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Catalytic oxidative dehydrogenation of alkanes is an alternative irreversible reaction used 

for the production of olefins (ethylene, propylene, and butenes) and diolefins (butadiene). 

It requires low operational cost and has a less environmental impact. It is an exothermic 

reaction that occurs at a lower temperature and the catalyst used can obtain oxygen directly 

from the feed stream without requiring additional re-oxidation. The presence of oxygen in 

this method reduces coking and extends catalyst lifetime. The formation of water as a 

byproduct of this process makes it possible to avoid the thermodynamic limitations 

associated with conventional methods. 

This research intends to contribute towards enhancing the light olefins production. This 

was achieved through a novel system of catalyst design using hierarchical nano-consortium 

of multi-component metal oxides supported catalysts. The active metal oxides of the 

catalysts consist of Ni and Bi, in their best combination for an enhanced performance. All 

the catalysts were be synthesized using co-impregnation technique and calcined at two 

steps of 350 oC for 1 h and 590 oC for 2 h. The physical and chemical properties of the 

catalysts were examined using BET for surface area and pore structure determination, XRD 

for crystallinity, Transmission Electron Microscopy (TEM) for morphologies, XPS for 



xix 

 

bonding states and binding energies, Temperature Programmed Reduction (TPR) for redox 

property and NH3 and CO2 Temperature Programmed Desorption (TPD) for acidic and 

basic property respectively. The effect of different supports; Al2O3, SiO2, and ZrO2 on the 

dispersion of active oxides, reducibility and acid-base properties was discussed. SiO2 

supported catalyst gave the highest dehydrogenation selectivity of 79.1 % due to its weak 

acidity compared to the other supports.  Pore structure effect of catalyst obtained with 

mesoporous silica supports (SBA-15, silica foam, MCM-41) was investigated. Mesoporous 

SBA-15 supported catalyst showed a clear superiority in activity (n-butane conversion: 

28.9 %) and selectivity (butadiene selectivity: 47.5 %) compared to the other supported 

catalysts. Butadiene yield was in the order SBA-15 > Silica foam > MCM-41.  Varying 

active metal (Ni and Bi) loading on SBA-15 was investigated for an optimum combination. 

The reaction mechanism was elucidated using Delplots techniques. Delplots for 

experiments with n-butane, 1-butene, and 2-butene feeds were constructed. These analyses 

revealed that butadiene formed from both 1-butene and 2-butene. Kinetic studies using one 

of the catalysts was done using the Kinetic model editor (KME) to provide better 

understanding of the catalytic performance and to estimate the kinetic parameters (pre-

exponential factors and activation energies).  
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 ملخص الرسالة

 
 

 غزالي تنعيم :الاسم الكامل

 
 أوليفينات مرتفعة القيمةعملية جديدة لازالة الهيدروجين المؤكسد من غاز البترول المسال الى  :عنوان الرسالة

 
 الهندسة الكيمائية التخصص:

 
 2019أبريل  :تاريخ الدرجة العلمية

 
 

( ننتاج الأوليفينات )الإيثيلين، البروبيلين، البوتيلإبديل ك زالة الهيدروجين المؤكسد للألكاناتيستخدم التفاعل الحفزي لإ

مقارنة بالطرق  تكاليف تشغيل منخفضة وله تأثير بيئي أقل التفاعل يتطلب هذاوليفينات )البيوتاديين(. ثنائي الأوو

على أن يحصل ز المستخدم اعند درجة حرارة منخفضة ويمكن للحفويتم  للحرارة ا  تفاعل طاردويعتبر ال. التقليدية

ترسب يقلل وجود الأكسجين في هذه الطريقة من وافية. ضالإكسدة الأدون الحاجة إلى إعادة اللقيم الأكسجين مباشرة من 

الماء كمنتج ثانوي لهذه العملية تجنب القيود الديناميكية انتاج يتيح كما ز. احفالاستخدامي لل عمرالويطيل الكربون 

 الحرارية المرتبطة بالطرق التقليدية.

حفزي  نظامتصميم تم تحقيق ذلك من خلال ولقد يهدف هذا البحث إلى المساهمة في تعزيز إنتاج الأوليفينات الخفيفة. و

تتكون أكاسيد المعادن وأكاسيد فلزية متعددة المكونات. حفازات مدعمة من من  ةهرمي ةنانويمجموعة جديد باستخدام 

زات حفاجميع ال تحضيرتم ولقد تحسين الأداء. لل مزيج بينهما في أفضوذلك  Biو  Niالنشطة للعوامل الحفازة من 

درجة مئوية  590درجة مئوية لمدة ساعة واحدة و  350باستخدام تقنية التشريب المشترك وتكلسها على خطوتين من 

لتحديد المساحة السطحية  BETطريقة باستخدام ات حفازللالخواص الفيزيائية والكيميائية تعيين تم ولمدة ساعتين. 

 ومطيافية  تركيبات( للTEMالمجهر الإلكتروني للإرسال )و للتبلر XRDالتركيب المسامي وحيود الأشعة السينية و

( لخاصية TPRالمبرمج )والاخنزال الحراري لحالات الترابط وطاقات الربط  XPS الاشعة السينية للاكترون الضوئي

تمت . وعلى التوالي قاعديةص الحمضية والوا( للخTPDالمبرمج )الحراري  نضحوال 2COو  3NHطريقة الأكسدة و

الخواص قابلية الاختزال وواص تشتت الأكاسيد النشطة وخ على 2ZrOو  2SiOو  3O2Al نتائج تأثير المدعمات مناقشة
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٪ بسبب ضعف  79.1أعلى انتقائية لإزالة الهيدروجين بنسبة  2SiO بـ ز المدعماالحفولقد نتج عن . ية القاعديةالحمض

باستخدام السيليكا المتوسطة المدعم لحفاز ل يالمسامالتركيب تم فحص تأثير ودعمات الأخرى. مة مقارنة باليحمضال

(15-SBA  ، 41، رغوة السيليكا-MCM .)15ذات المسامات الكبيرة ز المدعم اأظهر الحفو-SBA ا  واضحا  تفوق 

المدعمة ات الحفازب٪( مقارنة 47.5٪( والانتقائية )انتقائية البوتادين: 28.9)تحويل البيوتان:  الحفزي في النشاط

 تم فحصو. SBA-< 15 رغوة السيليكا < MCM-41    بالترتيب كان  إنتاج البوتادينوأظهرت النتائج أن الأخرى. 

 حركيةتم توضيح كما مثالية.  حفزية للحصول على تركيبة SBA-15( على Biو  Ni) النشطةتحميل المعادن تغيير 

وتين. يالب-2وتين ، و يالب-1وتان ، يالبفي للتجارب باستخدام  Delplots واستخدمت . Delplots ةالتفاعل باستخدام تقني

باستخدام أحد التفاعل  أجريت دراسات حركيةوبيوتين. -2بيوتين و -1أن البيوتاديين يتشكل من اليل كشفت التحو

وطاقات )الأس  الحركية معرفة عواملأفضل للأداء الحفزي وقديم تفسير ( لتKMEذج الحركي )والنمو اتالحفاز

 التنشيط(.
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1 CHAPTER 1 

INTRODUCTION 

2 The demand of olefins and diolefins in most polymer and petrochemical industries 

especially in Saudi Arabia is on the increase. This motivated the interest towards the 

search for an on-purpose production techniques different from the conventional 

methods. Light alkanes (lower alkanes of C2-C4) are highly available, relatively less 

expensive compared to their corresponding alkenes leading to an economic advantage 

and are environmentally non-aggressive products, hence their usage as raw materials 

in most chemical industries [1],[2]. 

3 80% of ethylene is used worldwide in the production of a wide variety of commercially 

important chemicals such as polyethylene, polystyrene, ethylene dichloride straight 

chain, higher alkenes and so on. The market for ethylene has been growing at a rate of 

2–5% per year. The global capacity of ethylene is around 150 million tons as of 2012, 

and it reached 160 million tons at the end of 2015 [3]. The demand of 1-butene in the 

world industries is about 1.3 million metric tons per year and that of butadiene is 10 

million in 2006 and has reached 13 million tons at the end of 2015 with 3-4% annual 

increment [4]. Butadiene is used mainly as a monomer in the manufacture of polymers 

such as synthetic rubbers including styrene butadiene rubber (SBR), Polybutadiene 

rubber (PBR), Nitrile rubber which are tough and/or elastic and commonly used for the 

production of tires [5],[6]. 
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4 The commercial (conventional) methods for olefins production includes: Steam 

cracking process which is a gaseous one phase homogeneous reaction occurring at 

temperatures greater than 800 oC, it involves the decomposition of hydrocarbon feed 

stocks using steam producing different products like alkanes, alkenes and molecular 

hydrogen [7]. Catalytic cracking process is a process used for upgrading streams from 

the refinery (heavy and low-value). It uses mainly vacuum gas oil, residue and de-

asphalted oil as feed stocks and convert them into light and higher value products like 

gasoline. Olefins are mainly obtained as co-products in this process in a low amount 

[7]. Catalytic dehydrogenation process is a reaction that involves the decomposition of 

alkanes (saturated) into olefins (unsaturated) and H2 molecule. It is the reverse of 

hydrogenation reaction. All these processes produces high purity olefins but have 

major drawbacks as they both are endothermic reactions, leads to coke formation 

thereby deactivating the catalyst, they are thermodynamically limited reactions hence 

only produce acceptable yields at high temperatures. Selectivity is difficult to control 

at such temperatures and finally they are highly energy intensive [8], [9].     

5 Dehydrogenation reaction is an endothermic process requiring high reaction 

temperature (600-700 oC) for an economical conversion. Butane dehydrogenation 

requires higher temperature compared to butene for the same conversion. At these high 

temperatures, many side reactions including cracking and secondary reactions occur, 

hence the need for a selective catalyst and short residence time [10]. Dehydrogenation 

reactions unit available in the industries used mainly transition metals like platinum, 

tin, vanadium and chromium supported on alumina catalysts. Alumina as a support 

compared to other supports like silica, titania, zirconia etc has high thermal stability, 
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mechanical strength and strong catalyst regeneration capabilities. The major drawback 

of alumina is that it speeds up undesired side reactions like cracking and isomerization 

resulting from its acidic sites, this in turn lead to coke formation and deposition. 

6 A common dehydrogenation process is the Houdry process (developed in 1993), it is a 

single step process of hydrogen abstraction from butane. It uses chromia-alumina 

catalyst which is usually regenerated after few minutes of usage using air to burn off 

the coke layer. Another dehydrogenation process is the Dow process which utilizes 

butenes in the presence of steam to produce butadiene. The catalyst used in this process 

is Ca-Ni phosphate stabilized with Cr2O3, the heat of dehydrogenation is provided by 

the superheated steam. The catalyst is also regenerated and the product is isolated from 

reaction mixture using extractive distillation. Shell and Phillips petroleum also 

developed paraffin dehydrogenation processes using Fe-Cr oxide catalysts with K2O 

additive and Fe oxide bauxite catalyst respectively [11].        

7 Oxidative dehydrogenation of alkanes is an alternative irreversible reaction used for 

the production of olefins and di-olefins. It is an exothermic reaction that occurs at lower 

temperature and the catalyst used can obtain oxygen directly from the feed stream 

without requiring additional re-oxidation. The presence of oxygen in this method 

reduces coking and extends catalyst life time [12-14]. The major challenge in oxidative 

dehydrogenation is selectivity control mainly due deep oxidation reactions to CO and 

CO2, the correct co-feeding of oxygen can reduce this effect together with selectivity 

improvement by proper catalyst design (catalyst that ensures selective adsorption of 

intermediate and effective desorption of targeted product) [15],[16]. The catalytic 

performance for ODH is related to the surface acidity/basicity property and reduction-
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oxidation (redox) property. The lattice oxygen of the catalyst is involved in oxidation 

process oxidizing hydrogen and olefins intermediates. After which the surface of the 

catalyst that has been reduced earlier is restored back to normal state by gas phase 

oxygen adsorption. The evolution of the lattice oxygen is promoted by the interaction 

between the metal oxides [17]. 

8 20wt% Ni and 30wt% Bi as metal weight to support weight supported on gamma-Al2O3 

(hereafter 20Ni-30Bi-O/gamma-Al2O3) was obtained as an effective catalyst for the 

oxidative dehydrogenation of butane to butadiene [18]. The influence of calcination on 

the performance of Bi-Ni-O/gamma-Al2O3 catalyst for n-butane oxidative 

dehydrogenation to butadiene was also investigated [19]. The effect of substituting 

(partial/full) metal species active sites (nickel oxide) in 20Ni-30Bi-O/gamma-Al2O3 

with Fe and Co oxides was also studied [20]. The metal oxides were considered because 

both Ni, Fe and Co have proximity in properties owing to their position in the periodic 

table and also their ability to switch their oxidation states (FeOx, CoOx, NiOx) thereby 

showing an interesting redox character and acidic/basic properties suitable for 

oxidative dehydrogenation reactions. Mono main metal (Ni, Fe, Co), binary metal (Ni-

Fe, Ni-Co and Fe-Co) and ternary metal (Ni-Fe-Co) effects on the catalyst activity and 

selectivity were discussed. This thesis work is a continuation of the above studies and 

the main objectives are discussed in the research objectives section.  
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1.1  Research Objectives 

The main aim of the research is to enhance the production of light olefins (mainly 

butadiene) from n-butane via oxidative dehydrogenation. The detailed objectives are: 

• Carrying out thermodynamics analyses to predict the oxidative dehydrogenation of 

n-butane equilibrium product compositions and thermodynamic favorable reaction 

pathway 

• Synthesizing various metal oxides supported catalysts for the catalytic conversion 

of n-butane 

• Characterizing the prepared catalysts using the state of the art techniques such as 

X-Ray diffraction (XRD), Temperature programmed desorption (TPD), 

Temperature programmed reduction (TPR), Transmission electron microscopy 

(TEM), X-ray photoelectron spectroscopy (XPS), Nitrogen adsorption-desorption 

isotherms 

• Studying the relationship between molecular structures of the different catalyst 

samples and investigating metal oxides-support interaction and its effect on catalyst 

performance 

• Optimizing the various reaction conditions ranging from temperature, feed ratio 

and contact time and elucidating the reaction mechanisms (network) using the 

Delplot techniques 

• Developing a kinetic model that describes accurately the product gas composition 

during the catalytic reactions and to estimate the intrinsic kinetic parameters 

(Activation energies and pre-exponential factors) using KME. 
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1.2 Uniqueness of the Research 

To the best knowledge of the investigator, the following aspects have not been duly studied 

in the reported literatures: 

• The utilization of commercially available active metal oxides and supports, 

which are not noble element and toxic. 

• The one step ODH process of n-butane to butadiene which ensures no butene 

separation at the intermediate step. 

• The use of Delplot techniques and kinetic modelling editor (KME) which are 

new tools for reaction network elucidation and kinetics studies.  

1.3 Scope and Outline of the Work 

The scope of this research will be limited to the oxidative dehydrogenation process for 

converting n-butane to butadiene using metal oxides supported catalysts. This has been 

broken down in to the following chapters 

Chapter two reported a detailed and up-to-date literature review on catalytic oxidative 

dehydrogenation of n-butane. Previous work done using various groups of catalysts, 

reported reaction mechanisms and kinetic studies available in the open literature. 

Thermodynamic analyses of the process was also discussed using in-built RGibbs reactor 

in Aspen Plus version 8.0 software. 

Chapter three reported the effects of supports on the catalytic performance of n-butane to 

butadiene. The catalysts were synthesized with Ni and Bi supported on Al2O3, SiO2 and 
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ZrO2 supports. Only metal oxides of Ni and Bi were also tested to clarify the roles of the 

supports in the dispersion of active species, reducibility and acid-base properties.  

Chapter four reported the pore structure effect of mesoporous silica supported catalyst on 

the oxidative dehydrogenation of n-butane to butadiene. The result from chapter three 

revealed that SiO2 supported catalyst was more selective for the dehydrogenation pathway 

compared to Al2O3 and ZrO2. Mesoporous silica (MCM-41, Silica foam and SBA-15) were 

then investigated with a view to improving the catalytic performance due to their special 

properties of high dispersion ability, thermal stability and highly ordered pore structure 

Chapter five reported a continued study on the role of mesoporous silica supported catalyst 

in improving the selectivity to butadiene from n-butane. SBA-15 was loaded with varying 

amount of Ni and Bi in order to get an optimum combination with balanced suitable 

properties for a highly selective butane to butadiene reaction pathway. 

Chapter six reported the utilization of Delplots techniques for the elucidation of the 

reaction network from n-butane to butadiene. Based on the network, possible reactions 

were proposed and utilized in the kinetic model editor (KME) to obtain the kinetic 

parameters for the ODH reaction.  

Chapter seven provided the conclusions of the work presented in the thesis and some 

recommendations for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1      Butadiene  

 

Butadiene is an unsaturated hydrocarbon produced as a secondary product from the 

dehydrogenation (hydrogen abstraction process) of a saturated hydrocarbon mainly butane. 

Normal butane is first dehydrogenated to form butylene (primary product) and finally 

butadiene is formed from the dehydrogenation of butylene [1]. Butadiene is a colorless, 

non-corrosive gas or liquid with a mild aromatic or gasoline-like odor at room temperature, 

it is highly reactive, toxic and flammable hence classified as a hazardous chemical [21]. 

Butadiene is mainly polymerized for the production of synthetic rubber. A homo polymer 

from butadiene (Polybutadiene) is a liquid material and very soft, while Acrylonitrile 

butadiene styrene (ABS), Styrene butadiene (SBR) and Acrylonitrile butadiene (NBR) 

produced as copolymers from butadiene and styrene are elastic and tough. Automobile tires 

producing companies mainly used SBR [8]. 

2.1.1 Uses of Butadiene 

The major use of butadiene is in the production of polymers which have variety of usage 

domestically and industrially, they improve the performance and functionality of domestic 

products, safety and also reduces costs of the products. Butadiene-based polymers are used 

in construction materials, automobiles, Computer and telecommunication equipment, 

packaging and household articles [22],[23]. 
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2.2 Direct Dehydrogenation vs Oxidative Dehydrogenation  

The existing commercialized means of dehydrogenation of n-butane and n-butenes is 

through direct dehydrogenation. This process is usually carried out over Cr/Alumina 

catalysts at high temperatures (> 600°C) [24]. Due to the high temperatures involved, there 

is thermal cracking which leads to much coke deposition and catalyst deactivation. As a 

result, there is need for regular regeneration of the catalysts [25]. The drawbacks of the 

direct dehydrogenation process includes: the process is thermodynamically limited because 

the dehydrogenation is an equilibrium process between alkanes, alkene and hydrogen 

which thus limits the yield of olefins, the process cannot be operated at high pressures 

because there are more molecules on the products sides than the reactants, the process is 

endothermic, there is high coke formation and catalyst deactivation due to high reaction 

temperatures [26], [27]. The selectivity for alkenes obtained through ODH is low because 

of the faster oxidation of the alkenes produced to CO2 than the alkane feedstocks since the 

latter process is thermodynamically favoured. [28]. 

