comparisons of the different LDPC codes were
made based on a generic VHDL model that models a parallel
implementation of the LDPC decoder for any given H
matrix. The functions of the check nodes and variables nodes
were assumed to be just a dummy single gate to simplify the
design as the emphasis here is on interconnect complexity.
Synthesis is performed using Xilinx synthesis tools mapping
the design on Xilinx Spartan3 XC3S5000-fg900 FPGA
optimized for area. Fig. 5 shows the FER of the four
compared LDPC codes and Table 1 summarizes the loop
analysis and synthesis results. As can be seen, the FER
performance of the four LDPC codes is very close with a

noticeable difference at SNR=2.75. Apparently, the M8L
LDPC code is achieving the best performance and the
WM8L has a lower performance than M8L by around 0.1
dB. Thus, the performance impact of the window constrained
LDPC code, WM8L, is considered small. As shown in Table
1, the WM8L LDPC code achieves the smallest delay and
requires less FPGA slices, demonstrating the impact of
constraining the interconnect wire length in the LDPC
decoder. To further illustrate the impact of the window
constrained LDPC code design, we show in Fig. 6 & 7
snapshots of the post place and route synthesis of the LDPC
decoders for M8L and WM8L, respectively. It is noticeable
from the figures that the routing congestion for WM8L
LDPC decoder is less than that for M8L LDPC decoder.

TABLE 1 Loop count and synthesis results.

Synthesis No. of loops LDPC
Code

Structure 4 6 8
Slices used

out of 33,280
Delay

ns
4L 0 172 1273 2,562 14.191
6L 0 0 1300 2,562 14.336

M8L 0 0 226 2,562 13.096
WM8L 0 0 870 2,527 11.879

V. CONCLUSIONS
In this work, we have investigated the design of

interconnect-efficient LDPC codes that reduce the area and
delay of the decoder implementation while maintaining good
error correction performance. We have demonstrated that it
is possible to deign LDPC codes that are interconnect
efficient with small performance impact compared to the
randomly unconstrained generated LDPC codes.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of King
Fahd University of Petroleum & Minerals in this work.

REFERENCES
[1] M. Bossert. Channel Coding for Telecommunications. John Wiley and
Sons, Aug. 1999.
[2] R. G. Gallager, Low Density Parity Check Codes, Cambridge, MA:
MIT Press, 1963
[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power
CMOS Digital Design,” IEEE J. Solid-State Circuits, pp. 473-484, Apr.
1992.
[4] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “VLSI
Architectures for Iterative Decoders in Magnetic Recording Channels,”
IEEE Trans. Magnetics, pp. 748-755, Jan. 2001.
[5] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, Rate-
1/2 Low-Density Parity-Check Decoder,” IEEE J. Solid-State Circuits, pp.
404-412, Mar. 2002.
[6] M. Mohiyuddin, A. Prakash, A. Aziz and W. Wolf, “Synthesizing
Interconnect Efficient Low Density Parity Check Codes,” Design
Automation Conf., pp. 488-491, 2004.
[7] D.J.C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, pp.399-431, March 1999.

[8] J. A. McGowan and R. C. Williamson, “Loop removal from LDPC
codes”, Proc. IEEE Information Theory Workshop, pp. 230-233, 2003.

0.00001

0.0001

0.001

0.01

0.1

1
0 0.5 1 1.5 2 2.5 3

4L

6L

M8L

WM8L

Fig. 5 FER Comparison of LDPC codes.

Fig. 6 Post place and route snapshot of synthesized M8L
LDPC code.

Fig. 7 Post place and route snapshot of synthesized WM8L
LDPC code.

	I. Introduction
	II. LDPC CODES
	III. Proposed INTERCONNECT-EFFICIENT LDPC CODES DESIGN
	A. Cycles-Free LDPC Codes
	B. Area-Constrained LDPC Codes
	IV. EXPERIMETAL RESULTS
	V. conclusions
	References

