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Abstract—In this paper, we present a new, hardware-oriented 
technique for designing Low Density Parity Check (LDPC) 
codes. The technique targets to achieve an interconnect-
efficient architecture that reduces the area and delay of the 
decoder implementation while maintaining good error 
correction performance. With a fully parallel implementation 
of the LDPC decoder, the proposed design assumes a 
constraint on the interconnect wire length which has a direct 
impact on the maximum signal delay and power dissipation. 
Furthermore, this design approach is shown to lower 
interconnect routing congestion, and hence reduce the chip 
area and maximize chip utilization.  

I. INTRODUCTION  
orward Error Correcting (FEC) codes are an essential 
component of modern state-of-the-art digital 
communication and storage systems. In many of the 

recently developed standards, FEC codes play a crucial role 
for improving the error performance capability of digital 
transmission over noisy interference-impaired 
communication channels.  

The two leading families of FEC codes are widely 
considered to be Turbo Codes [1] and Low Density Parity 
Check codes (LDPCs) [2]. Both families demonstrate 
performance very close to the information-theoretic bounds 
predicted by Shannon theory, while at the same time having 
the distinct advantage of efficient, near-optimal iterative 
decoding.  

Recently, the trend in error correcting code 
implementation is focused on using custom chips for codecs.  
This is motivated by the need to maximize performance and 
increase codec throughput. This is particularly true for 
coding schemes which can use the parallelism offered by 
hardware: by using more devices, frequency can be reduced, 
and voltage scaled, thereby achieving the same throughput 
for less power [3]. In this regard, the sum-product iterative 
algorithm used in LDPC decoding is found to be amenable to 
high parallelization, thus offering a clear advantage over 
turbo decoders that use more sequential processing [4], and 
hence, don’t fully benefit from hardware implementations. 
Recently, practical implementations of LDPC codecs with 
high throughput levels were reported [4, 5].  

Most of LDPC code designs are based on random code 
generation which may result in long interconnect wires. 
Long interconnect wires increase the load capacitance 
resulting in slower designs and higher power dissipation. In 
addition, random code design results in interconnect routing 
congestion which reduces the chip area utilization. In [5], 
based on a parallel implementation of LDPC codes, it is 
reported that routing congestion has resulted in 50% chip 
area utilization and that most of the power dissipation is due 
to the switching activity of the long interconnect wires. In 
[6], an algorithm is proposed to generate LDPC codes with a 
bound on the ‘height’ of the VLSI layout of the decoder. It 
is shown that this approach limits the routing congestion 
with little impact on error correcting capability of the code.   

In this paper, we present a new technique to design 
LDPC codes that are interconnect-efficient, which translates 
into substantial reduction in chip area and decoding latency. 
These advantages are also achieved while maintaining good 
error correction performance by constraining the girth 
(minimum loop size) of the codes’ bipartite graph, as will be 
discussed in the subsequent sections.   

II. LDPC CODES 
LDPC codes have been recently re-discovered and are 

undergoing very active research after their original 
introduction by Gallager in 1962 [3]. A tutorial review of the 
work of Gallager that highlights the powerful, capacity-
achieving performance of LDPC codes can be found in [7]. 
LDPC codes are a type of linear block codes, and can be 
decoded by an efficient, linear-complexity decoding 
algorithm known as the belief propagation (or sum-product) 
algorithm, and shown to achieve near optimal performance 
approaching that of maximum likelihood decoding (when the 
code is cycle-free, as will be described next) [7].  

An LDPC parity check matrix H represents the parity 
equations in a linear form, where any given codeword c 
satisfies the set of parity equations H c = 0.  Each column in 
the matrix represents a codeword bit while each row 
represents a parity check equation. The 1’s in this matrix 
indicate a relationship between the column and the row that 
contains this 1. For example, if a 1 exists in the ith row and 
the jth column, then the jth codeword bit is contained in the 
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ith parity check equation. LDPC codes can be classified as 
regular or irregular. The associated parity check matrix is 
said to be (Wc,Wr)-regular Parity Check when each parity 
check code contains the same number of codeword bits, Wr, 
and each codeword bit is contained in the same number of 
parity check equations, Wc. 

LDPC codes can also be graphically represented by a 
special type of graphs called Tanner Graphs. A Tanner 
Graph is a bipartite graph that contains two types of vertices 
(or nodes): Bit Vertices and Check Vertices, with edges 
connecting them. Rows in the LDPC parity check matrix are 
represented by Check Vertices and columns are represented 
by Bit Vertices. 

  In the parity check matrix, the presence of 1’s indicates 
the existence of an edge (or connection) between a given Bit 
Vertex and Check Vertex. Another parameter of interest is 
the code rate defined as the ratio of the number of 
information bits to the total number of bits in the codeword.  
This is also given by the ratio of the number of check nodes 
to the number of bit nodes in the code’s Tanner graph.    