Some researchers have also carried out both oxidative and non-oxidative dehydrogenations 

of iso-butanes in one reactor using silica-supported VOx materials as catalysts. Using this 

method, the oxidation of isobutenes to COx at high temperatures (conversions) was 

suppressed because a low amount of oxygen was required for the process. Also, the small 

amount of oxygen helps in burning of coke deposits during the reaction and the catalyst 

stability increased as the reaction progresses because the active species were reoxidized 

[29].  

Normally, in non-oxidative dehydrogenation, n-butane is dehydrogenated to butenes first, 

followed by the dehydrogenation of butenes to butadiene over Cr-Alumina catalysts.  But 
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in ODH, there is no limitation of thermodynamic equilibrium and the precursors which 

lead to the formation of coke can be removed easily by the oxygen. The selective 

production to 1,3-butadiene from n-butane is difficult because under the severe reaction 

conditions for n-butane activation, the butenes and butadiene produced form carbon 

dioxide and water on quickly reacting with oxygen [30].  

2.3    Oxidative Dehydrogenation of Alkanes 

Oxidative dehydrogenation of alkanes is an alternative irreversible reaction used for the 

production of olefins and diolefins. It is an exothermic reaction in which the byproduct 

produced is water instead of hydrogen and occurs at lower temperature. The catalyst used 

can obtain oxygen directly from the feed stream without requiring additional re-oxidation. 

The presence of oxidant (like oxygen) in the method also reduces catalyst deactivation by 

coking due to the efficient removal of coke and its precursors thereby extending catalyst 

life time [17],[31]. 

The major challenge in oxidative dehydrogenation is selectivity control mainly due to 

parallel and consecutive reactions resulting from the combustion of reactant (partial 

oxidation) to CO and CO2, the correct co-feeding of oxygen can reduce this effect together 

with selectivity improvement by proper catalyst design and formulation [20]. 

The activity and selectivity of a catalyst for ODH depends on its acidic/basic properties 

and reduction-oxidation (redox) characteristics. The catalyst is reduced by losing its lattice 

oxygen which is used in the reduction reaction with water as byproduct, it then adsorbs 

molecular oxygen from the feed to regain its earlier oxidation state. The interaction 
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between the metal components of the catalysts (active species and support) plays a great 

role in the availability or otherwise of the lattice oxygen for the reaction [32]. 

Several researchers reported vanadium oxide and chromium oxide as active species with 

different oxides as carriers (Alumina, Silica, Titania, Zirconia, Ceria etc) showing good 

results for the ODH of lower paraffins [33-35]. The catalytic performance relies on the type 

of carrier, catalyst loading and synthesis method [36]. Hakuli et al [37] investigated 

different chromia supported catalysts and concluded that alumina and silica-supported 

chromium oxides were the most effective for the production of lower olefins. Vanadia 

supported on basic supports not acidic or neutral oxides have been found to be the most 

selective catalysts for propane oxidative dehydrogenation as reported by Corma et al [38]. 

Volpe et al [39] concluded from his investigation on n-butane dehydrogenation using VOx 

supported on USY, NaY, γ-Al2O3 and α-Al2O3 that VOx/USY has the highest activity and 

selectivity due to VOx monolayer and its mild acidity. Investigation on the reactivity of 

vanadia on various supports was conducted by Arena et al [40] and the conclusion drawn 

was that vanadia was more reactive on amphoteric oxides with TiO2 having the highest 

reactivity and that the dispersion and reducibility of the active phase is greatly influenced 

by the acidic/basic property for the support. 

Chromia-Alumina is a dual functional catalyst due to its acidic function obtained from the 

support and dehydrogenation function due to chromium oxide. Vuurman et al [41] reported 

that the catalytic dehydrogenation properties of the Chromia-Alumina catalyst are due to 

surface chromium oxide species and not the bulk chromium oxide phases like CrO3 or 

Cr2O3. De Rossi et al [42] investigated propane dehydrogenation on Chromia/Silica and 

Chromia/Alumina catalysts and concluded that, the active sites for the dehydrogenation are 
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CrIII and not CrII species and that Chromia supported on zirconia has the highest activity 

compared to silica and alumina supports. This is because the proper coordination of 

chromium on the surface sites of zirconia is preserved and the oxygen ion necessary for 

reduction (H2 abstraction) is more readily available.  

Jibril et al [43] investigated the oxidative dehydrogenation of isobutane on chromium 

oxide-based catalyst, they tested different supports (Al2O3, TiO2, MgO, and SiO2), different 

chromium precursors and partially substituting the chromium with some metals (V, Ni, Co, 

Mo and Bi). They concluded that, chromia supported on alumina has the best performance 

with chromium nitrate as the best precursor and that partial substitution of chromium by 

the metals has little or no contribution on the catalyst performance with Nickel addition 

slightly increasing the selectivity with same conversion. 

Ajayi et al [44] studied n-Butane dehydrogenation over mono and bimetallic MCM-

41(highly dispersed Silica) catalyst under oxygen free atmosphere by varying the weight 

percent of the metals in the catalyst. They concluded that 1.2Cr2.8V/M-41 has the highest 

butane conversion and butene selectivity. 

2.4       Catalyst Development for Lower Alkanes ODH 

The catalyst systems studied by several researchers as obtained from literature for oxidative 

dehydrogenation of lower alkanes can be grouped into three. 

• Catalyst based on alkali and alkali earth metals 

• Catalyst based on noble metals 

• Catalyst based on oxides of transition metal 
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2.4.1 Catalysts based on Alkali and Alkali Earth Metals 

Catalysts based on Group 1 and 2 metals show good olefin selectivity for ethane and 

propane, of this catalyst systems the most prominent one is Li/MgO. Although Li/MgO 

combination shows reasonable activity [45], [46], the catalyst is usually promoted with 

halogens mainly chlorine.  Hence, halides have high significance towards achievements of 

good yields resulting from their acidic properties that positively affects dehydrogenation 

reaction. These catalysts activate ethane at temperature above 600 oC to form ethyl radicals 

that react in the gas phase [47]. Addition of Tin oxide (SnO2), Lanthanium oxide (La2O3), 

Neodymium oxide (Nd2O3), or Dysprosium oxide (Dy2O3) further improves the 

performance of Li/MgO. Ethene yield is up to 77% when Dy2O3 is used as a promoter and 

a remarkable selectivity is achieved when the reaction temperature gets closer to melting 

point of LiCl [48]. Propene is the best alkene produced through oxidative dehydrogenation 

of propane. Ethene can as well be synthesized in large quantity via catalytic 

dehydrogenation, chemical industries still maintain steam cracking for ethene production 

[10]. 

2.4.2 Catalysts based on Noble Metals 

Catalysts in this group have active species that contains noble metals such as Platinum, 

Rhodium, Palladium, which are very efficient catalysts for combustion. Paraffins can be 

converted to alkenes using nobel metal catalysts under specific reaction conditions like 

reduced contact times and little oxygen supply [10]. At lower temperatures these noble 

metal catalysts are usually non-selective, however they can be used for selective oxidation 

at temperature around 1000oC, and non-oxidative same phase reactions greatly influence 

the formation of products. The selectivity is enhanced by high alkane-oxygen ratio as well 
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as a higher temperature.  This leads to nearly complete conversion of oxygen in a way that 

non-oxidative conversion of paraffins results like steam reforming together with cracking. 

The catalyst mainly deactivates due to coking and sintering [49]. Enclosing the active noble 

metals in a passive support helps mitigate the deactivation. The over layer of support 

suppresses the oxidative dehydrogenation process and prevents sintering of metals with 

decrease in coke formation for high temperature reactions. 

2.4.3 Transition Metal Oxides based Catalysts 

This category of catalyst allows low temperature activation of alkanes relative to group I 

and II as well as noble metals. Hence the performance of catalysts for this group is usually 

better. The oxidative dehydrogenation reaction of lower paraffins using oxides of metals 

in the transition series on a support occurs via the mechanism of Mars Van Krevelen, in 

which lattice oxygen in the catalysts is used for oxidizing the paraffin as well as the 

reoxidation by the gas phase molecular oxygen [44],[50]. Some factors dictates the 

performance of the catalyst like the redox properties, chemical nature of the active oxygen 

species and the acid-base character, which in turn depend on the loading and dispersion of 

the transition metal and the kind of support used [36].   

Transition metal oxides have reducible oxygen (surface lattice oxygen) that partake in 

oxidative dehydrogenation in the absence of gaseous oxygen. Even though, the active 

oxygen specie partake also in other non-selective routes of ODH resulting to COx. The two 

most important systems are the molybdenum-based catalytic system and the vanadia–based 

catalytic system although from literature the molybdenum systems are less active.  
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For ethane, the ethylene yield values shown are close to, and sometimes even better than 

the corresponding values obtained from steam cracking although for propane ODH the 

values are not too interesting from an industrial point of view. Conditions leading to best 

propylene yields also leads to production of remarkable amount of ethylene, hence finding 

a catalyst of industrially acceptable conversion to this olefin is still a major goal [51]. 

2.5       Properties of Catalysts used for Alkanes ODH 

The catalysts used for oxidative dehydrogenation reaction have some basic characteristics 

that influenced the activity and the selectivity of the catalyst. They are discussed as follows; 

2.5.1 Active Lattice Oxygen Species 

Metal oxides used as active species for ODH of paraffins have lattice oxygen which 

participate in the reduction reaction process. The difference in the affinity of the active 

oxygen species to bind with paraffins is among the main factors that determines the 

performance (activity and selectivity) of most metal oxides supported catalysts [52]. A 

study by Weckhuysen and Keller [53] on vanadium oxide supported catalyst reported that 

3 categories of lattice oxygen bonds are associated with the catalysts which are end V=O, 

intermediate V-O-V and V-O-Carrier bond each with different binding strength. They 

concluded that the lattice oxygen from the V-O-Support bond is the one that is involved in 

the catalytic reduction reaction. 

2.5.2 Surface Coverage of Active Species 

The dispersion of active metal oxides on the support plays a great role on the performance 

of the supported catalyst. The dispersion depends on the active metal loading and 

preparation method [54]. Bell et al [55] and Klose et al [56] investigated the effect of 
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amount of vanadia loading as the main factor leading to distinguished VOX species on the 

surface of the carrier (support). They also investigated different type of supports (TiO2, 

SiO2, Al2O3 and ZrO2) with emphasis on alumina-supported vanadia. The conclusions 

drawn was with little loading of vanadia,  isolated VO4 species which is highly dispersed 

is formed, isolated monovanadates changes to polymeric polyvanadates with increase in 

VOX density which increases continuously until monolayer coverage is attained. 

Crystalline V2O5 nanoparticles forms at high loading of vanadium. 

2.5.3 Support Effect 

The physico-chemical properties (surface area and acid-base) of the carrier (support) used 

in metal supported catalysts significantly determines the selectivities of the olefins 

produced. This is related to the different interactions (dispersion and reducibility) of the 

active species on different types of support.  

Acidic or basic property of the support controls the catalyst selectivity and reactivity due 

to their influence on reactants adsorption and product desorption. Catalyst with acidic 

support favor basic reactant adsorption and acidic product desorption, hence with 

controlled acidic character of support, a catalyst can be designed with higher selectivity in 

oxidative dehydrogenation reaction [57]. It was concluded in a work by Blasco and Lopez-

Nieto [14] and also by Corma et al [38], that catalysts which are very selective are obtained 

with oxides of vanadium supported on basic oxide (MgO, La2O3) compared to oxides of 

acidic metals, this is as a result of the strong interaction between acidic V2O5 and the basic 

support leading to highly dispersed VOx species responsible for the higher selectivities to 

olefins and the opposite is true with acidic supports [14], [58]. 
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2.5.4 Redox Properties of Supported Metal Catalysts 

The reducibility of active metal oxides play a great role in their activities and selectivities 

as catalysts for ODH reactions. This property of the metal oxides is greatly influenced by 

the type of support used which determines the strength of the lattice oxygen used for the 

redox process. 

Lopez-Nieto investigated the reducibility of vanadium oxide catalysts using temperature 

programmed reduction on different support oxides and concluded that acid-base property 

of the support strongly influenced the reducibility of the oxides with a negative effect on 

basic support oxides [1]. 

2.6       ODH of n-Butane to Butadiene 

This is a reaction that involves series removal of molecule of hydrogen from normal butane 

forming 1,3-Butadiene in the presence of an oxidant (mainly oxygen) with water as a 

byproduct. Normal butane is a saturated and highly stable hydrocarbon hence requires high 

temperature for the activation process, it is slightly different from the ODH of ethylene and 

propylene because of the presence of two secondary atoms of carbon (-CH2-) hence it has 

high chance of undergoing side reactions to yield other products. 

2.7       Catalysts Development for n-Butane ODH 

Most researchers focus more on the catalyst development for ethane and propane oxidative 

dehydrogenation with more emphasis on vanadia, molybdena and chromia supported 

catalysts. Some of the literatures reviewed for the catalyst development for butane ODH 

are discussed in this section. 
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Ariola and Nava investigated the ODH of n-butane using Iron-Zinc oxide catalyst. They 

employed XRD, TPR and Mossbauer spectroscopy to determine the catalytically active 

phase and concluded that zinc ferrites (ZnFe2O4) having spinel structure is the selective 

catalyst for ODH of n-butane to butenes which further produces butadiene in the presence 

of ZnO as a modifier. The ZnO interacts with the iron from the zinc ferrite modifying the 

electron density of the iron which is responsible for the selectivity to butadiene [59]. 

Armendariz et al studied ODH of n-butane on zinc-chromium-ferrite catalyst. The catalyst 

was characterized using XRD and Mossbauer spectroscopy. The chromium was added as 

a promoter that substitutes Fe3+ in the octahedral sites which increases the basicity of the 

lattice oxygen thereby enhancing the selectivities to butadiene and CO2 [60] 

Vasil’ev and Galich reported that the method of active components deposition on the 

support strongly determines the performance of cobalt-molybdenum and magnesium-

molybdenum catalyst used in the ODH of normal butane. Catalyst activity increases 

proportionally to the number of active components which are cobalt, magnesium and 

molybdenum especially with a support of low surface area [8]. 

Xu et al investigated the dehydrogenation of n-butane over vanadia supported on silica gel 

catalyst using impregnation method of preparation and characterized using XRD, UV-Vis, 

FTIR, Raman and BET measurements. The influence of VOx loading and reaction 

temperature were studied and they concluded that at low VOx loading and temperature of 

590~600oC, n-butane conversion and olefin yield of highest value was obtained [61]. 

McGregor et al studied the effect of vanadia species in VOx/Al2O3 for n-butane 

dehydrogenation by varying the vanadium loadings. The catalysts were characterized using 
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FTIR and solid state NMR and concluded from their findings that a strong relationship 

exist between the surface species of VOx and the performance of the catalyst with high 

activity and low selectivity for isolated VOx species and polymeric VOx species having 

greater selectivity to the targeted olefins [62]. 

Malaika et al investigated the ODH of n-butane to butadiene using chemically modified 

activated carbon as catalyst. The conclusion was that at low temperature only oxidation 

takes place leading to the formation of CO2 but with increase in temperature up to 300oC 

and above, 1,3-butadiene and 1-butenes are formed as the major products [12]. 

Lee et al investigated oxygen mobility influence together with oxygen capacity of 

Mg3(VO4)2 supported with different oxides (Al2O3, ZrO2, MgO, CeO2) for ODH of n-

butane. Their experimental findings shows that at the initial stage of the reaction 

Mg3(VO4)2/MgO is the most active catalyst and Mg3(VO4)2/ Al2O3 the least active. The 

activity decreases with time for the MgO catalyst while Mg3(VO4)2/ZrO2 showed stable 

catalytic activity, hence the conclusion that oxygen mobility and oxygen capacity directly 

affects the stability of the catalyst activity and the initial catalytic activity respectively [63].   

Kwon Lee et al in a similar study investigated the ODH of normal butane to normal butene 

and 1,3-butadiene over Mg3(VO4)2/MgO-ZrO2 catalyst with varying Mg:Zr in the support. 

The support was prepared using gel-oxalate co-precipitation method and the catalyst by 

wet impregnation method and was characterized using XRD, XPS and ICP-AES 

techniques. They concluded that the catalyst with Mg:Zr of 4:1 has the highest activity and 

selectivity due to its highest oxygen capacity and acidity as confirmed by TPRO and TPD 

respectively [64].  
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Xu et al investigated the catalytic ODH of n-butane over V2O5/MO-Al2O3 (M= Alkaline 

earth metals: Mg, Ca, Ba, Sr) with varying V2O5 loading. The catalyst were characterized 

by BET, XRD, FTIR, H2-TPR and Raman spectra and the results showed that only MgO 

modified Alumina produce a catalyst with high activity and selectivity while that of Ca, Ba 

and Sr showed low activity due to the formation of orthovanadate phase which seldom 

undergoes reduction. The high activity of the MgO modified Alumina is due to the good 

dispersion of VOx species due to increased surface area of the support and the existence of 

crystalline phase of MgO [65]. 

Furukawa et al also examined the performance of bifunctional catalysts (Palladium-based 

intermetallic compounds) supported on silica in n-butane ODH. They used a variety of 

metals in addition to Pd; these metals are Bi, Fe, Ge, In, Sn and Zn. The use of Pd-Bi, Pd-

In and Pd3Fe catalysts instead of only Pd catalyst led to dramatic increase in butenes and 

butadiene selectivities and yields because the second metal effectively stops the undesired 

n-butane combustion and also the oxygen conversion was approximately 100% [66].  

Jermy et al investigated the catalytic ODH of normal butane to butadiene using Bi-Ni-O/γ-

Alumina and reported from their experimental findings that the support itself is selective 

for the ODH of n-butane to butenes and partial oxidation to CO, the dispersion of NiO on 

the support reduces the partial oxidation selectivity and enhanced butadiene selectivity. 

Addition of bismuth to the catalyst was confirmed to give more selectivity to butadiene 

due to improved NiO dispersion and the redox property of the resulting catalyst [18]. 

Vanadia catalysts supported on TiO2 are also effective catalysts for n-butane ODH. Their 

performance was studied by Le Minh et al [67]. The main reaction product obtained was 
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1-butene. They also examined the effect on La doping on the activity and selectivity of the 

vanadia catalyst. Doping of the catalyst with La led to increased selectivity to butenes and 

butadiene but because of the V2O5 clusters which reduced the ODH sites, there was an 

overall loss in activity. The combined effect of these is a decrease in butenes yield on 

doping with La, this means that La-doping for vanadia catalysts used for n-butane ODH is 

not worthwhile [67].  

2.8       Catalytic Properties of NiO Supported Catalysts in Alkanes ODH 

The important properties of active metals that influence their performance as active and 

selective catalyst for oxidative dehydrogenation reaction are redox property and acid/base 

character. These properties can be enhanced by doping promoters and modifiers to the 

active metal components and the support as investigated by many researchers, some of 

which were discussed in the previous section. 

Nickel oxide is a relatively less expensive oxide that has been reported to activate short 

chain alkanes (C2-C4) in the presence of molecular oxygen with resulting high activity and 

at low reaction temperatures. The products obtained however are mainly oxidation 

products (CO and CO2) with little dehydrogenation products. NiO has been reported to 

have improved performance in its activity and selectivity when supported or promoted on 

metal oxides. This promotion reduces the selectivity of oxidation products and enhanced 

that of dehydrogenation [68].  

The nature of Ni species and the acidity/basicity of the catalyst are the two factors that 

influence its performance as a catalyst. The nature of the Ni species are influenced by the 

valence of the promoters with high valency reducing the concentration of the non-selective 
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non-stoichiometric oxygen in Ni3+ species leading to higher selectivity [69]. Lopez-Nieto 

et al [68] studied the effect of promoted NiO catalysts for the ODH of ethane and concluded 

from XPS findings that non-stoichiometric Nickel sites Ni3+ are involved in the non-

selective catalytic processes resulting from the stabilization of electrophilic oxygen species 

and the removal of these species improves ethylene selectivity. Jermy et al [19] reported 

that NiO when promoted with Bismuth oxide results in an improved performance, this is 

due to the participation of Bi2O3 as oxygen mobile oxides which is critical in the formation 

of electrically active grain boundaries in the NiO. The redox system by the Ni species is 

better stabilized with bismuth oxide (which act as controlled O2- supplier) as hierarchical 

nanoparticle cohabitation hence making the system highly efficient. 

Mesoporous silicas (MCM-41, SBA-15, and foam) have been used as support to prepare 

well-dispersed tungsten oxide catalyst [70-72]. Oxidative dehydrogenation of n-butane was 

reported using vanadium nanoparticles impregnated over mesoporous silica support [73]. 

Mesoporous silica support showed an enhanced performance by stabilization of 

nanoparticles due to their ordered structure and well-defined pore sizes. 

Titanosilicates which contain materials such as vanadium have also been studied 

extensively for n-butane ODH. Cun et al studied the performance of titanosilicates and 

SBA-15 catalysts which contain vanadium in the ODH of n-butane to butenes and 

butadiene at low temperature and low vanadia content. Increased loading of TiO2 catalysts 

lead to greater conversions because the presence of oxygen in the lattice structure leads to 

greater catalyst reducibility but due to oxidation of the ODH products, there is a steep drop 

in selectivity to C4 alkenes. In comparison to SBA-15 catalysts which contain vanadium, 
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V-containing titanosilicates showed greater catalytic activity. SBA-15 catalysts showed a 

very low conversion (1.5%) under the same reactions as the titanosilicates [25]. 

Titanosilicates are commonly used as catalyst supports for n-butane ODH. Setnicka et al 

[27] examined the effect of titanium loading on silica support for vanadium containing 

mesoporous silica and titanosilicate materials in n-butane ODH at a reaction temperature 

of 460°C and 5% conversion. Catalysts in which titanium had been incorporated (V-Ti-

HMS) were four times as active as catalysts with no titanium (V-HMS) even though VOx 

species were distributed at the same rate for both catalysts. Although the former catalyst 

shows a higher activity, it gives the same selectivity to butenes and butadiene as the latter 

catalyst under the same reaction conditions. The C4-ODH selectivity was approximately 

45% for the catalysts with butadiene as the main product. The main advantage of the V-Ti-

HMS catalyst is that it can achieve the same yield and butenes selectivity as the V-HMS 

catalyst at a temperature 100°C lower [27]. 

Liu et al [74] investigated n-butane ODH using VOx/SBA-15 catalysts having different 

loading of VOx (2.24-28.0 wt% V content) at a reaction temperature of 520 oC. The 

catalysts were prepared by incipient wetness impregnation method and characterized by N2 

adsorption, XRD, HRTEM, H2-TPR, NH3-TPD and EPR techniques. At loading of 8.96V-

SBA-15, an improved n-butane conversion and butene selectivity compared to 8.96 V-

SiO2, was obtained. This is due to an increased dispersion of V species, presence of V4+ 

species and the well-defined pore structure of the mesoporous SBA-15 support [74]. In 

another work by the same authors, MgO-modified VOx/SBA-15 was compared to 

VOx/SBA-15 and the former was found to exhibit higher C4 olefins selectivity and yield 

mainly due to the increase in VOx reducibility and relatively lower acidity [75]. 
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2.9       ODH of Paraffins Reaction Mechanism 

The mechanism of oxidative dehydrogenation rely mostly on the paraffin and the catalyst 

used, but the basic steps involved in a typical reaction are: 

• Alkane interaction with the surface of the catalyst (physisorption) 

• Breakage of C-H bond forming alkyl species 

• Alkyl species react with nearby surface oxygen (β-elimination) to form olefins 

• Reoxidation of the catalyst by molecular oxygen. 

2.9.1 Kinetic Models for ODH of Light Alkanes 

Light alkanes are gases and their ODH involves solid catalyst, hence forming 

heterogeneous system. The catalytic reaction proceeds via the following steps: 

• Reactants (Alkanes) diffusion to the catalyst surface 

• Reactants adsorption on the catalyst surface 

• Surface reaction 

• Products desorption from the surface of the catalyst 

• Products of reaction diffuse from the surface of the catalyst  

Based on this reaction steps, the models used for ODH reactions are Eley Rideal model, 

Langmuir Hinshelwood model, Rake model, Mars Van Krevelen model (Redox model) 

and power law model.  

For ODH reactions using transition metal oxide catalyst, most literatures reported the 

kinetics following Mars Van Krevelen model (Mechanism of reduction-oxidation) where 

the active species oxygen participates in the ODH reaction by removing molecule of 
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hydrogen from the paraffin thereby forming water as a byproduct which is removed by 

surface dehydration. The reduced catalyst is re-oxidized by the gas phase molecular oxygen 

[10], [76].  

For the ODH of n-butane, based on the acidic/basic property of the catalyst, two reaction 

networks are proposed by several researchers, for a catalyst with basic character alkenes 

are formed directly from normal butane while 1,3-butadiene as a consecutive reaction 

product while for catalyst with acidic character, olefins and diolefins are produced firstly 

from normal butane with COx as products of series reaction. Hydrogen removal from 

normal butane determines the reaction rate while second hydrogen removal/desorption of 

olefinic intermediate determines the selectivity. Olefinic intermediate desorption rate from 

catalysts with basic character is higher than that of catalyst with acidic character [77]. 

2.9.2 Kinetics of n-Butane ODH 

Few kinetic studies have been reported regarding the ODH of n-butane and in fact the most 

studied catalyst for the investigations is a vanadium oxide active species catalyst. This is 

due to its high activity and selectivity relative to other mixed oxides or supported catalysts. 

Chaar et al applied a power law model using V-Mg-O catalyst and with a parallel-series 

reaction scheme to describe n-butane ODH. They concluded that, a similar mechanism 

exist for both propane and n-butane ODH and also the reaction rate was zero order in 

oxygen and 0.85 order in n-butane. 

Tellez et al [78] studied the kinetics of n-butane ODH using VOx/MgO catalyst. The 

conclusion was that, the selectivity to each mono-olefin (1-butene, cis- and trans-2-butene) 

decreases as conversion increases which is typical of an intermediate product. The 
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selectivity to COx products increased with space time (a behavior of secondary products) 

and that of butadiene increased also with conversion and was not equal to zero at zero space 

time which means it is both a primary and secondary product. Power law model was 

utilized and it revealed that the reaction order for oxygen in olefin and di-olefins production 

was smaller than that for COx formation which clearly indicates that higher selectivity to 

olefins is favored by low oxygen partial pressure. 

Rubio et al [79] studied the kinetics of n-butane dehydrogenation under anaerobic 

conditions using the Mars Van Krevelen mechanism. It was concluded that the mechanism 

has a single type active site with a lattice oxygen and a weakly adsorbed oxygen. Olefins 

production is from the lattice oxygen while the adsorbed oxygen gives COx in an 

unselective reaction pathway. 

The kinetics of n-butane ODH was studied by A. Dejoz et al [80] using a hydrotalcite of 

Mg/Al as support with vanadia as active species. Two types of LH models were proposed 

by the authors which are a model where both n-butane and oxygen are competitively 

adsorbed (CAM) and another model where the adsorption of the two reactants is non-

competitive (NCAM). The model was develop assuming that the reaction controlling step 

is the combination of the adsorbed reactants and the uncompetitive oxygen adsorption. 

They considered two types of oxygen adsorption which are dissociative for selective 

products formation and non-dissociative for total combustion products formation. They 

concluded that two different mechanisms operated on the catalyst which are connected with 

the vanadium species redox functions and the vanadium-free sites of the support. 

Formation of a butyl radical through the breakage of the C-H bond is the initiation of the 

mechanism occurring on the redox sites. The radical formed interacts with the vanadium 
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species producing adsorbed alkenic intermediate. This mechanism led to the formation of 

COx products from n-butane and butenes by a parallel reaction at low conversions and a 

series reaction at high conversions respectively.   

Lemonidou [81] studied also the kinetics of n-butane ODH on VMgO catalyst (30 wt. % 

V2O5). The influence of reaction temperature on the catalyst selectivities to olefins and 

diolefins and also the effect of intermediates (CO, butenes, and butadiene) addition on 

product distribution and conversion was investigated. This is to obtain the necessary 

information on the primary and secondary reaction rates. A kinetic reaction network having 

parallel and series steps was proposed based on the experimental data analysis. The 

reaction rate for each step was calculated by the intermediate reaction products 

combination method. Butadiene and COx were shown to be produced both in parallel from 

n-butane with butenes and also as products of series dehydrogenation and complete 

oxidation of butenes respectively. The rate of butane consumption was not affected by the 

partial pressure increase of butenes, butadiene and COx. This shows that the butane 

adsorption sites are not the same with that of the products.   

Madeira et al [82] utilized cesium-doped nickel molybdate to study the kinetics and 

mechanism of n-butane ODH reaction. Under the reaction conditions, the products 

observed were only dehydrogenation products and COx. They proposed a redox mechanism 

having two different intermediates to describe the effects of the feeds partial pressure on 

the rates of products formation. The mechanism showed that butadiene is formed only from 

1-butene while COx is obtained from all the hydrocarbon species. In a similar work by the 

same authors, a power law model was proposed for two different catalysts which are Cs-

doped NiMoO4 and un-promoted NiMoO4.  The influence of Cs addition resulted in an 
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increased activation energies, increased order of reaction for butane with respect to C4 

products and with a decrease in the order for COx but without any effect on the order related 

to oxygen. The difficulty in the reduction of Cs promoted NiMoO4 resulted in the higher 

activation energies for all the products as well as n-butane. This also buttresses the fact that 

ODH of n-butane on this catalyst occurs via the Mars Van Krevelen mechanism. 

2.10      Thermodynamic Analyses 

Thermodynamic analysis for the oxidative dehydrogenation (ODH) reactions of n-butane 

and oxygen was conducted using the RGibbs in-built reactor contained in the Aspen Plus 

V8.0 software. RGibbs reactor performs rigorous reactions and multiphase equilibrium 

based on Gibbs free energy minimization algorithm. Peng Robinson equation of state was 

utilized and the binary interaction parameters were predicted for all the components by the 

software. The compositions at equilibrium for the ODH reactions were computed from 573 

K to 873 K at 1 atm with varying O2/n-C4H10 inlet molar ratios (1.0, 2.0, and 4.0 mol/mol). 

The equilibrium n-butane conversions over the temperature ranges are presented in Figure 

2.1. The conversion depended on the molar ratio of O2/n-C4H10 especially at lower 

temperatures. For direct dehydrogenation reaction, n-butane equilibrium conversion was 

very low at the initial temperatures and it increased at higher temperatures. This indicated 

that an oxidant is needed for good conversions at low reaction temperature. For the ODH 

reactions, n-butane conversion increased with increase in the molar ratio and reaction 

temperatures. An almost 100 % n-butane equilibrium conversion was observed for O2/n-

C4H10 = 4.0 mol/mol at 700 K. 
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Figure 2.1 n-butane conversion at different O2/n-C4H10 molar ratios 

The equilibrium compositions for direct dehydrogenation reaction are presented in Figure 

2.2. The formation of butenes and butadiene increased at a very low rate compared to 

hydrogen with increase in temperature. It is an indication that hydrogen is the most 

favorable product at equilibrium.  
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Figure 2.2 Equilibrium compositions for dehydrogenation at O2/n-C4H10 = 0.0 mol/mol. 

 

The equilibrium compositions for the ODH of n-butane to butenes and butadiene together 

with other possible reaction pathway products (CO, CO2, H2, and H2O) are presented in 

Figures 2.3, 2.4, and 2.5 for O2/n-C4H10 = 1.0, 2.0 and 4.0 mol/mol respectively. For O2 

and butane molar ratio of 1.0 mol/mol, butenes are the main dehydrogenation products with 

only a small amount of butadiene produced at higher temperatures. At O2/n-C4H10 = 2.0 

and 4.0 mol/mol, the equilibrium amount of butenes first increases and then decreases 

while that of butadiene increases continuously. This supports the reaction scheme that 

butadiene is obtained as a secondary product in a series reaction from butane to butenes 

then to butadiene. 
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Figure 2.3 Equilibrium compositions at O2/n-C4H10 = 1.0 mol/mol 
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Figure 2.4 Equilibrium compositions at O2/n-C4H10 = 2.0 mol/mol 
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Figure 2.5 Equilibrium compositions at O2/n-C4H10 = 4.0 mol/mol. 

 

For all the O2/n-C4H10 ratios, dry reforming products (CO and H2) are the main reaction 

products at equilibrium. This clearly indicate that n-butane dry reforming is a more 

thermodynamically favorable reaction pathway than ODH of n-butane at the same 
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condition. Hence it is very vital to design catalysts that can promote the ODH reaction 

pathway kinetically for effective production of dehydrogenation products. 
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Abstract 

NiO-Bi2O3/different support catalysts, containing 20 wt% Ni and 30 wt% Bi as metal 

weight to support weight (hereafter 20wt%Ni-30wt%Bi-O/support) have been studied for 

oxidative dehydrogenation of n-butane to butadiene. Al2O3, SiO2, ZrO2 and none (: without 

support) were used as gel and sol type supports. The activity and selectivity of oxidative 

dehydrogenation of n-butane to butadiene over the Ni-Bi-O/support catalyst strongly 

depended on the supports. The order of the butadiene selectivity for the gel-type support 

was Al2O3 > SiO2 > ZrO2 >> none, while SiO2 showed the highest butadiene selectivity 

with 1-butene feedstock. The gel-type support effect as a hierarchical nano-particle 

cohabitation was also studied by using equilibrium adsorption method for the Ni-Bi-O 

impregnation. In the sol-type support case, the order is SiO2 > Al2O3 > ZrO2, where the 

SiO2 sol shows not only superiority to gel-type, but also the best performance (n-butane 

conversion: 35.6 %, selectivity: dehydrogenation 78.3 %, butadiene 41.6 %) among 

support types and species. The sol-type SiO2 hold balanced acid and base sites cooperating 

to improve butadiene selectivity, with suppressed oxygenate products, as a result of 

accelerating redox system with non-hierarchical nano-particle cohabitation of NiO, Bi6O7 

and support SiO2. 

 

Keywords: Oxidative dehydrogenation; n-butane; butadiene; nano-particle; support; silica 

sol. 
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3.1      Introduction 

Butadiene is used mainly in the petrochemical and polymer industries as a raw material 

especially in the production of synthetic rubbers and automobile tires. It is mainly obtained 

as a byproduct from naphtha crackers (ethylene plants) with the main products being 

ethylene and propylene. The change of feedstocks from heavy into lighter (ethane and 

propane) has led to a decrease in butadiene supply as against the ever-increasing demand. 

This has led to a worldwide search for an on-purpose butadiene production technology. 

Direct dehydrogenation using mainly chromium oxide supported on alumina catalyst was 

first investigated for producing butadiene, but it requires very high temperature [1-3]. At 

such high-temperature operation, frequent catalyst regeneration is required due to coke 

deposition. Though improved processes using butenes in the presence of steam to produce 

butadiene were reported, they are highly energy intensive [4,5]  On the other hand, 

oxidative dehydrogenation with oxygen is not limited by thermodynamic equilibrium, it 

can be carried out at relatively lower reaction temperature and the catalyst deactivation is 

reduced due to the presence of oxygen [6-8]. However, controlling the product selectivity 

in ODH is a major challenge, considering the higher reactivity (than n-butane) of olefin 

products (i.e. butenes and butadiene) with oxidant forming unstable oxygenates and 

combustion products [9]. 

The performance of a catalyst in oxidative dehydrogenation is related to the acid-base 

surface character and its redox property. Many researchers have investigated different 

types of catalysts for the purpose of lower alkane oxidative dehydrogenation, some of 

which include V2O5/supports (Al2O3, SiO2, TiO2, ZrO2) [10], Cr2O3/SiO2 [11], Zn-Cr-FeO 

[12], Fe-Zn-O [13], Mg3(VO4)2/supports (Al2O3, ZrO2, MgO, CeO2) [14], 
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Mg3(VO4)2/MgO-ZrO2 [15], V2O5/MO-Al2O3 (M=Mg, Ca, Ba, Sr) [16], V2O5/silica gel 

[17], VOx/supports (USY, NaY, γ-Al2O3, α-Al2O3) [18], VOx/Ti-HMS [19], VOx/SBA-15 

[20], MoO3/MgO [21], V/supports (HMS, SBA-16, SBA-15, MCM-48) [22], V/TiO2-SiO2 

[23]. Most of these catalysts have one problem with either activity or selectivity to 

butadiene and in most cases, the first step dehydrogenation products (1-butene and 2-

butenes) dominate with little percentage of butadiene and some cracking products [8]. 

In our recent study, Ni-Bi-O/Al2O3 catalysts were shown to be effective for n-

butane oxidative dehydrogenation. In particular, 20 wt% Ni-30 wt% Bi-O/Al2O3 catalyst 

subdued oxygenate production and showed high n-butane conversion and butadiene 

selectivity. The addition of Bi2O3 to NiO was found to introduce moderate basicity and 

improve redox character [24]. We also reported that the catalyst calcination through two 

steps of appropriate temperatures positively results in the highest dehydrogenation and 

butadiene selectivity. The cohabitation as  ‘hierarchical nano-particles’ consisting of NiO, 

Bi2O3 and Al2O3 obtained at the preferable calcination condition, resulted in the redox and 

acid/base system of the combined oxides which is active and selective to the butadiene 

formation [25]. Furthermore, the composition effect of main metal species (Ni, Fe, Co) was 

also studied and improved catalyst performance was obtained on the ternary main metal 

system (Ni-Fe-Co) due to double improvements by Fe and Co respectively [26].  

The roles of supports in catalysis cannot be ignored as the support plays a 

significant role in metal oxide species dispersion and also contribute to the overall 

acidic/basic property of the catalysts. The oxidative dehydrogenation of propane using 

V2O5/supports (Al2O3, SiO2, TiO2, ZrO2) was studied and it was found that V2O5 over 

SiO2 support are more selective for propene formation mainly due to less subsequent 
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reaction to CO and CO2 compared to acidic supports such as Al2O3 and TiO2 [10]. In our 

previous reports, the same Al2O3 support was used for the catalysts, hence there is a need 

to investigate the effect of different support species on dispersing Ni-Bi-O.  