III. PROPOSED INTERCONNECT-EFFICIENT LDPC 
CODES DESIGN  

It is known that randomly designed LDPC codes achieve 
good error correction performance. In this paper, different 
LDPC code constructions are investigated where some are 
purely random, while others are designed with a specified 
degree of randomness that is confined to a limited area of 
parity matrix (or code graph). The different scenarios that 
have been used to design these codes are described in the 
following sections. 

A. Cycles-Free LDPC Codes 
A cycle or a loop of size K in a given graph is a closed 

path that is composed of K edges that visit a given vertex 
more than once, while visiting each edge in this path only 
once. Since we are dealing with a Bipartite Graph with bit 
nodes connecting only to check nodes, the possible loops are 
of even sizes, starting by four.  

Previous studies have demonstrated that the existence of 
loops in LDPC codes decreases their efficiency [7]. Thus, we 
have considered the design of LDPC codes that are free from 
loops (or of reduced loops count) of different sizes and tested 
the performance of these codes. 

Our objective in the first set of experiments was to design 
(3,6)-regular LDPC codes that are four-loops free. The rate 
of the graph was 1/2 of 1024 bit nodes. Connections between 
bit nodes and check nodes are made randomly as long as no 
4-loops are created. The algorithm used to detect if a four 
loop will result after making a connection is given in Fig. 1.  
Similarly, in the second set of experiments we considered the 
design of (3,6)-regular LDPC codes that are six-loops free.  
The algorithm used to detect if a six loop will result after 
making a connection is given in Fig. 2. The third set of 
experiments was to design (3,6)-regular LDPC codes that are 

eight-loops free. We found that it is not possible to generate 
a (3,6)-regular eight-loops free LDPC codes with 1024 
variable nodes, and a rate of 1/2. This is consistent with the 
results reported in [8]. Thus, we considered the design of 
(3,6)-regular LDPC codes that are four- and six-loops free 
and have minimal eight loops. The algorithm used for 
detecting an eight loop is similar to the six-loop detection 
algorithm with two more steps.  

 

Checking if an edge between the ith bit node and the jth check 
node creates a four loop: 
1. Find the set of all bit nodes K to which the jth check 

node is connected. 
2. For each bit node k in K  ≠ i), find all the check (k

nodes L that are connected to that node.  
3. For each check node l in L (l j), find all the bit nodes ≠

M that are connected to that node. 
4. If node i is in M, then a four loop is detected and the 

edge should be removed. 

Fig. 1 Four-loop detection algorithm. 

 
Checking if an edge between the ith bit node and the jth check 
node creates a six loop: 
1. Find the set of all bit nodes K to which the jth check 

node is connected. 
2. For each bit node k in K  ≠ i), find all the check (k

nodes L that are connected to that node.   
3. For each check node l in L (l  j), find all the bit nodes ≠

M that are connected to that node. 
4. For each bit node m in M (m {i , k}), find all the ∉

check nodes N that are connected to that node.  
5. For each check node n in N (n ∉  {j , l}), find all the bit 

nodes O that are connected to that node. 
6. If node i is in O, then a six loop is detected and the edge 

should be removed. 

Fig. 2 Six-loop detection algorithm. 

B. Area-Constrained LDPC Codes 
The design of LDPC codes that are free from loops of 

different sizes showed good error correcting performance 
results. However, due to the random connections between 
nodes, this might lead to an inefficient design, in terms of the 
area used and the delay.  

As stated earlier, our objective in this work is to design 
LDPC codes that result in interconnect efficient decoder 
implementations while maintaining a good performance. 
This is achieved by the design of LDPC codes with a 
constraint on the interconnect wire length. The approach that 
we used in this work is to assume that bit nodes and check 
nodes are laid out in a two-dimensional structure as shown in 
Fig. 3. Then, with a given requirement on the degree of bit 
nodes, connections between bit nodes and check nodes will 
be constrained within a given window of a specified number 
of rows and columns. This guarantees that the wire length 
interconnecting a bit node with check nodes is bounded by a 



maximum length. For example, as shown in the previous 
figure  for a ½ rate 32-bit code, bit nodes 18 and 19 with the 
given constraint window of two rows and three columns can 
only connect to check nodes   4, 5, 6, 8, 9, and 10 bounded 
by the specified window.  In addition, the code will be 
designed taking into account the girth of the graph i.e., it will 
be ensured that the designed code has no cycles of a 
predetermined length e.g. 4. Connections between bit nodes 
and check nodes will be done randomly as long as they do 
not violate the specified constraints. We discuss next how to 
determine the check nodes bounded by a window constraint 
for each bit node.  

 

Fig. 3 Layout representation of a Tanner graph. 

 
Considering the assumed two-dimensional layout of bit 

nodes and check nodes, each check node has two logical bit 
nodes associated with it. In other words, we can consider that 
for each bit node, there is an assigned check node, and every 
two bit nodes have a common assigned check node.  