This manuscript tends to study the effect of support using Al2O3, SiO2, ZrO2 as 

shaped/calcined gel-type and un-calcined sol-type on the oxidative dehydrogenation of n-

butane to butadiene. The important role of the supports was substantiated by testing the 

Ni-Bi-O metal oxide without a support. The states of nano-particle cohabitation with 

supports were examined by using equilibrium adsorption with or without enforced 

deposition by drying for the Ni-Bi-O impregnation.  The catalytic performances with 

different supports were finally evaluated considering the textural characteristics with BET 

surface area, porosity, XRD, TEM, and TPR/TPD for redox and acid-base property. 

3.2      Experimental 

3.2.1   Catalyst Synthesis 

The nano-sized porous Al2O3 with a pore diameter of 9.8 nm and a pore volume of 0.83 

ml/g was prepared using a pH-controlled precipitation method [27-29]. For preparation, 

the boehmite precursors such as aluminum nitrate and sodium aluminate along with acid-

base pair as precipitating reagents were used. The SiO2 support was obtained from the 

market as CARIACT supplied by Fuji Silysia Chemical Ltd. The ZrO2 support was 

prepared by calcination at 550 oC for 3 h from hydrated amorphous zirconia JRC-ZRO-2 

with a surface area of 254 m2/g as the Reference Catalyst supplied by Catalysis Society of 

Japan. 
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       The Bi-Ni-O/support catalysts were prepared as standard (STD) samples by co-

impregnation methods of equilibrium adsorption and enforced deposition. In order to 

clarify the state of metal oxide species, stopping impregnation at equilibrium adsorption 

(EQA) step was applied to prepare EQA catalysts. Nickel nitrate hexahydrate 

Ni(NO3)2•6H2O (99 %, Fisher Scientific) was used as nickel source, while bismuth nitrate 

pentahydrate Bi(NO3)3•5H2O (98 %, Fluka-Garantie) was used as bismuth source. For the 

preparation of 20 wt% Ni-30 wt% Bi-O/Al2O3 catalyst, 0.99 g of Ni(NO3)2•6H2O was 

added to 80 ml of distilled water. After complete dissolution, 0.70 g of Bi(NO3)3•5H2O was 

added and stirred. 1.0 g of dried support was added for impregnation and left overnight for 

aging. The sample was dried at 120 °C for 3 h and termed as-prepared catalyst. The EQA 

as-prepared catalysts were obtained by removal of the liquid part after aging before drying. 

The calcination of the as-prepared catalyst was done in two steps. In the first step, the 

temperature was raised to 350 °C at the rate of 10 °C/min and kept for 1 h. In the second 

step, the temperature was raised again at the rate of 15 °C/min to 590 °C and kept for 2 h 

for complete activation and stabilization. 

3.2.2   Catalyst Characterization 

The elemental analyses for equilibrium adsorbed Ni-Bi-O/support catalysts were 

obtained using the ICP instrument: ULTIMA 2 (HORIBA Scientific). The textural 

characteristics such as surface area and pore structure were analyzed on Micromeritics 

ASAP 2020 instrument (Norcross, GA), the pore surface area, pore volume, and pore 

diameter were measured using BJH adsorption method. X-ray diffraction of calcined 

samples was analyzed from (2) range of 5 ° to 80 ° using Rigaku Miniflex II desktop X-
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ray diffractometer having Cu Kα radiation (wavelength λ=1.5406 Å) and 30 mA and 40 

kV as operating parameters, a step size of 0.02o and a speed of 2 o/min. 

       The catalyst morphologies were analyzed using a high-resolution transmission 

electron microscope (HRTEM-model JEM-2100F) with an acceleration voltage of 200 kV. 

The redox character and acid-base property were analyzed using Temperature programmed 

reduction (TPR) and temperature programmed desorption (TPD) using BEL-CAT-A-200 

chemisorption instrument. It is made up of a quartz sample holder having a furnace 

(suitable for high temperature), a mass spectrometer and a thermal conductivity detector 

(TCD). Injection of gas pulses with standard volume in helium background flow establishes 

the linearity of the TCD response. The redox property measurement was done using a gas 

mixture of Ar/H2 (95/5 vol%) having a total flow rate of 50 cm3/min. 100 mg of the calcined 

catalyst was preheated for 3 h at 300 oC in inert He after which it is cooled to room 

temperature. It was then heated at the rate of 20 oC/min up to 900 oC. H2 intake was 

recorded with a TCD and CuO was used as a reference for calibrating the consumption of 

H2. Ammonia and carbon dioxide temperature programmed desorption (NH3 and CO2 

TPD) were carried out using the same equipment (BELCAT system) for acidity and 

basicity measurements respectively. 100 mg of the calcined catalyst sample was pretreated 

for 1 h at 500 oC using inert He (50 ml/min). It was then exposed to He/NH3 mixture 

(He/CO2 mixture for CO2 TPD) in a volume ratio of 95/5 vol% for 30 mins at 100 oC. 

Gaseous NH3 (CO2) was removed by purging using He for 1 h and then TPD was performed 

using the same flow of He at a rate of 10 oC/min up to 600 oC and the desorbed gas (NH3 

or CO2) was monitored using mass spectroscopy or TCD detector. 
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3.2.3   Catalyst Testing 

The oxidative dehydrogenation reaction was carried out in an automated fixed bed 

reactor purchased from BELCAT, Japan. The as-synthesized catalyst (300 mg) was loaded 

into the reactor and calcined under air atmosphere. After calcination, the reaction started 

under a nitrogen atmosphere. The feed n-butane contact time was maintained at 0.42 h ·

g/mol. The total feed flow rate was maintained at 31.2 ml/min. The effect of three different 

temperatures (400, 450 and 500 oC) and various oxygen to n-butane ratio molar ratio (O2/n-

C4H10 = 1.0, 2.0 and 4.0 mol/mol) were investigated. The products were analyzed through 

an online GC system, (Agilent, 7890N). The hydrocarbons and oxygenates were analyzed 

using FID and GC-Gas Pro capillary column (L: 60 m and ID: 0.32 mm), while gases, N2, 

O2, CO and CO2, and H2, respectively were detected using TCD and Shin Carbon 80/100 

mesh SS column (He carrier) and MS5A 60/80 mesh SS column (Ar carrier). The products 

were confirmed by comparing with standard samples. The n-butane conversion, products 

selectivity were measured using the balance of carbon. As O2 conversion is very important 

for selectivity in this experiment (n-butane oxidative dehydrogenation), it was also 

measured. 

3.3      Results and Discussion 

3.3.1   Catalyst Testing 

3.3.1.1   Effect of support and the species 

The effects of support and the species on the activity (n-butane conversion) and the 

selectivity in the standard (set up in our previous report [24]) reaction condition: 450 
o
C, 

O2/n-C4H10 = 2.0 are shown in Table 3.1. The O2 conversion measured is also shown in 
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Table 3.1. The dehydrogenation products (DH: 1-butene, t-2-butene, cis-2-butene, and 1,3-

butadiene; BD: 1,3-butadiene), oxygenate and cracked products (OC: carboxylic acids, 

C2H4, C3H6 and CO2) and partial oxidation (PO: CO and H2). The other gases CH4, C2H6, 

and C3H8 were also detected in negligible quantities. All the supported catalyst showed 

superior performance compared to the unsupported catalyst (containing only metal species 

NiO and Bi2O3) and the selectivities to the various products depends on the type of support 

used. The related product route map from n-butane to butadiene with by-product formation 

is shown in Figure 3.1, corresponding to Table 3.1. The map in Figure 3.1 includes 

indirectly related reaction routes, DDH: direct dehydrogenation, and CB: combustion, out 

of broken line square.  
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Table 3.1 Comparison of catalytic performance for support species in Ni-Bi-O catalyst 

Catalyst support SiO2 Al2O3 ZrO2 none 

n-C4H10 conversion [%] 

(O2 conversion) 

17.6 

(25) 

24.0 

(38) 

23.7 

(61) 

4.8 

(15) 

Selectivity*1 [C%] 

DH 
79.1 75.1 48.5 31.5 

2-C4H8 21.7 23.0 10.9 10.7 

1-C4H8 25.5 15.7 17.5 17.7 

BD 31.9 36.4 20.1 3.1 

OC 17.5 23.7 51.5 64.7 

PO 3.4 1.2 0.0 3.8 

BD/DH % 40.4 48.5 41.5 9.8 

(1-C4H8 + BD)/DH %*2 72.6 69.4 77.5 66.0 

BD/(1-C4H8 + BD) %*3 55.6 69.8 53.5 14.9 

BD yield 5.6 8.7 4.8 0.1 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial 

oxidation. *2 selectivities at 1st step dehydrogenation, *3 selectivities at 2nd step 

dehydrogenation 

 

The butadiene selectivity for the catalyst support is in the order Al2O3 > SiO2 > 

ZrO2 >> none (only Ni-Bi-O), while n-butane conversion is Al2O3 = ZrO2 > SiO2 > none. 

For the main reaction selectivity, DH selectivity is SiO2 > Al2O3 > ZrO2 > none, and OC 

selectivity is reversely: none > ZrO2 > Al2O3 > SiO2 which clearly shows a trade-off 

relationship. PO selectivity is almost negligible in all the supports and it follows the order 
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as: none > SiO2 > Al2O3 > ZrO2. The Ni-Bi-O metal oxides without support (none) showed 

only very small activity (4.8 %) and negligible butadiene selectivity (3.1 C%) which clearly 

indicate that the effective catalytic performance in oxidative dehydrogenation reactions 

needs suitable support. Among the supports, 20wt% Ni 30wt% Bi on Al2O3 showed the 

highest butadiene selectivity (36.4 C%) at the highest n-butane conversion (24.0 %) 

followed by SiO2 and ZrO2. In particular, SiO2 and Al2O3 support catalysts showed 

comparatively fewer tendencies toward large OC and PO selectivities. Contrarily ZrO2 

support catalyst has a strong tendency toward OC (51.5 C%) probably due to its interaction 

with Bi2O3 that generates more acidic sites. 

 

Figure 3.1 Route map from n-butane to butadiene including by-product formation 

In Table 3.1, selectivity parameters for inside dehydrogenation from n-butane to butadiene 

through 1-butene intermediate are also shown as (1-C4H8 + BD)/DH: selectivity at 1st step 

dehydrogenation, BD/(1-C4H8 + BD): selectivity at 2nd step dehydrogenation, and BD/DH: 
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two- step total selectivity = [(1-C4H8 + BD)/DH] x [BD/(1-C4H8 + BD)], based on the 

concept for selective conversion from n-butane to butadiene as shown in Figure 3.1 from 

n-butane through 1-butene intermediate to butadiene. The values of the parameters in Table 

3.1 shows that, for the support system, the values of the selectivity at 1st step 

dehydrogenation: (1-C4H8 + BD)/DH are similar, around 70 % even though for ZrO2 

support is close to 80 %, while the values of the selectivity at 2nd step dehydrogenation: 

BD/(1-C4H8 + BD) varied from 70 % to 15 % in the order of the support: Al2O3 > SiO2 > 

ZrO2 > none. Al2O3 shows the highest value of the two-step total selectivity: BD/DH (48.5 

%). The strong point of Al2O3 support is that the catalyst showed high selectivity at both 

1st and 2nd step dehydrogenation, which probably originates from the supporting state of 

NiO and Bi2O3 nano-particle cohabitation. 

3.3.1.2   Equilibrium adsorbed metal oxide catalysts (EQA) 

In order to further investigate and clarify the interaction effect of Bi2O3/support 

with a small amount of Ni species on the catalyst performance, equilibrium adsorption 

(EQA) catalysts and catalyst prepared under standard impregnation condition (STD) of 

EQA with enforced deposition were compared as presented in Table 3.2. The case of EQA 

catalyst contains only 20-25 % Ni and 70-90 % Bi compared to the amounts in the catalyst 

prepared with standard impregnation method respectively. This means the STD catalyst 

includes main Ni species almost on the Bi2O3 species dispersed over the support. 

In the case of EQA NiO-Bi2O3 metal oxide over Al2O3 catalyst, the result shows 

that less amount but highly dispersed NiO species exist which are very active for oxygenate 

production. The presence of Bi2O3 as oxygen supplier with highly dispersed Ni species 

work to activate the active site for oxygenate production which consequently reduces the 
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dehydrogenation selectivity of the catalyst. The addition of NiO species in the 2nd layer for 

the case of standard impregnation suppressed the OC production. In the case of ZrO2 

support, a reverse trend was observed. The equilibrium adsorption catalyst showed high 

dehydrogenation and butadiene selectivity. The fact suggests that the active species for OC 

formation are made from excessively impregnated Ni on highly dispersed Bi2O3 over ZrO2 

support due to Bi species affinity against the support. However, in the case of EQA Ni-Bi-

O/SiO2, the oxygenate formation remains similar, which indicates the very less adsorption 

capability of the oxygen species on the Ni species over SiO2 support and also a low metal 

supporting capacity compared to Al2O3 support.  
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Table 3.2 Comparison of EQA supporting step catalysts in Ni-Bi-O/support catalysts 

Catalyst support SiO2 Al2O3 ZrO2 

Step EQA (STD)  EQA (STD)  EQA (STD) 

Ni/Bi wt% 4/22 (20/30) 5/24 (20/30) 4/27 (20/30) 

n-C4H10 conversion [%] 

O2 conversion 

14.1 (17.6) 

19  (25) 

29.1 (24.0) 

66  (38) 

29.4 (23.7) 

63  (61) 

Selectivity*1 [C%] 

DH 79.7 (79.1) 56.9 (75.1) 61.5 (48.5) 

2-C4H8 24.6 (21.7) 20.8 (23.0) 13.9 (10.9) 

1-C4H8 31.7 (25.5) 10.6 (15.7) 10.9 (17.5) 

BD 23.4 (31.9) 25.5 (36.4) 36.7 (20.1) 

OC 17.5 (17.5) 40.2 (23.7) 38.3 (51.5) 

PO 2.8  (3.4) 3.0  (1.2) 0.2  (0.0) 

BD/DH % 29.4 (40.4) 44.8 (48.5) 59.7 (41.5) 

(1-C4H8 + BD)/DH %*2 69.1 (72.6) 63.4 (69.4) 77.4 (77.5) 

BD/(1-C4H8 + BD) %*3 42.5 (55.6) 70.6 (69.8) 77.1 (53.5) 

BD yield 3.3  (5.6) 7.4 (8.7) 10.8 (4.8) 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial oxidation.                  

*2 selectivities at 1st step dehydrogenation, *3 selectivities at 2nd step dehydrogenation 

 

Comparing the EQA and STD catalysts for the different supports, for the case of 

Al2O3, it showed that more NiO amount is required for DH (BD) selective catalyst with 

suppressed OC selectivity. This is possibly because, the acidic support interacts with the 

metal oxide species having the required basic character to moderate the acidic/basic 
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property of the resulting catalyst.  This is required for hydrogen abstraction and 1-butene 

intermediate adsorption. Low amount of NiO in the 1st layer with high concentration of 

bismuth oxide species has active oxygen species that increases OC formation. Conversely, 

EQA ZrO2 supported catalyst has basic sites as well as acidic sites leading to high DH (BD) 

selectivity and high OC selectivity. While such basic character is covered by enforced 

deposition and subsequently making it less basic, activity and BD selectivity wise, ZrO2 is 

good as catalyst support but the oxygenate product is too high. Both ZrO2 and Bi2O3 are 

typical basic oxides. The mixture of basic oxides sometimes shows acidity. Bi3+ in Zr4+-O-

Zr4+ network may generate acid site due to valency unbalance like in zeolite network. The 

interaction of ZrO2 and Bi2O3 is considered strong enough to generate acid sites. Based on 

this, a  mixture of NiO and Bi2O3 may show suppressed basicity of Bi2O3. This fact also 

buttresses the importance of basic character in DH. SiO2 has weak adsorption and 

dispersion strength and hence it catalyst showed similar DH and OC selectivities for both 

EQA and STD catalysts. Even though conversion and BD selectivity increase for the STD 

catalyst probably due to the increase in 1-butene intermediate adsorption as well as basic 

sites that activates terminal methyl group, as can be observed in the decrease of 1-butene 

selectivity value from 31.7 C% to 25.5 C% for EQA and STD catalysts respectively. 

3.3.1.3   Support effect on 1-butene feedstock reaction 

In order to confirm the 2nd step reaction selectivity dependence on the supports, 1-butene 

was used as a feedstock and the result at standard reaction condition is shown in Table 3.3.  
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Table 3.3 Comparison of support species using 1-butene as feedstock in Ni-Bi-O catalyst 

Catalyst support SiO2 Al2O3 ZrO2 

Feedstock 1-C4H8
=  (n-C4H10) 1-C4H8

=  (n-C4H10) 1-C4H8
=  (n-C4H10) 

1-C4H8
= (n-C4H10) conv 46.8 (17.6) 74.3 (24.0) 53.6 (23.7) 

Selectivity [C%]  

BD 78.3 (31.9) 41.3 (36.4) 48.0 (20.1) 

2-C4H8
= 18.1 (25.5) 52.1 (15.7) 49.1 (17.5) 

DH+ 96.4 (79.1) 93.4 (75.1) 97.1 (48.5) 

OC 1.2 (17.5) 4.3 (23.7) 2.6 (51.5) 

PO 2.4 (3.4) 2.3 (1.2) 0.3 (0.0) 

BD/DH+ 81.2 (40.4) 44.2 (48.5) 49.4 (41.5) 

BD yield 36.7 (5.6) 30.6 (8.7) 25.7 (4.8) 

*1 DH+: dehydrogenation and isomerization, BD: butadiene, OC: oxygenate and the cracked, 

PO: partial oxidation. *2 selectivities at 1st step dehydrogenation, *3 selectivities at 2nd step 

dehydrogenation 

The case of n-butane feedstock comparison among the supports has already been 

discussed in Table 3.1. But comparing with 1-butene feedstock, all the supports showed 

superior performance because of the ease of activation and abstraction of the terminal H 

atom. Even though there is isomerization to 2-butenes, which are mostly desorbed into the 

gas phase without being converted into oxygenate and cracking (large OC) products 

especially for Al2O3 and ZrO2 supports. Among the supports, using 1-butene feedstock, 

the conversion is in the order: Al2O3 > ZrO2 > SiO2 because it combines both 

dehydrogenation and isomerization degree (which is high among Al2O3 and ZrO2) while 

SiO2 has the least 2-butenes and hence OC selectivity. SiO2 support showed a very high 

BD selectivity (78.3 C%) which is an indication of its superiority toward terminal methyl 
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H-abstraction (beta-position). The interaction of Bi2O3 with Al2O3 and ZrO2 generates 

more strong acidic sites that facilitate the isomerization to 2-butenes with a resulting 

decrease in BD selectivity. SiO2 support maintains the relatively weak acid sites and 

strong/moderate basic sites even after the metal oxide species impregnation. 

3.3.1.3   Sol-derived support catalyst 

In order to further utilize the superiority of SiO2 support especially in terms of DH 

selectivity and to further investigate the possibility of improving its conversion, different 

type supports (sol-type) for Al2O3, ZrO2 and SiO2 were tested comparing with standard 

type supports (gel-type) studied above. The main aim is to enhance the dispersion of 

catalyst species as the sol-type supports present no restriction in terms of pore volume 

dispersing ability. The result is presented in Table 3.4.   
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Table 3.4 Comparison of sol-type supports in Ni-Bi-O/support catalysts 

Catalyst support SiO2 Al2O3 ZrO2 

Support type Sol  (gel) Sol  (gel) Sol  (gel) 

n-C4H10 conversion [%] 

O2 conversion 

35.6  (17.6) 

54  (25) 

16.9  (24.0) 

24  (38) 

18.3  (23.7) 

59  (61) 

Selectivity*1 [C%]  

DH 78.3  (79.1) 80.2  (75.1) 29.9  (48.5) 

            2-C4H8 18.6  (21.7) 27.2  (23.0) 8.4  (10.9) 

            1-C4H8 18.1  (25.5) 16.9  (15.7) 15.2  (17.5) 

       BD 41.6  (31.9) 36.1  (36.4) 6.3  (20.1) 

OC 20.5  (17.5) 14.7  (23.7) 70.1  (51.5) 

PO 1.1  (3.4) 5.0  (1.2) 0.0  (0.0) 

BD/DH % 53.1  (40.4) 45.0  (48.5) 21.2  (41.5) 

(1-C4H8 + BD)/DH %*2 76.2  (72.6) 66.1  (69.4) 72.0  (77.5) 

BD/(1-C4H8 + BD) %*3 69.7  (55.6) 68.1  (69.8) 29.4  (53.5) 

BD yield [C%] 14.8  (5.6) 6.1  (8.7) 1.2  (4.8) 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial 

oxidation. *2 selectivities at 1st step dehydrogenation, *3 selectivities at 2nd step 

dehydrogenation 

 

For the Al2O3 supported catalysts, the gel type showed superior performance 

compared to the sol type in terms of conversion, the DH and OC shows trade-off 

relationship with the sol type slightly better in DH and also low OC which probably is due 

to its low interaction with Bi2O3 that reduces the acid sites generation but showed same 
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BD selectivity. ZrO2 support case shows a complete negative trend in terms of both 

conversion and DH (BD) selectivity with a very high OC selectivity. This can be due to 

the fact that Bi2O3 interaction with the ZrO2 sol allows for high oxygen concentration at 

the catalyst surface suitable for oxygenate and cracked products formation due to strong 

adsorption and this is similar to the case of equilibrium adsorbed catalyst discussed above. 

SiO2 sol type support showed a very interesting performance as it improves both n-butane 

conversion from 17.6 % to 35.6 % and also BD selectivity from 31.9 C% to 41.6 C% 

thereby greatly improving BD yield almost 3 times from 5.6 C% to 14.8 C%. This is 

probably due to the high dispersion of silica sol in the active metal species, the 

maintenance of the Bi2O3/SiO2 connection and also the presence of controlled acid and 

basic sites suitable for high DH (BD) selectivity.  

3.3.2   Catalyst Characterization 

3.3.2.1   Surface area and pore structure 

The properties of the catalyst were analyzed using various physicochemical 

techniques. The main aim is to determine the nature of active sites and their 

interaction/dispersion with different supports. In the case of Al2O3 support, the fractal 

surface is important for cohabitating both Ni and Bi species [24,25]. The BET surface area 

and pore structure including pore surface area, pore volume and average pore diameter of 

various supports Al2O3, SiO2, ZrO2 and none (without support) are presented in Table 3.5. 

The catalyst without support (none), showed the BET surface area of 16 m2/g (25 m2/g-

support: equivalent to catalyst with support). All catalysts exhibited lower BET surface 

area based on catalyst weight compared with the supports. Pore surface area and pore 

volume based on catalyst weight also reduced similarly to BET surface area. Since all the 
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supports were impregnated with 20 wt% Ni and 30 wt% Bi, the comparison between 

support and catalyst about before-and-after changes in the BET surface area and pore 

structures (pore surface area, pore volume and pore diameter) was performed using the 

values based on weight of support i.e. the support values are based on its weight, while 

catalysts are based on the support part weight as shown in Table 3.5.  

Table 3.5 Physical properties of catalysts and supports. 

Catalyst: 

(Support) 

BET surface area Pore surface area Pore volume 
Average pore 

diameter 

[m2/g- 

catalyst]a 

[m2/g- 

support]b 

[m2/g- 

catalyst]c 

[m2/g- 

support]d 

[cm3/g- 

catalyst]e 

[cm3/g- 

support]f 
 [nm]g 

SiO2 147 233 

(242) 

156 248 

(263) 

0.66 1.05 

(1.22) 

16.9 

(18.6) 

Al2O3 166 263 

(276) 

193 306 

(338) 

0.51 0.81 

(0.83) 

10.6 

(9.8) 

ZrO2 26 41 

(54) 

28 44 

(63) 

0.12 0.19 

(0.16) 

17.1 

(10.2) 

none 16 25 14 22 0.22 0.35 62.9 

SiO2 sol 91 144 87 138 0.64 1.02 29.1 

Al2O3 sol 185 294 205 326 0.16 0.25 3.1 

ZrO2 sol 102 162 108 171 0.13 0.21 5.0 

aBET surface area, c,e,gSurface area, pore volume, and average pore diameter measured using 

BJH isotherm, b,d,f Surface area and pore volume calculated to support weight base by using the 

equation: SA or PV×[(MOx/M)+100]/100, where M = metal wt%; MOx= metal oxide wt%; SA 

= surface area; PV = pore volume. 
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The catalysts with Al2O3 support showed a well-known trend with high BET and 

pore surface area values of 263 and 306 m2/g-Al2O3 compared to only Al2O3 support, 276 

and 338 m2/g respectively. The catalyst with SiO2 support showed slightly lower values, 

233 and 248 m2/g-SiO2 of BET and pore surface area relative to SiO2 support 242 and 263 

m2/g, respectively. The Al2O3 catalyst also showed high pore volume values of 0.81 ml/g-

Al2O3 equivalent to the support value of 0.83 ml/g while the SiO2 catalyst gave a lesser 

pore volume of 1.05 ml/g-SiO2 compared to the support value 1.22 ml/g.  

The ZrO2 catalyst showed a lower surface area than Al2O3 and SiO2 catalysts. The 

values 41 and 44 m2/g-ZrO2 for BET and pore surface area also reduced relative to ZrO2 

support values of 54 and 63 m2/g respectively.  The catalysts without any support showed 

lower values of surface area compared to the other catalysts with support. Furthermore, the 

comparison among the different support species should be based on values corrected with 

specific gravity SiO2: 2.2, Al2O3: 3.3 and ZrO2: 5.7. After the correction, Al2O3 showed 

nearly 2 times of SiO2 catalyst surface area and ZrO2 showed nearly half of SiO2 catalyst 

surface area and pore volume respectively, while Al2O3 showed 1.2 times of SiO2 catalyst 

pore volume 

The catalyst having silica sol as support showed decreased but still large values of 

BET and pore surface area compared to the silica gel-type support catalyst.  On the 

contrary, an increased pore diameter was obtained due to a pore volume which is equivalent 

to the gel-type support catalyst. This probably suggests the dispersion of the silica sol in 

the active species thereby increasing the metal species-support interaction. The catalyst 

having Al2O3 sol and ZrO2 sol as support showed increased and larger values of BET and 

pore surface area compared to the gel-types supports respectively. 
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The physical properties of catalysts shown in Table 3.5 are not enough to explain 

the catalytic performance, especially activity in terms of n-butane conversion. The catalytic 

performances depend not only on the physical properties but also on chemical 

characteristics. 

3.3.2.2   X-ray Diffraction 

The X-ray diffraction (XRD) pattern for catalysts of 20 wt% Ni-30 wt% Bi-O metal 

oxides over different supports, species: Al2O3, SiO2, ZrO2 and none (without support) is 

shown in Figure 3.2. The main diffraction peaks in Figures 3.2 and 3.3 were indicated by 

several marks and the 2 theta range was expanded for NiO peaks identification. 

 

Figure 3.2 XRD patterns for catalysts of 20 wt% Ni-30 wt% Bi-O over different supports: (a) Al2O3 (b) 

SiO2 (c) ZrO2 and (d) none. 
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As reported in our previous work with Al2O3 supported catalyst [24], the NiO 

species were not detected by XRD for Al2O3 supported and non-supported catalysts. 

Therefore, the NiO species are expected to be as nanoparticles (less than 3 nm) or 

amorphous, which are below the detection limit of XRD. The XRD patterns of bismuth 

oxide over different supports show monoclinic alpha-Bi2O3, tetragonal beta-Bi2O3, Bi6O7 

and amorphous (semi-crystalline) peaks. The crystallinity (determined by peak height) and 

crystal size (reverse of half-height width) of beta-Bi2O3 in the Al2O3 catalyst was 

significantly higher than the other catalysts. In our previous study [25], we showed that the 

Al2O3 catalysts contain partially Bi2O3 as alpha-phase, and the main phase as beta-phase 

with a main peak at 2θ = 27.38° which is highly dispersed crystalline, and also active for 

butadiene formation.  In the SiO2 catalyst case, beta-Bi2O3 is not as clear crystalline but 

rather near the amorphous. Instead, another main peak around 2θ = 28-29° which is a new 

phase of bismuth oxide was observed. NiO/Al2O3 and NiO/SiO2 show XRD peaks of fine 

and large particles, 3 nm and 10 nm, respectively. The sizes of NiO particles in NiO/Al2O3 

and NiO/SiO2 were also confirmed with TEM. Though NiO-Bi2O3/Al2O3 catalyst did not 

show clear diffraction peaks of NiO, porosity showed fine particles formation as particle 

void after 2nd step deposition mainly consisting of NiO. NiO-Bi2O3/SiO2 catalyst showed 

assignable diffraction peaks of 3 nm NiO fine particles. The formation of bismuth oxide 

Bi6O7 phase claimed in both of BiOx/SiO2 and NiO-BiOx/SiO2 catalyst was shown as an 

appearance of the new broad diffraction peak at narrower d spacing position instead of 

Bi2O3 main peak. XRD of SiO2 supported catalyst shows no alpha-Bi2O3 hence the low 

selectivity to OC products. In the bismuth oxide structure, O2 are stabilized to be less active 

for oxygenate production. Furthermore, the larger NiO with Bi6O7 phase in the SiO2 
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catalyst is less active but highly selective for dehydrogenation. The ZrO2 support catalyst 

showed more broadening and nearly amorphous, except ZrO2 support peaks around 2θ = 

28, 31 and 34° which agreed with the reported patterns [30]. NiO species are highly 

dispersed on probably alpha-Bi2O3 phase as nanoparticles, which are more active for 

oxygenate production. For the unsupported case, a highly crystalline alpha-Bi2O3 was 

observed around 2θ = 27.1° and 32.9° which is less active and selective but does not show 

beta phase. NiO peaks were observed around 2θ = 37° and 43° in the SiO2 and ZrO2 

catalyst. These results clearly indicate that the metal oxides combination is not effective as 

independent large crystallites of both were observed and that also contributed to the low 

surface area. They do not form nano-consortium of metal oxides as well as mixed oxide 

interface [31] and hence their resulting less activity and selectivity to butadiene. This shows 

the importance of support for bismuth oxide phase building as well as mixed oxide 

interface to increase interaction among metal oxides. The activity and selectivity study 

shows that both Al2O3 and SiO2 are able to stabilize Ni and Bi species as hierarchical 

cohabiting nanoparticles with highly dispersed bismuth oxide species as 2nd layer on the 1st 

layer of support and NiO dispersed as 3rd layer on bismuth oxide species with a high surface 

area. On the contrary, ZrO2 has more strongly and highly dispersed Bi2O3 and NiO which 

caused large OC active species at the surface. A highly crystalline beta-Bi2O3 is dispersed 

on silica support similar to alumina support at the stage of EQA as shown in Figure 3.3 (a), 

the excess amount of bismuth oxide species and Ni impregnation at 2nd stage cooperate to 

ease the formation of Bi6O7 with fine NiO particles in the standard catalyst shown in Figure 

3.3 (b). 
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XRD pattern of 20 wt% Ni-30 wt% Bi-O/silica sol catalyst is shown in Figure 3.3 

represented as letter (c) compared with (b) the silica gel catalyst. The silica sol catalyst 

showed clear peaks with broad widths around 2θ = 29 and 32.5°, 37 and 43° which are 

assigned to Bi6O7 phase and NiO, respectively. This nano-particle cohabitation of Bi6O7 

and NiO was obtained mainly due to the less amount of beta-Bi2O3 satisfying the surface 

area of the sol-derived SiO2 apart from the gel-type SiO2. This cohabitation is also obtained 

as highly dispersed nanoparticles by sol-type SiO2 nanoparticles preventing separated 

crystallization of alpha-Bi2O3 and NiO like the catalyst without support. The nanoparticles 

of this phase work either as active and selective sites or as active oxygen supplier for active 

1st and 2nd step dehydrogenations thereby greatly enhancing activity and butadiene 

selectivity. 
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Figure 3.3 Comparison of X-ray diffraction pattern for supporting stage and support species in Ni-Bi-O 

catalyst (a) EQA SiO2 gel (b) SiO2 gel and (c) SiO2 sol 

 

3.3.2.3   TEM observation 

The TEM images of 20 wt% Ni-30 wt% Bi-O metal oxides over different supports 
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wt% Ni-30 wt% Bi-O over Al2O3 have been explained in our previous report [25]. It clearly 
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comparison of the XRD results proved that NiO-Bi2O3 solid solution does not exist. SiO2 

supported Bi6O7 (= Bi2O2.33) species similar to 2:1 mixed phase of Bi2O2 and Bi2O3 were 

assigned. NiO/Bi2O3 mixed oxide phase was not proved from Figure 3.4 (b) but suggested 

experimentally with HRTEM. Non-hierarchical amorphous particles consisting of ca. 10 

nm NiO on fine (much less than NiO size) bismuth oxide nanoparticles were observed. In 

our previous paper for Al2O3 gel supported catalyst [24], a hierarchical nanoparticle 

cohabitation was clearly proved experimentally with HRTEM. Supporting the result with 

XRD measurement in this paper for the Al2O3 gel supported catalyst, the hierarchical 

structure was also shown using the preparation procedure including the stepwise 

depositions. 
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Figure 3.4 TEM image of 20 wt% Ni-30 wt% Bi-O/support:  (a) Al2O3 (b) SiO2 and (c) ZrO2 

3.3.2.4   Temperature programmed reduction 

In oxidative dehydrogenation reactions, the redox character is an important factor 

considered for selective catalytic activity. Temperature programmed reduction (TPR) is 

used to measure the extent of reducibility of active species. Increased reducibility of active 

species accelerates the redox cycle thereby enhancing the catalyst activity. Figure 3.5 

shows the H2-TPR analyses of Ni-Bi-O supported on (a) Al2O3 (b) SiO2 (c) ZrO2 and (d) 

none (without support). TPR profiles of each single oxides of NiO/SiO2 and BiOx/SiO2 as 

reference helped in better understanding to enforce the discussion on the TPR results shown 

a)

b)

c)
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in Figure 3.5. NiO/Al2O3 and Bi2O3/Al2O3 were already shown in the previous paper [24]. 

Starting temperature of TPR is specific for each material and important for the material 

function, but peak temperature is more important as the catalyst and is dependent on redox 

catalysis, as shown in Figure 3.5. Since, TPR peak temperature is dependent on the mass 

of sample and reaction speed, TPR data was measured at the same condition, the same 

mass of the sample, the same H2 flow rate and the same temperature programming. In this 

case, TPR data can be discussed not based on the starting temperature but on peak 

temperature with peak area after peak deconvolution (similar to NH3-TPD). According to 

our previous study [25], Ni-Bi-O/Al2O3 showed two reduction peaks (500-650 oC) that are 

attributed to the reduction of NiO species, while the third reduction peak (700 oC) is 

ascribed to the reduction of Ni and Bi oxide species. The NiO species of such sample was 

reported to remain steady as an active one. The presence of such reduction peaks showed 

high selectivity to butadiene and low selectivity to oxygenate and cracked (OC) products.  
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Figure 3.5 H2-TPR study for catalysts of 20 wt% Ni-30 wt% Bi-O over different supports: (a) Al2O3 (b) 

SiO2 (c) ZrO2 and (d) none 

The TPR profile of Ni-Bi-O supported on SiO2 showed an intense reduction peak 

at 500 ºC larger than Al2O3 support and a small reduction peak from 625 ºC and extends 

up to 700 ºC. The particle size effect can be seen over SiO2 support. The easy reduction of 

Ni-Bi-O metal oxide species at 500 ºC shows the presence of larger particle not firmly 

interacting with the support. These changes of reducibility over SiO2 is considered to relate 

to the different state of NiO and Bi2O3 coordination between each other and the support. 

This low reduction temperature of SiO2 is suitable for high BD selectivity. In order to 

simplify for discussion, the TPR profiles were divided into three regions: i) easily reducible 

(350-550oC) ii) moderately reducible (550-650oC) and iii) difficult reducible (650-850oC) 

with the total as shown in Table 3.6.  
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The case of silica sol is also similar to the gel-type silica even though the H2 

consumption slightly increases as presented in Table 3.6. The shifting of reduction peak to 

higher temperatures clearly shows the formation of smaller particle of Bi2O3 interacting 

strongly with support. In the case of Al2O3 support, the maximum consumption of H2 

occurs at 700 oC, indicating the presence of less reducible species. In the case of Ni-Bi-O 

supported on ZrO2, a shift in the reduction towards high temperatures occurs. The onset of 

reduction starts at 350 ºC and second reduction peak maximum at 570 ºC, while third 

reduction peak starts at 625 ºC and extends up to 700 ºC. Compared to Al2O3, the reduction 

peak at 575 ºC for ZrO2 is ascribed to the reduction of Ni and Bi species strongly 

coordinated each other over the support. This peak at 575 ºC plays a big role in ZrO2 

support for more formation of high oxygenate and cracking products. The H2-TPR profile 

of unsupported bulk Ni-Bi-O metal oxides showed a broad reduction from 300-800 ºC. The 

reducibility of the bulk metal oxides showed early onset of reduction from 300 oC and 

extends up to 800 ºC. 
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Table 3.6 H2 consumption in TPR of 20 wt% Ni-30 wt% Bi-O/support catalysts. 

Catalyst support 
TPR 

H2 consumption [m mol/g]  

Reduction 

temperature range 

I 

(350-550 ºC) 

II 

(550-650 ºC) 

III 

(650-850 ºC) 
total 

SiO2 3.74 1.12 0.13 4.99 

(SiO2 sol) (3.75) (1.10) (0.38) (5.23) 

Al2O3 0.77 1.50 2.63 4.90 

ZrO2 2.65 2.61 0.66 5.92 

none 1.47 1.00 1.31 3.78 

 

The relationship between butadiene selectivity BD and OC (oxygenate and 

cracked) selectivity in ODH is shown in Figure 3.6. The oxygen mobility as monitored by 

H2 reduction from TPR shows that butadiene selectivity is nearly inversely proportional to 

OC production. The butadiene shows valley type relation over four different supports and 

volcano type for large OC production with TPR peak temperature. Among the supports, 

the Ni and Bi species on ZrO2 are highly dispersed and works for high oxygenate formation. 