Given a layout of N x M bit nodes, N x M/2 check nodes 
and a window constraint (R, C), we need to determine the set 
of possible check nodes that the ith bit node can connect to. 
It should be observed that R is the number of rows of the 
given constraint window and should be an even number 
including the row of the assigned check node. Furthermore, 
C is the number of columns of the given constraint window 
and should be an odd number, including the column of the 
assigned check node. 

The set of check nodes to which the ith bit node can 
connect to is determined by the algorithm given in Fig. 4. A 
similar algorithm can be used to determine the set of bit 
nodes to which the jth check node can connect to. In this 
work, we consider the design of LDPC codes with 32x32 
layout of bit nodes and 32x16 layout of check nodes. A 
constraint window (R, C) =(16, 15) is assumed..  

Limiting the area of connections to these dimensions will 
guarantee that the wire length does not exceed the length of 
eight rows and eight columns of check nodes. 
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;    t = 1; 

for each t  ≤  Vertical Domain 
{ 
  if (assigned check node + (t-1) * (M/2)) < number of check nodes Then 
        assigned check node = assigned check node + ((t -1)* (M/2)) 
       Add_Horizontal(assigned check node , Row# +  (t-1)   ) 
  if (assigned check node – t * (M/2))≥ 0 Then 
        assigned check node =  assigned check node – (t  * (M/2)) 
        Add_Horizontal(assigned check node , Row# - t  ) 
  t = t + 1; 
} 
 
Add_Horizontal (assigned check node , Row#) 
{ 

Horizontal Domain = 
2

1−C
;      add the assigned check node;  k = 1; 

  for each k  ≤  Horizontal Domain { 
  if (assigned check node + k) < ((M/2) * (Row# +1)) Then 
      add the check node whose number is “assigned check node + k” 
  if (assigned check node - k) ≥ ((M/2) * Row#) Then 
      add the check node whose number is “assigned check node - k” 
  k = k + 1; 
  } 
} 

Fig. 4 Set of check nodes for a given bit node.  

IV. EXPERIMETAL RESULTS 
We have generated randomly a set of five LDPC codes for 
each criteria considered i.e. 4-loop free (4L), 6-loop free 
(6L), minimized 8-loop (M8L), and window constrained 
minimized 8-loop (WM8L).  Then, we have selected the 
best performing code in each category for comparison 
purposes. Our comparison is based on the frame error rate 
(FER), the loop count, the area, delay and routing 
congestion for the implemented LDPC decoders. FER 
performance was obtained using matlab simulations at 
different SNR points with stopping criteria of 200 frame 
errors at SNR≤2 and 200,000 code words for SNR>2. 
Iterative decoding was performed for 64 iterations. 
 

Hardware comparisons of the different LDPC codes were 
made based on a generic VHDL model that models a parallel 
implementation of the LDPC decoder for any given H 
matrix. The functions of the check nodes and variables nodes 
were assumed to be just a dummy single gate to simplify the 
design as the emphasis here is on interconnect complexity. 
Synthesis is performed using Xilinx synthesis tools mapping 
the design on Xilinx Spartan3 XC3S5000-fg900 FPGA 
optimized for area. Fig. 5 shows the FER of the four 
compared LDPC codes and Table 1 summarizes the loop 
analysis and synthesis results. As can be seen, the FER 
performance of the four LDPC codes is very close with a 



noticeable difference at SNR=2.75. Apparently, the M8L 
LDPC code is achieving the best performance and the 
WM8L has a lower performance than M8L by around 0.1 
dB. Thus, the performance impact of the window constrained 
LDPC code, WM8L, is considered small. As shown in Table 
1, the WM8L LDPC code achieves the smallest delay and 
requires less FPGA slices, demonstrating the impact of 
constraining the interconnect wire length in the LDPC 
decoder.  To further illustrate the impact of the window 
constrained LDPC code design, we show in Fig. 6 & 7 
snapshots of the post place and route synthesis of the LDPC 
decoders for M8L and WM8L, respectively. It is noticeable 
from the figures that the routing congestion for WM8L 
LDPC decoder is less than that for M8L LDPC decoder. 

TABLE 1 Loop count and synthesis results. 

Synthesis  No. of loops  LDPC 
Code 

Structure 4 6 8 
Slices used 

out of 33,280 
Delay 

ns 
4L 0 172 1273 2,562  14.191 
6L 0 0 1300 2,562 14.336 

M8L 0 0 226 2,562 13.096 
WM8L 0 0 870 2,527   11.879 

V. CONCLUSIONS 
In this work, we have investigated the design of 

interconnect-efficient LDPC codes that reduce the area and 
delay of the decoder implementation while maintaining good 
error correction performance. We have demonstrated that it 
is possible to deign LDPC codes that are interconnect 
efficient with small performance impact compared to the 
randomly unconstrained generated LDPC codes.  
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Fig. 5 FER Comparison of LDPC codes. 

 

 
Fig. 6 Post place and route snapshot of synthesized M8L 
LDPC code. 

 

 
Fig. 7  Post place and route snapshot of synthesized WM8L 
LDPC code.
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