The metal oxide site increased to activate oxygen species at the surface for oxygenate 

formation. This is unlike Al2O3 support where the nanoparticle sizes were observed as 

rather largely uniform and rigidly placed from TPR reduction profile and TEM analysis. In 

the case of SiO2, the Ni-Bi-O species as seen from TPR are easily reducible and rather free 

from support in spite of the high porous character as seen from BET analysis. The species 

are preferable to butadiene selectivity. In SiO2 case, the metal species are weakly dispersed 
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and hence do not activate oxygen species for oxygenate formation at the reaction condition. 

Even though, the species are easily reduced with SiO2 (both gel and sol-type) case and 

difficult to reduce in Al2O3, both produce high selectivity to butadiene with suppressed 

oxygenate formation. Decisively, for selective butadiene formation, feed n-butane and 

intermediate butene reduce NiO species, which is re-oxidized by gas phase oxygen without 

supplying oxygen species for oxygenate formation.  

 

Figure 3.6 Correlation between TPR peak position and reaction selectivity: BD and OC, parameter: A) 

O2/n-C4H10, B) reaction temperature. 

 

The dependency on nickel redox system is further substantiated by measuring the spent 

catalyst. In DH, there was no carbon deposition observed, while a large amount of coke 
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formation occurred in the absence of oxygen. This shows that, in the absence of oxygen, 

the redox cycle is not effective and leads to excessive coke formation.   

3.3.2.4   Temperature programmed desorption (CO2/NH3) 

The basicity and acidity of the catalysts were measured using CO2- and NH3-

temperature programmed desorption technique (CO2- and NH3-TPD) respectively. The 

results for catalysts of 20 wt% Ni-30 wt% Bi-O metal oxides over different supports, 

species: Al2O3, SiO2 (gel and sol type), ZrO2 and none (without support) are shown in 

Table 3.7. CO2-TPD profiles are decomposed into three peaks centered at ca. 170 oC, ca. 

300 oC and ca. 400 oC, named as I, II and III with referring to weak base, moderate base, 

and strong base, respectively. Similarly, NH3-TPD profiles were decomposed into three 

peaks in the range of 100-250 oC, 250-400 oC and 400 oC <. The three peaks are named as 

I, II and III corresponding to weak acid, moderate acid, and strong acid sites, respectively.  

Among the support species, all the four catalysts showed both basic and acidic sites. 

The basic sites are required for terminal H abstraction from n-butane and 1-butene 

intermediate while the acidic sites are necessary for 1-butene intermediate adsorption. The 

quantitative orders of total basicity is: Al2O3 > ZrO2 > SiO2 > none, and acidity for both 

total, weak and moderate is: Al2O3 > SiO2 > ZrO2 > none. The balance of acidity to basicity 

(ratio of acidic to basic sites) is in the order: SiO2 > Al2O3 > ZrO2 > none. This order is the 

same as DH selectivity and reverse of OC selectivity. Consideration of TPR peak 

temperature also revealed that butadiene selectivity had a reverse trend of OC selectivity.  
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Table 3.7 Temperature programmed desorption analysis (CO2- and NH3-TPD) of 20 wt% Ni-30 

wt% Bi-O/support catalysts. 

Catalyst 

(support) 

Base amount with CO2-TPD 

[mmol/g]*1 

Acid amount  with NH3-TPD 

[mmol/g]*2 

I II III Total I II III Total 

SiO2 

(SiO2 sol) 

0.031 

(0.012) 

0.002 

(0.010) 

- 

(0.010) 

0.033 

(0.032) 

0.039 

(0.049) 

0.014 

(0.013) 

0.001 

(- ) 

0.054 

(0.062) 

Al2O3 0.073 - 0.173 0.246 0.115 0.169 0.097 0.381 

ZrO2 0.027 0.039 - 0.066 0.018 0.011 0.005 0.034 

none 0.019 0.01 - 0.020 0.002 - - 0.002 

*1: I (170oC peak): weak base, II (300oC peak): moderate base, III (400oC peak): strong base 

*2: I (100-250oC): weak acid, II (250-400oC): moderate acid, III (>400oC): strong acid 

Therefore, for all the data in Table 3.7, total basicity/total acidity ratio was calculated to be 

related to A) butadiene and OC selectivity; B) 1st step, 2nd step and total dehydrogenation 

inside. As shown in Figure 3.7, the result suggests that butadiene and OC selectivity 

positively and negatively depends on the total basicity/total acidity ratio respectively. The 

total basicity/total acidity ratio effect on the selectivity of dehydrogenation inside is slightly 

negative against 1st step dehydrogenation which is strongly positive while 2nd step 

dehydrogenation is almost neutral at high value. Although excess acidity disturbs 1-butene 

production on basic site at the 1st step, the acidity reversely works as promoter to accelerate 

the 2nd step, where weak acidic sites combine with strong/moderate basic sites for selective 

dehydrogenation of 1-butene to butadiene. The role of weak acid site is to adsorb basic 1-

butene intermediate to proceed to the next dehydrogenation step without desorbing from 
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the catalyst surface to the gas phase. Therefore, the role of the support for controlling the 

balance of acidity and basicity is important for selective butadiene production. 

 

Figure 3.7 Correlation between total acidity/total basicity and selectivity: A) ○: BD and ●: OC, B) ∆: 1st 

step, ■: 2nd step and gray○: total dehydrogenation inside. 

 

3.3.3   Schematic Reaction Mechanism 

The mechanistic route in the ODH reaction is derived either by redox ability or by 

the acid-base nature of the catalyst and the reactants (n-butane, and oxidant). In the 

preceding discussions, the butadiene selectivity was shown to depend on the selective 

dehydrogenation to 1-butene. It is known that the basic character of catalyst withdraws 

hydrogen atoms as a proton. In our case, this occurs at the alpha-methyl carbon of n-butane. 

Reversely, hydrogen as hydride is selectively withdrawn by the acid catalyst from beta-

methylene carbon of n-butane. The butenes (intermediate products) are basic in nature 

because of the double bonds, while butadiene is less basic compared to butenes due to 

conjugation. The catalyst for selective butadiene production from dehydrogenated basic 
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compounds should possess an adequate acidic character for olefin adsorption with basic 

sites for selective proton withdrawing.  

Therefore, Figure 3.8 is a proposed schematic reaction mechanism with catalyst 

active sites for DH of n-butane selective to butadiene over Ni-Bi oxide/support catalyst.  

 

Figure 3.8 Schematic reaction mechanism and catalyst active sites for DH of n-butane selective to 

butadiene over Ni-Bi-O/support catalysts. 

 

Figure 3.9 is a summarized schematic presentation of reaction over Ni-Bi-

O/supports; Al2O3, SiO2 and ZrO2 catalysts with the viewpoint of a support role in 

butadiene (C4
2=) selectivity from n-butane (C4

0) over hierarchical nano-particle 

cohabitation catalysts. For the gel and sol-type SiO2 support comparison, Figure 3.10 

a) Base catalyst with moderate acid (Ni-Bi-O/Al2O3 catalyst)

CH3-CH2-CH2-CH3 → C -*H2-CH2-CH2-CH3 → C-*H2-C
+*H-CH2-CH3 → CH2=CH-CH2-CH3

Bd-*- Ad+* H+-B-*     A+* H+-B-*    A+*-H- Bd-* Ad+* 

→ CH2=CH-CH2-CH3 → CH2=CH-CH2-C
+*H2 → CH2=CH-C-*H-C+*H2

Ad+*  Bd-*                   Ad+* B-*-H+ H--A+*   B-*-H+ Ad+*    Bd-*

CH2=CH-CH=CH2

b) Acid catalyst

A+*  B-*          H--A+*    B-*               A+*    B-*

CH2=CH-CH2-CH3 → CH2=CH=CH-CH3

CH3-CH=CH-CH3

CH3-CH2-CH2-CH3 → CH3-C
+*H-CH2-CH3 → CH3-C

+*H-C-*H-CH3

A+*  B-*                H--A+*    B-*             H--A+*   B-*-H+ A+*  B-*                  

CH3-CH=CH-CH3
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showed how the different support types interact with the active metal oxide species before 

and after calcination and the resulting performance (BD selectivity) obtained. The SiO2 gel 

type (pellet shape) has a layer of less dispersed NiO over beta-Bi2O3 with Bi6O7. Because 

the gel type support is rigidly connected to each other (fixed pore structure), the bismuth 

oxides/SiO2 connection is hard to be rearranged. In the sol type, even though there is strong 

dispersion of Bi6O7, the sol particles can be reversely and actively dispersed into the metal 

species as a non-hierarchical nanoparticle cohabitation hence high metal oxide-support 

interaction.  

 

Figure 3.9 Schematic representation of DH over different supports. 
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Figure 3.10 Models of gel and sol type SiO2 support catalysts. 
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redox and acid/base property with temperature programmed reduction and desorption. 

Finally, acid and base balanced cooperation model was proposed schematically as reaction 

mechanism and catalyst active sites for ODH of n-butane selective to butadiene over Ni-

Bi-O/Al2O3 catalyst. The result also showed SiO2 support to be a potential candidate for 

improved catalytic performance, hence the need to investigate more of the different types 

of siliceous materials. 
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Abstract 

Ni-Bi-O/structured mesoporous (MCM-41, SBA-15, and silica foam) silica catalyst 

with 20wt% Ni and 30wt% Bi has been studied in oxidative dehydrogenation of n-butane 

to butadiene. Mesoporous SBA-15 showed a clear superiority in activity and selectivity as 

compared to MCM-41, silica foam and conventional silica. The order of the butadiene yield 

was SBA-15 > Silica foam > MCM-41 > conventional silica. SBA-15 catalyst exhibits the 

best performance (butadiene selectivity: 47.5% at n-butane conversion: 28.9%) due to the 

presence of Bi2O3-a phase (a = 0.2-0.4) as well as the strong base with weak/moderate acid 

sites, as evident from XRD and TPD analysis, respectively. The formation of Bi2O3-a (a = 

0.2-0.4) phase is related to the template effect of structurally ordered silica.  

Keywords: oxidative dehydrogenation; n-butane; butadiene; MCM-41; SBA-15; silica 

foam. 
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4.1      Introduction 

Butadiene is one of the demand-growing raw materials of a high importance for the 

petrochemical industry. It is mainly produced as a byproduct from naphtha cracker during 

ethylene and propylene production. On-purpose butadiene production technology is also 

expected to meet the growing demand. One of the methods is oxidative dehydrogenation 

of 1-butene. On the other hand, several works on oxidative dehydrogenation of n-butane to 

butadiene have been directed towards developing an efficient catalyst system.  These 

efforts have resulted in preparation of vanadium based catalysts composed of V2O5/SiO2 

[1], V2O5/silica gel [2], V/supports (TiO2, ZrO2 and Al2O3) [3,4], V/TiO2-SiO2 [5], 

Mg3(VO4)2 species over Al2O3, ZrO2, MgO and CeO2 [6,7], VOx/supports (USY, NaY, γ-

Al2O3, α-Al2O3) [8], VOx/SBA-15 [9], V/supports (HMS, SBA-16, SBA-15, MCM-48) 

[10], VOx/Ti-HMS [11], V-MCM-41 [12], V/Ti-SBA-15 [13], Mo-V-MgO [14] and a 

phosphate modified CNT [15]. However, the role of catalyst in 1st (n-butane to butenes) 

and 2nd (1-butene to butadiene) step dehydrogenations and combination of two is not well 

defined in the literature. 

In our previous study [16], nanostructured Ni-Bi-O species impregnated on Al2O3 

were reported as active and selective (butadiene formation) catalyst for oxidative 

dehydrogenation of n-butane. Alumina-supported 20wt% Ni (as metal weight to Al2O3 

weight) oxide was highly active but not selective. The selectivity was improved by 

impregnation of 30wt% Bi (as metal weight to Al2O3 weight) oxide with 20wt% Ni. The 

impregnation of Bi oxide efficiently reduces the side-reaction resulting in high butadiene 

selectivity (40%). In addition, the catalyst calcination plays a vital role to enhance 

butadiene selective by controlling the formation alpha and beta mixed Bi2O3 phase [17]. 
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Furthermore, during the reaction the activity and selectivity were proved to depend on the 

acid-base property and NiO redox character by Ni species modification through partial 

substitution with Co and Fe [18]. In further investigation of the support effect, SiO2 

supported catalyst showed the best performance than Al2O3 and ZrO2 [19] supported 

catalyst. 

Mesoporous silicas (MCM-41, SBA-15, and foam) have been used as support to 

prepare well-dispersed tungsten oxide catalyst [20-22]. Oxidative dehydrogenation of n-

butane was reported using vanadium nanoparticles impregnated over mesoporous silica 

support [10]. Mesoporous silica support showed an enhanced performance by stabilization 

of nanoparticles due to their ordered structure and well-defined pore sizes. In our present 

study, mesoporous silica supports such as MCM-41, SBA-15 and silica foam were 

synthesized and impregnated with 20wt% Ni and 30wt% Bi. The impregnated catalyst was 

investigated on oxidative dehydrogenation of n-butane to butadiene and the observed 

results are discussed.     

4.2      Experimental Section 

4.2.1   Catalyst Preparation 

Conventional silica supports having different pore diameter (Cariact Q6, Cariact 

Q15 and Cariact Q30) were purchased from Fuji Silysia chemicals Ltd, Japan. Si-MCM-

41 was synthesized using procedure reported in the literature [23]. Si-SBA-15 support 

material [24] was synthesized using tri-block copolymer, poly(ethylene glycol)-block-

poly(propylene glycol)-block-poly(ethylene glycol) as a structure directing agent. 4 g of 

Pluronic P123 was added to 30 ml of water. After stirring for a few hours, a clear solution 
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was obtained. About 70 g of 0.28 M hydrochloric acid was added to it and the solution was 

stirred for another 2 h. Then, 9 g of tetraethyl orthosilicate (TEOS) was added and the 

resulting mixture was stirred for 24 h at 40 oC and finally heated to 100 oC for 48 h. The 

solid product was recovered by filtration, washed with water for several times and dried 

overnight at 100 oC. Finally, the product was calcined at 550 oC for 6 h to remove the 

template. Mesoporous silica foam was synthesized using procedure reported by Qi et al. 

[25]. In a typical synthesis, 3.0 g of neutral triblock co-polymer surfactant, Pluronic 123, 

was dissolved in a mixture: 3.0 g of acetic acid, 52 g of deionized water and 0.3g of 

ammonium fluoride at 40 oC. After stirring for 2 h, 2.35 g of sodium silicate solution in 40 

g of water was added and the resultant mixture was reacted under vigorous stirring for 5 

min. Then, the mixture was kept under static condition for 24 h at 40 oC followed by aging 

at 70 oC overnight. The solid products were washed with deionized water and collected by 

filtration and air dried. The obtained solid was then calcined at 560 oC for 6 h to remove 

the template. 

The Bi-Ni-O/support catalysts were prepared by the co-impregnation method of 

equilibrium adsorption with enforced deposition. Nickel nitrate hexahydrate 

Ni(NO3)2•6H2O (99 %, Fisher Scientific) was used as nickel source, while bismuth nitrate 

pentahydrate Bi(NO3)3•5H2O (98 %, Fluka) was used as bismuth source. For the 

preparation of 20 wt% Ni-30 wt% Bi-O/Al2O3 catalyst, 0.99 g of Ni(NO3)2•6H2O was 

added to 80 ml of distilled water. After complete dissolution, 0.70 g of Bi(NO3)3•5H2O 

was added and stirred. Then 1.0 g of dried support was added for impregnation and left 

overnight for equilibrium Bi species adsorption. Then the sample mixture was dried up by 

evaporation at 80 °C for enforced Ni species deposition. The solid was further dried at 120 
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°C for 3 h and it was calcined at 350 °C (10 °C/min) for 1 h and the temperature was raised 

to 590 °C (15 °C/min) and kept for 2 h. The obtained catalysts were denoted as shown in 

Table 4.1. 

Table 4.1. List of catalysts codes used for oxidative dehydrogenation of n-butane to butadiene. 

Catalyst Code Description 

A 20 wt% Ni and 30 wt% Bi on Cariact Q-6  

B 20 wt% Ni and 30 wt% Bi on Cariact Q-10  

C 20 wt% Ni and 30 wt% Bi on Cariact Q-30 

D 20 wt% Ni and 30 wt% Bi on Si-MCM-41  

E 20 wt% Ni and 30 wt% Bi on Si-SBA-15 

F 20 wt% Ni and 30 wt% Bi on silica foam 

 

4.2.2   Catalyst Reaction Testing 

The oxidative dehydrogenation was carried out in an automated fixed bed reactor 

purchased from BELCAT, Japan. 0.3g of catalyst was loaded into the reactor and calcined 

under air atmosphere. After calcination, the reaction started under a nitrogen atmosphere. 

The feed n-butane contact time was maintained at 0.42 h·g/mol. The total flow rate of 

reactants including n-butane, air, and nitrogen was maintained at 31.2 ml/min. The 

catalysts were tested at 400 oC with oxygen to n-butane ratio (O2/n-C4H10 = 1.0, 2.0 and 

4.0 mol/mol) for 1 hour under each condition and followed by 450 oC (O2/n-C4H10 = 2.0 

mol/mol) and 500 oC (O2/n-C4H10 = 2.0 mol/mol) for 1 hour each. The total time on stream 

is about 5 hours. The products were analyzed through online GC system (Agilent, 7890N). 

The hydrocarbons and oxygenates were analyzed using FID and GC-Gas Pro capillary 

column (L: 60 m and ID: 0.32 mm), while gases, N2, O2, CO and CO2, and H2, respectively 

were detected using TCD and Shin Carbon 80/100 mesh SS column (He carrier) and MS5A 
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60/80 mesh SS column (Ar carrier). The products were confirmed by comparing with 

standard samples. The n-butane conversion and product selectivity were calculated using 

carbon mass balance. The obtained results were summarized based on Scheme 4.1, which 

were arranged using observed products. The selectivity of the catalyst to dehydrogenation 

products DH (consisting mainly 1-butene, 2-butenes and 1,3-butadiene: BD), oxygenate 

and cracked products OC (carboxylic acids, ethylene, propylene, methane, and CO2) and 

partial oxidation products PO (CO and H2) are presented in Figure 4.1. 

 

Figure 4.1 Possible reaction pathway for oxidative dehydrogenation of n-butane to butadiene 

4.2.3   Catalyst Characterization 

The physicochemical characteristics such as surface area and pore structure were 

analyzed by using nitrogen adsorption-desorption isotherm (Micromeritics ASAP 2020 

instrument, Norcross, GA). The pore surface area, pore volume, and pore diameter were 

measured using BJH adsorption method. X-ray diffraction patterns of calcined samples 

were recorded from (2 theta) range of 5 ° to 90 ° using Rigaku Miniflex II desktop X-ray 
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diffractometer and using Cu Kα radiation (wavelength λ=1.5406 Å) and 30 mA and 40 kV 

as operating parameters, a step size of 0.02 o and a speed of 0.5 o/min. The catalyst 

morphologies were analyzed using high-resolution transmission electron microscope 

(HRTEM-model JEM-2100F) with an acceleration voltage of 200 kV. The redox character 

and acid-base property were analyzed using temperature programmed reduction (TPR) and 

temperature programmed desorption (TPD) using BEL-CAT-A-200 chemisorption 

instrument as reported earlier [16]. The redox property measurement was done using a gas 

mixture of Ar/H2 (95/5 vol%) having a total flow rate of 50 cm3/min. 0.1 g of the calcined 

catalyst was preheated for 3 h at 300 oC in inert He after which it is cooled to room 

temperature. It was then heated at the rate of 20 oC/min up to 900 oC. H2 intake was 

recorded with a TCD and CuO was used as a reference for calibrating the consumption of 

H2. Ammonia and carbon dioxide temperature programmed desorption (NH3 and CO2 

TPD) were carried out using the same equipment (BELCAT system) for acidity and 

basicity measurements respectively, the procedure is similar to that previously reported 

[18].  

4.3      Results and Discussion 

4.3.1   Catalyst Characterization 

4.3.1.1   X-ray diffraction 

The X-ray diffraction (XRD) patterns related to Bi oxide species for catalyst A to F 

are shown in Figure 4.2. The XRD patterns were measured from diffraction angle of 2θ = 

5 to 90 o. Then, 2θ = 25 to 35 o was chosen to precisely examine the phases of BiOx in the 

different catalysts. For the conventional SiO2 supported catalysts, the main peaks are 
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attributed to beta-Bi2O3 and Bi2O3-a at 2θ = 27.38 o and 29.0 o respectively. The intensity 

of these peaks increases with increase in the pore size of the support. However, the 

mesoporous supported catalysts showed higher intensity as compared to conventional silica 

catalysts. Catalyst D (MCM-41 supported) showed the two phases of BiOx almost 40-60% 

ratio for beta-Bi2O3 and Bi2O3-a respectively. Catalyst F (Silica foam supported) on the 

other hand also showed the two BiOx phases but the dominant phase is the Bi2O3-a at 2θ = 

29.0 o. Mesoporous SBA-15 supported Catalyst E showed a pure and highly crystalline 

phase of Bi2O3-a. Using the XRD pattern of the pure and highly crystalline phase of BiOx, 

the phase assignment of Bi6O7 assigned in our previous paper [19] was re-examined to 

conclude Bi2O3-a (a = 0.2-0.4). Though the XRD pattern agrees with previously assigned 

phase Bi6O7 (Bi2O2.33) in major three peaks referring to the JCPDS Powder Diffraction File 

No.27-0051 [26]. The minor but fingerprint-like peaks at 2 theta = 5, 10 and 30.6 o of (002), 

(004) and (0012) respectively could not be observed. Furthermore, the pattern also did not 

agree with Bi2O2.5 and Bi2O2.75 in the data file but the main peak position is between 27.93 

and 31.92o of Bi2O2.5 and Bi2O2.75 respectively. These studies lead to the assignment of 

Bi2O3-a (a = 0.2-0.4) phase.  
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Figure 4.2 Comparison of X-ray diffraction pattern for support species in Ni-Bi-O catalyst:  A) 

Conventional SiO2 and B) mesoporous SiO2. 

 

The highly ordered mesoporous SBA-15 support was further loaded NiO and BiOx, 

separately and the XRD patterns were compared with that of the Ni-Bi-O/SBA-15 catalyst 

as shown in Figure 4.3.  For the NiO/SBA-15, peaks at 2θ = 37 and 43o were observed 

corresponding to the NiO phase. The crystal size of the NiO was found to be 10.1 nm as 

determined from the Scherrer’s equation. And for the case of BiOx/SBA-15, peaks of 

highly crystalline beta-Bi2O3 and Bi2O3-a were observed. It clearly indicates the formation 
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of the pure and highly crystalline Bi2O3-a phase in SBA-15 supported catalyst is not only 

due to mesoporous SBA-15 but also accelerated by Ni species co-impregnation. 

Comparing Ni oxides catalyst alone with the binary catalyst, the dispersion of the NiO 

oxides was increased and the intensity of the peaks corresponding to the oxide was reduced 

as shown in Figure 4.3. Only 30% of NiO with crystal size of 20.9 nm (calculated using 

Scherrer’s equation) was detected for catalyst E, indicating that 70% of NiO is highly 

dispersed on the Bi2O3-a surface. Reversely, in the case of Bi amount reduction, 80% of 

NiO with large crystal size of 20.9 nm was detected indicating that only 20% is highly 

dispersed on the Bi2O3-a (a = 0.2-0.4) surface.  

 

Figure 4.3 Comparison of X-ray diffraction pattern of NiO/SBA-15 (20 Ni), BiOx/SBA-15 (30 Bi) and Ni-

Bi-O/SBA-15 (20 Ni-30 Bi and 20 Ni-10 Bi) catalysts. 
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The concentration of Bi2O3-a phase on the support pore diameter as shown in Figure 

4.4. For the conventional silica supported catalyst, the concentration of the phase increases 

with increasing support pore diameter. This is a clear indication that the crystallinity (silica 

arrangement like mesoporous silica) even though within the amorphous phase increases 

with increase in the average pore diameter of the support. For the mesoporous structured 

silica supported catalysts, the Bi2O3-a phase concentration increases with increase in pore 

diameter up to 4.5 nm. For catalyst E, Bi2O3-a phase concentration was about 99.5%, 

whereas the catalyst F (with the highest average pore diameter) showed a decrease in Bi2O3-

a phase concentration due to the presence of beta-Bi2O3 phase as observed in XRD.  

 

Figure 4.4 Bi
2
O

3-a
 phase concentration in mesopore vs support pore diameter. 

4.3.1.2   Surface area and pore structure 
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of the catalysts also followed the same trend. But their values adjusted to support weight 

base showed increased or not much-reduced values for all the catalysts. It is expected due 

to the high loading of active metal species without leading to pore blockages. Among the 

conventional silica supported catalysts, Catalyst A showed a surface area of 519 m2/g, 

twice that of the catalyst B (251 m2/g). Though the mesoporous silica supports mostly have 

higher surface area and porosity than the conventional amorphous silica supports. The 

surface area of the catalysts adjusted to the support content in the catalysts is in more than 

half of the catalysts slightly higher than surface area of the pure support. Such observation 

is reported in our previous studies [16-19]. This finding was considered due to dispersion 

of Ni-Bi-O nano-sized particle.  
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Table 4.2 Physical properties of catalysts and supports. 

 

 

Catalyst: 

(Support) 

BET area Pore volume 

Average 

pore 

diameter 

  [nm]e 

[m2/g- 

catalyst]a 

[m2/g- 

support]b 

[cm3/g- 

catalyst]c 

[cm3/g- 

support]d 

 

A 327 519 0.62 0.98 6.2 

(Cariact Q6) (426) (426) (0.83) (0.83) (6.3) 

B 158 251 0.71 1.13 16.8 

(Cariact Q10) (242) (242) (1.22) (1.22) (18.6) 

C 62 98 0.52 0.82 35.3 

(Cariact Q30) (166) (166) (1.28) (1.28) (29.9) 

D 768 1220 0.53 0.84 2.8 

(Si-MCM-41) (914) (914) (0.86) (0.86) (3.1) 

E 269 427 0.33 0.52 4.2 

(Si-SBA-15) (657) (657) (1.08) (1.08) (4.1) 

F 388 616 1.55 2.46 15.6 

(Silica foam) (540) (540) (2.27) (2.27) (16.4) 

aBET area, c,epore volume and average pore diameter measured using BJH isotherm, b,dSurface area and 

pore volume calculated to support weight base by using the equation: SA or PV×[(MO
x
/M)+100]/100, 

where M = metal wt%; MOx= metal oxide wt%; SA = surface area; PV = pore volume. 

The pore size distribution of the mesoporous silica is narrow as compared to the 

conventional silica as shown in Figure 4.5. It also shows the sharp (narrow) pore size 

distribution of the mesoporous silica catalyst is originated from that of the corresponding 

support without large shift in peak position.  
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Figure 4.5 Pore size distribution of support and its catalyst A to F. 

4.3.1.3   Temperature programmed reduction 

The extent of active species reducibility plays an important role in the activity and 

selectivity of catalysts, especially in oxidative dehydrogenation reactions. This property is 

measured using temperature programmed reduction (TPR) and the performance of a 

catalyst is enhanced by an accelerated redox cycle resulting from increased active species 

reducibility. H2-TPR profile of the mesoporous silica supported catalysts is shown in 

Figure 4.6 in comparison with the conventional silica catalyst B. The TPR maximum 

temperature depends on the sample mass and the speed of the reduction reaction, hence 

same condition in terms of sample mass, the flow rate of H2 and temperature programming 

was adopted. 
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Figure 4.6 TPR profile for support species in Ni-Bi-O catalyst: B (Q10), D (Si-MCM-41), E (Si-SBA-15), 

and F (SiO2 foam). 

The TPR profile of catalyst B showed a high-intensity reduction peak at 500 ºC and 

a small reduction peak extending up to 700 ºC from 625 ºC. The easy reduction of Ni-Bi-

O metal oxide species at 500 ºC shows the presence of larger particle not firmly interacting 

with the support. This change of reducibility over SiO2 is related to the different state of 

NiO and Bi2O3 coordination between each other [19]. TPR profiles were divided into three 

parts: I) easily reducible (350-550oC), II) moderately reducible (550-650oC) and III) 

difficult to reduce (650-850oC) with the total as shown in Table 4.3.  For the case of catalyst 

(MCM-41), a medium reduction peak at the easily reducible region and high intensity peak 

at around 700 oC were observed. It is also near the case of F (silica foam) even though the 

peak at the easily reducible region decreases and that of the region with difficulty increases 

in reducibility. The difficulty is related to the state of the smaller particles of highly 

dispersed active species strongly interacting with the mesoporous support species. 
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Table 4.3 H2 consumption in TPR of 20wt%Ni-30wt%Bi-O supported catalysts. 

Catalyst (Support) TPR: H2 consumption [m mol/g] (TM[oC]) 

 I (350-550 ºC) II (550-650 ºC) III (650-850 ºC) total 

B (Cariact Q-10 ) 3.74 1.12 0.13 4.99 

D (MCM-41) 1.29 2.97 0.68 4.95 

E (SBA-15) 0.88 1.04 2.43 4.35 

F (SiO2 foam) 0.70 1.01 2.51 4.22 

 

In the case of E (SBA-15), TPR profile showed a broad peak extending from 500-

1000 oC. The broadness of the reduction peak is related to the strong dispersion/interaction 

of the active species of NiO and BiOx with the supports.  

4.3.1.4   Temperature programmed desorption 

The basicity and acidity of the catalysts were measured using CO2- and NH3-

temperature programmed desorption technique (CO2- and NH3-TPD), respectively. The 

amount of NH3/CO2 desorbed in mmol/g for catalysts of 20 wt% Ni-30 wt% Bi-O metal 

oxides over different conventional and mesoporous silica catalysts are presented in Table 

4.4. CO2-TPD profiles of the catalysts are decomposed into three peaks centered at ca. 170 

oC, ca. 300 oC and ca. 400 oC, named as I, II and III with an assignment to weak base, 

moderate base, and strong base, respectively. Similarly, NH3-TPD profiles are also 

deconvolved into three peaks with range at 100-250 oC, 250-400 oC and 400 oC < named 

as I, II and III representing weak acid, moderate acid, and strong acid, respectively.   
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Table 4.4 Temperature programmed desorption (CO2- and NH3-TPD) of 20wt% Ni-30wt% Bi-

O/support. 

Catalyst (Support) 

CO2-TPD 

Base amount [m mol/g]*1 

NH3-TPD 

Acid amount [m mol/g]*2 

Acid 

/Base 

I II III Total I II III Total 

A (Cariact Q-6 ) 0.014 0.008 - 0.022 0.019 0.010 0.003 0.032 1.5 

B (Cariact Q-10 ) 0.031 0.002 - 0.033 0.039 0.014 0.001 0.054 1.6 

C (Cariact Q-30 ) 0.009 0.002 - 0.011 0.011 0.002 - 0.013 1.2 

D (MCM-41) 0.08 0.002 0.011 0.021 0.026 0.039 - 0.065 3.1 

E  (SBA-15) 0.056 0.014 0.004 0.074 0.044 0.021 - 0.065 0.9 

F (Silica foam) 0.026 0.006 0.011 0.043 0.053 0.041 - 0.094 2.2 

*1: I (170oC peak): weak base, II (300oC peak): moderate base, III (400oC peak): strong base*2: 

I (100-250oC): weak acid, II (250-400oC): moderate acid, III (>400oC): strong acid 

 

Our previous reports showed that moderate and strong bases are required for efficient 

abstraction of H from terminal methyl of n-butane and 1-butene, and a weak acid site is 

required for 1-butene intermediate adsorption [18, 19]. All the conventional silica 

supported catalysts do not possess moderate and strong basic sites, whereas mesoporous 

silica supported catalysts have both moderate and strong basic sites. Catalyst B has the 

highest total basic sites and weak acid sites among the conventional silica supported 

catalysts. All the mesoporous silica supported catalysts have both weak and moderate acid 

sites without strong acid sites. Catalyst E has the highest moderate basic sites, which plays 

an important role in butadiene selectivity.  
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4.3.1.5   TEM analysis 

Transmission electron microscopy images (TEM) of the mesoporous supported 

catalysts having 20 wt% Ni and 30 wt% Bi are shown in Figure 4.7. TEM of conventional 

silica have been reported in our previous report [19]. The crystals of BiOx in the 

conventional silica were too small to be observed by TEM probably due to a low 

crystallinity as evident from XRD study. The TEM images showed the dispersion of the 

NiO with the BiOx on the various supports. The mesoporous support showed a similar 

pattern of active species dispersion. To precisely study the active species dispersion, high-

resolution transmission electron microscopy (HRTEM) was carried out on the D catalyst 

to enable the determination of the Bi2O3-a crystal and NiO crystal. Figure 4.8 shows the 

HRTEM image of the Catalyst E. The observed HRTEM image showed a lattice spacing 

of 0.21 nm and 1.4 nm corresponding to that of NiO and SBA-15, respectively. As the 1.4 

nm lattice of SBA-15 reflects the orientation of silica chains, the lattices of NiO are also 

oriented in the same direction. A major part of NiO is dispersed not directly on SBA-15, 

but through Bi2O3-a phase in SBA-15. This means the three oxide chains, (i) silica chain in 

SBA-15 mesopore, (ii) Bi-O chain of Bi2O3-a phase and (iii) Ni-O dispersed on Bi2O3-a 

phase have the same orientation. The TEM image of the SBA-15 supported catalyst agreed 

with that reported in literature [27]. 
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Figure 4.7 TEM image of catalyst a) Catalyst D, b) Catalyst E and c) Catalyst F. 

 

Figure 4.8 HRTEM image of Catalyst E (20 wt% Ni and 30 wt% Bi on Si-SBA-15). 

4.3.2   Catalyst Evaluation 

4.3.2.1   Effect of reaction condition 

The reaction temperature and O2/n-C4H10 feed ratio were varied to test the performance of 

Catalyst E. The dependence of activity/selectivity on time-on-stream was observed only 

a) b)

c)
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until one hour (second sampling) due to initial oxygen species on catalyst surface. The 

result obtained at 5 h time-on-stream is presented in Table 4.5. The result confirms the 

reaction pathway shown in Scheme 4.1 that oxygenate and cracking products are obtained 

mainly from 2-butene after the 1st dehydrogenation step. With increase in the reaction 

temperature, the conversion increased, while dehydrogenation selectivity decreased. BD 

selectivity did not change but OC production increased two folds with increase in the 

temperature. This is due to excess NiO species, which are more active at higher 

temperatures and they favor cracking reaction pathway. Upon increasing O2/n-C4H10 feed 

ratio, the conversion increased up to 2.0 ratio, thereafter slight decrease in conversion was 

observed. With increase in O2/n-C4H10 feed ratio, the dehydrogenation selectivity (and 

butadiene selectivity) decreased. OC and PO selectivity were increased due to excess 

oxygen supply that facilitates cracking and oxidation reactions. The decrease in conversion 

with increasing O2/n-C4H10 feed ratio from 2.0 to 4.0 suggest oxygen species saturation of 

major and selective dehydrogenation site. Oxygenates byproduct suppress main reaction, 

resulting to a decrease in conversion. 
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Table 4.5 Comparison of catalytic performance over 20 wt% Ni-30 wt% Bi-O/SBA-15 catalyst 

for different reaction conditions 

Reaction temperature 

[
o
C] 

O2/n-C4H10 molar ratio 

400 

1.0 

400 

2.0 

400 

4.0 

450 

2.0 

500 

2.0 

n-C4H10 conversion [%] 21.5 26.5 25.4 28.9 37.7 

Selectivity*1 [C%]       

DH 91.6 87.6 80.1 75.2 49.6 

                   2-C4H8         23.3         20.5         19.7       15.4         15.5 

                  1- C4H8         18.8         19.1         18.9       12.3           4.3 

                    BD         49.5         48.0         41.5       47.5          38.2 

OC   6.7   9.3 11.3 19.7 43.3 

PO   1.7   3.2   8.5   5.1   7.1 

(1- C4H8 
+ BD)*2 68.3 67.1 60.4 59.8 42.5 

BD/(1- C4H8+ BD) %*3 72.5 71.5 68.7 79.4 89.8 

BD yield 10.7 12.7 10.5 13.7 14.4 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial oxidation. 

*2 selectivity at 1st step dehydrogenation, *3 selectivity at 2nd step dehydrogenation 

 

4.3.2.2   Effect of conventional silica support 

Commercially available silica materials having different pore sizes were used as 

supports and their activity was studied at 450 oC and O2/n-C4H10 = 2.0. From Table 4.6, all 

the catalysts showed almost similar n-butane conversion, but catalyst B gave the highest 

dehydrogenation selectivity with the least oxygenate and cracked products selectivity. 

Catalyst A produced the highest 2-butenes with higher cracked products selectivity. 
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Butadiene selectivity is similar for catalyst B and C and slightly lower in the case of the 

catalyst A. It indicates that for conventional silica support to effectively and efficiently 

disperse BiOx and then NiO species, a relatively large pore size is required.  

Table 4.6 Comparison of catalytic performance for conventional SiO2 supports with different 

pore size in Ni-Bi-O catalyst. 

Catalyst  A B C 

Support APD [nm] 6.3 18.6 29.9 

n- C4H10 conversion [%] 19.8 17.6 18.2 

(O2 conversion) (32) (25) (31) 

Selectivity*1 [C%]   

DH 74.3 79.1 75.9 

                     2- C4H8            24.5            21.7            18.4 

                    1- C4H8            22.3            25.5            25.1 

                  BD            27.5            31.9            32.4 

OC 22.7 17.5 21.5 

PO 3.0 3.4 2.5 

(1- C4H8 
+ BD)*2 49.8 57.4 57.5 

BD/(1- C4H8 
+ BD) %*3 55.2 55.6 56.4 

BD yield 5.4 5.6 5.9 

*1 DH: dehydrogenation, BD: butadiene, OC: oxygenate and the cracked, PO: partial 

oxidation. *2 selectivity at 1st step dehydrogenation, *3 selectivity at 2nd step 

dehydrogenation 
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4.3.2.3   Effect of mesoporous silica support 

Mesoporous silica supports have highly ordered pore structures and high surface areas, 

which can enhance dispersion of active species thereby generating more active sites as 

compared to conventional silica supports. Also, their pore sizes are well defined, can be 

controlled and have thick pore walls [28-30]. Three different mesoporous silica supports 

(MCM-41, SBA-15 and SiO2 foam) were synthesized and impregnated with the active 

metal species and tested for n-butane oxidative dehydrogenation. The results obtained are 

presented in Table 4.7. 

Table 4.7 Comparison of catalytic performance for mesoporous SiO2 support species in Ni-Bi-O 

catalyst 

Catalyst  D E F 

Support 

APD[nm] 

MCM-41 

3.1 

SBA-15 

4.5 

SiO2 foam 

16.4 

n- C4H10 conversion [%] 

(O2 conversion) 

18.0 

(27) 

28.9 

(57) 

29.2 

(55) 

Selectivity*1 [C%]     

DH 74.6 75.2 77.6 

                   2- C4H8          20.5          15.4          17.2 

                  1- C4H8          14.0          12.3          14.8 

                    BD          40.1          47.5          45.6 

OC 18.8 19.7 21.0 

PO   6.6   5.1 1.4 

(1- C4H8 
+ BD)*2 54.1 59.8 60.4 

BD/(1- C4H8 
+ BD) %*3 74.1 79.4 75.4 

BD yield 7.2 13.7 13.3 
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The conversion of the catalysts is in the order catalyst D < E = F. The conversion 

was improved as compared to the conventional silica supported catalysts. 

Dehydrogenation products selectivity of the catalysts is almost similar even though it 

increased slightly going from catalyst E through D and F, while oxygenate and cracked 

products selectivity showed an opposite trend. Partial oxidation selectivity increased in 

the order catalyst F < E < D. Butadiene selectivity is slightly higher in Catalyst E, which 

directly relates to the selective 2nd step dehydrogenation ability as observed low amount 

of 1-butene in product distribution. 

 

Figure 4.9 n-Butane conversion and butadiene selectivity vs support pore diameter 

 

It was reported that the dispersion of active species, their reducibility, and catalytic 

performance are effectively controlled by the pore sizes of both the conventional and 

mesoporous supports [31]. In our case, the effect of support pore diameter on the main 

catalytic performances (n-butane conversion and butadiene selectivity) showed a 

completely different trend between mesoporous silica and conventional silica, as shown in 

Figure 4.9. Catalytic activity and butadiene selectivity of the mesoporous silica shows clear 

superiority over the conventional silica even at similar pore diameter region. Therefore, the 
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superiority is considered not only due to the pore size or the porosity but also owing to the 

ordered silica structure.  

 

Figure 4.10 Conversion and butadiene selectivity vs Bi2O3-a (a = 0.2-0.4) phase concentration in mesopore. 

 

The peak intensity of the Bi2O3-a (a = 0.2-0.4) phase has been correlated to the n-

butane conversion and butadiene selectivity as presented in Figure 4.10. For both the 

conventional and mesoporous silica supported catalysts, an increase in the concentration 

of the Bi2O3-a phase increases both the conversion and selectivity. This is an indication that 

the phase serves as an active phase for dispersing NiO which is active and selective for 

dehydrogenation to butadiene. The trends of conversion and butadiene selectivity are 

merely indicated by one trend of butadiene yield as shown in Figure 4.11. It is clear that 

the Bi2O3-a phase in mesopore strongly affects butadiene yield. 
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Figure 4.11 Butadiene yield vs Bi
2
O

3-a
 phase concentration in mesopore. 

 

4.3.3   Modelling of Reaction and Catalyst 

4.3.3.1   Role of support in catalyst preparation 

The active species of NiO and BiOx interact and disperse differently in the different 

mesoporous silica supports. This interaction generates different active sites and active 

oxygen supplier for a continuous redox cycle of the active species. The effect of 

mesoporous silica support is important to NiO on hierarchical NiO-Bi2O3-a nano-particle 

cohabitation. The SBA-15 support works with the NiO species to produce Bi2O3-a and high 

dispersion of NiO on it.  

4.3.3.2   Model of support effect on butadiene (C4
2=) selectivity 

The schematic representation of the silica support effect on the selectivity to 
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overall high dehydrogenation selectivity but low 1st and 2nd step dehydrogenation 

selectivity to butadiene. This resulted in relatively high 1-butene desorbed into the gaseous 

phase because 2nd step dehydrogenation selectivity requires moderate and strong base 

more than 1st step dehydrogenation selectivity. Mesoporous silica supported catalysts have 

a highly crystalline Bi2O3-a phase which acts as active and selective oxygen supplier as 

well as selective active site (moderate and strong base) for butadiene production. Finally, 

the catalysts showed very high 2nd step dehydrogenation selectivity and improved overall 

butadiene selectivity. 

 

Figure 4.12 Model of reaction and catalyst for oxidative dehydrogenation of n-butane to butadiene over Bi-

Ni oxide/SiO2 catalyst 

 

Conclusion 

Ni-Bi-O/structured mesoporous (MCM-41, SBA-15, and foam) SiO2 catalysts 

showed high performance for oxidative dehydrogenation of n-butane to butadiene. The 

mesoporous SiO2 supports showed enhanced activity and selectivity as compared to 

Bi-modified NiO (active site for reactant)

Mixture of beta-Bi2O3/Bi2O3-a

(oxygen supplier)

amorphous-Bi2O3  

(oxygen supplier) Crystalline of Bi2O3-a  

(oxygen supplier)

C4
0 C4

2=

[C4
*] [C4

=*]

C4
=

Mesoporous SiO2: 

SBA-15 and SiO2 foam

C4
0 C4

2=

[C4
*] [C4

=*]

C4
=

Conventional SiO2



109 

 

conventional SiO2 support. The order of butadiene yield is SBA-15 > SiO2 foam> MCM-

41 > conventional SiO2. The performance is strongly due to the combination of both Bi2O3-

a (a=0.2-0.4) phase as well as strong basic sites with weak/moderate acid sites. SBA-15 

catalyst showed the best performance among other mesoporous silica materials due to 

highly crystalline Bi2O3-a peak (contained 99.5 % of the Bi2O3-a phase) as evident from 

XRD study. The Bi2O3-a (a=0.2-0.4) phase is oriented along SBA-15 silica lattice as 

observed from TEM study. The support effect on the catalytic performance directly relates 

to the BiOx phase and the hierarchical cohabitation of the Bi-Ni-O active sites. 
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Abstract 

NiO-beta-Bi2O3-Bi2SiO5/SBA-15 catalysts, containing 10-20 wt% Ni and 10-30 

wt% Bi as metal loading on mesoporous SiO2 support (SBA-15), were utilized for the 

oxidative dehydrogenation of n-butane to butadiene, comparing from the viewpoint of Bi 

oxide phase and combination balance with Ni oxide and the support. The phase change 

between Bi2SiO5 and beta-Bi2O3 depending on Ni/Bi ratio and loading ratio to the support 

is mainly due to template effects of Ni and mesoporous SiO2 support to Bi oxide. The 

formation degree of oxide phase Bi2SiO5 and beta-Bi2O3 phase reflected in the butadiene 

selectivity through changing the reducibility and dispersion properties. The catalyst with 

moderate loading of both Ni and Bi exhibited a high advantage in the n-butane conversion 

and butadiene selectivity to the less and excess loaded catalysts. Increasing Ni loading 

resulted in higher activity, while increasing Bi loading led to improved butadiene 

selectivity. The catalytic performance of other mesoporous support catalysts depended on 

Ni and Bi loading. The characteristics of the catalysts agreed with their performance in the 

view of the catalytic scheme for selective production of butadiene via butenes. 

Keywords: n-butane; dehydrogenation; butadiene; SBA-15; Bi2SiO5. 
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5.1      Introduction 

The global demand for butadiene in the manufacturing of synthetic rubber was 

about 12.3 million tons in 2018 and it is expected to grow by 4.5 % annually during the 

next five years [1]. On-purpose production methods have been investigated to supplement 

the decrease in butadiene supply due to the shift from naphtha to ethane crackers.  

Oxidative dehydrogenation (ODH) reaction is one of the promising methods aimed at 

bridging the gap between the growing demand and supply of butadiene. Many researchers 

have investigated n-butane oxidative dehydrogenation to butenes/butadiene using mainly 

vanadia/molybdena on metal oxides supports [2-10]. The function of the catalysts in the 

first (butane to 1-butene/2-butenes) and second (butenes to 1,3-butadiene) step 

dehydrogenations is not well discussed in those literatures. 

Our prior studies [11-14] utilized nanoparticles of Ni-Bi-O species deposited on 

commercially available Al2O3, SiO2, and ZrO2 for the ODH of n-butane with high 

selectivity to butadiene. The contribution of Bi oxide in stabilizing the NiO nanoparticles 

selective to butadiene [11], role of calcination (two steps of 350 and 590 oC in air) in 

controlling the Bi oxide phase formations [12], and the synergetic effects of NiO 

modification by partial substitution with Co and Fe [13], have been reported. The role of 

support in controlling the redox character of the active species, metal-support interaction 

and acid-base properties have been highlighted [14]. In an advanced studies on the effect 

of supports, an enhanced performance was obtained with SiO2 sol supported catalyst 

compared to the unsupported, Al2O3 and ZrO2 gel supported catalysts or the sol supported 

ones. 



115 

 

Mesoporous silica support showed enhanced performance in catalytic applications 

through stabilizing the performance of the impregnated metal oxides nanoparticles with a 

uniform dispersion. This is mainly due to their ordered structure, high surface area, high 

chemical and thermal stabilities, and well-defined pore sizes [15-18]. Mesoporous silica 

supports (MCM-41, SBA-15, and silica foam) were utilized in the synthesis of highly-

dispersed tungsten oxide catalyst for butene metathesis reaction [19-21]. Nanoparticles of 

vanadium deposited on mesoporous silica supports have been utilized for the ODH of n-

butane [22-26]. Supports of highly ordered mesoporous silica (SBA-15, silica foam, and 

MCM-41) loaded with 20wt% Ni and 30wt% Bi, were also utilized in our previous study 

[27]. The binary-oxide impregnated catalysts were probed for n-butane ODH to butadiene 

and compared with traditional silica gel catalysts. Mesoporous silicas as catalyst support 

are superior to the traditional silica gels, where the mesoporous silica SBA-15 supported 

catalyst gave the best performance [27]. As a follow-up to the previous investigations, the 

SBA-15 supported catalysts have been studied in this paper from the viewpoint of Bi oxide 

phase and combination balance with Ni oxide and mesoporous silica support. The silica 

foam, the silica sol, and the traditional silica gel catalysts have been utilized in this study 

as references.  

5.2      Experimental Section 

5.2.1   Catalyst Preparation 

Si-SBA-15 carrier was prepared using tri-block copolymer as a structure directing 

agent. 4 g of Pluronic P123 was introduced into 30 ml of de-ionized water. Stirring 

continued until clear solution was achieved. 70 g of 0.28 M HCl was added to the solution 

with continuous stirring for 2 h. 9 g of TEOS was introduced and stirring continued for 24 
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h at 40 oC and finally heated for 48 h at 100 oC. Filtration was utilized in recovering the 

solid product, de-ionized water was used several times for washing the residue and then 

dried at 100 oC overnight. Calcination was done at 550 oC for 6 h for template removal 

[28]. The other mesoporous silicas used were silica gel Q10 was procured from Fuji Silysia 

Chemicals Limited, Japan. Si-MCM-41 was prepared using the method obtained in the 

literature [29]. The procedure reported by Qi et al [30] was used in preparing silica foam, 

and silica sol was purchased from Sigma Aldrich. 

Co-impregnation technique of equilibrium adsorption with enforced deposition was 

utilized in synthesizing all the supported catalysts to reduce waste streams [31]. 

Ni(NO3)2·6H2O (99 %, Fisher Scientific) and Bi(NO3)3·5H2O (98 %, Fluka Garantie) were 

utilized as Ni and Bi precursors, respectively. In a typical synthesis, 0.99 g of Ni precursor 

was dissolved in 80 ml of de-ionized water. 0.70 g of Bi precursor was introduced after 

dissolution with continuous stirring. 1.0 g of the support was added for impregnation. The 

mixture was left overnight for equilibrium adsorption of Bi species and followed by 

evaporative drying at 80 °C for Ni species enforced deposition. The product was further 

dried at 120 °C for 3 h and calcined in two steps at 350 °C for 1 h and 590 °C for 2 h at the 

rates of 10 °C/min and 15 °C/min, respectively.  

5.2.2   Catalyst Testing 

ODH reaction of n-butane was conducted in an automated fixed-bed reactor obtained 

from Microtrac Bel Company, Japan. 300 mg of the synthesized catalyst was introduced 

into the reactor to form the catalyst bed. The contact time of n-butane was maintained at 

0.42 h·g/mol. The total reactants flow rate was kept at 31.2 ml/min. The performance of 

the catalysts were evaluated at 400 °C and O2/n-C4H10 = 1.0, 2.0 and 4.0 mol/mol and then 
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followed by 450 °C (O2/n-C4H10 = 2.0 mol/mol) and 500 °C (O2/n-C4H10 = 2.0 mol/mol). 

The total time on stream is about 5 h. Products analyses was achieved with an online gas 

chromatograph (GC) system (Agilent, 7890N). FID and GC-Gas Pro capillary column (L: 

60 m and ID: 0.32 mm) was used in analyzing the hydrocarbons and oxygenates. Gases 

including COx, N2, O2, and H2, were identified using TCD and Shin Carbon 80/100 mesh 

SS column having He as a carrier and MS5A 60/80 mesh SS column with Ar as carrier. 

Standard samples were used for confirming the products. The conversion of n-butane and 

the selectivities of the products were obtained using based on carbon mass balance.  

5.2.3   Characterization of Catalysts 

The BET surface area and pore characteristics were obtained using N2 adsorption-

desorption isotherm with Micromeritics ASAP 2020 instrument, Norcross, GA. BJH 

adsorption method was used in obtaining the pore volume, pore surface area, and average 

pore diameter. The XRD patterns of the calcined catalysts were measured in the 2θ range 

of 5 ° to 90 ° with a Rigaku Miniflex II desktop X-ray diffractometer utilizing Cu Kα 

radiation at a wavelength of λ=1.5406 Å and operating parameters of 30 mA and 40 kV 

with a step size of 0.02 o and speed of 0.5 o/min. A high-resolution transmission electron 

microscope (JEM-2100F model) having an acceleration voltage of 200 kV was used in 

analyzing the morphologies of the catalysts. TPR was used in determining the catalysts 

reducibility.  This was achieved using BEL-CAT-A-200 chemisorption instrument [27]. A 

gas mixture of Ar/H2 (95/5 vol%) with a total flow rate of 50 cm3/min was used in the TPR 

measurement. 100 mg of the catalyst was preheated at 300 °C for 3 h under inert He 

atmosphere and then cooled to room temperature. It was then increased up to 1000 °C at 

the rate of 20 °C /min. The intake of H2 was measured with TCD and CuO was utilized as 
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a reference for H2 consumption calibration. The catalysts binding energy and bonding 

states were analyzed using X-ray photoelectron spectroscopy (XPS) with a PHI 5000 Versa 

Probe II, ULVAC-PHI Inc. spectroscope. The samples were disc-pelletized and put under 

a high vacuum prior to the XPS measurement. 

5.3      Results and Discussion 

5.3.1   Catalyst Properties 

5.3.1.1   Surface area and porosity 

The dispersion of active sites is mainly determined using the specific surface area and pore 

structure of the catalysts [32]. The surface areas calculated using the BET equation in the 

linear region of the N2 adsorption-desorption isotherms (P/Po = 0.05-0.3), pore volumes 

and the average pore diameters of the various catalysts calculated using the BJH method, 

are presented together with the support values in Table 5.1. A decrease in surface area was 

observed for all the catalysts compared to that of the support. The same trend was also 

observed in the catalysts pore structure. However, their values adjusted to support weight 

base showed increased or not much-reduced values with the exception of SBA-15 

supported catalyst.   
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Table 5.1 Catalysts and supports physical properties. 

Catalyst: 

(Support) 

BET surface area Pore surface area Pore volume 

Average 

pore 

diameter 

[m2/g- 

catalyst]a 

[m2/g- 

support]b 

[m2/g- 

catalyst]c 

[m2/g- 

support]d 

[cm3/g- 

catalyst]e 

[cm3/g- 

support]f 

 

[nm]g 

CSGM 

(SiO2 gel: 

SGM) 

158 251 171 272 0.71 1.13 16.8 

 (242)  (263)  (1.22) (18.6) 

CSB 

(SBA-15: 

SB) 

269 427 309 491 0.33 0.52 4.2 

 (657)  (1080)  (1.08) (4.1) 

CSF 

(SiO2 

foam: SF) 

388 616 397 630 1.55 2.46 15.6 

 (540)  (554)  (2.27) (16.4) 

CSS (SiO2 

sol) 
91 144 87 138 0.64 1.02 29.1 

The definition of the notations: a, b, c, d, e, f, and g can be found elsewhere [14] 

The N2 adsorption-desorption isotherm of the Ni-Bi-O/SBA-15 catalyst (normalized to 

support weight) and SBA-15 support is presented in Figure 5.1(a) while the pore size 

distribution (normalized to support weight) using the adsorption branch isotherm is shown 

in Figure 5.1(b). The isotherms are typical of type IV of the IUPAC classification due to 

the existence of the type H1 hysteresis loop, which is common for mesoporous materials 

having a well-defined cylindrical-like pore channel [32]. Adsorption and desorption paths 

of the isotherm coincide at low relative pressure (up to P/Po ≈ 0.5) which is an indication 

that there exists monolayer-multilayer adsorption [33]. The beginning of the hysteresis 
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loop signifies capillary condensation within the pores, and its end corresponds to the filling 

of the pores. Metal loading resulted in the decrease in the height of the loop due to pore 

volume decrease caused by the introduction of metal species within the support mesopore 

[34]. The pore size distribution gave a sharp peak for both the support and the catalyst 

indicating a narrow mesopore size distribution, typical of mesoporous SBA-15 material 

[34, 35]. 

 

Figure 5.1 (a) N2 adsorption-desorption isotherm; (b) pore size distribution (Blue/unfilled: SBA-15, 

Red/Filled: Ni-Bi-O/SBA-15). 

 

The pore size distribution was divided into three regions to carefully examine the effect 

of the metal loading on the support. The pore surface area and pore volume of the support 

and catalyst are presented in Table 5.2. The pore surface area and the pore volume of the 

catalysts reduced to almost 50 % of the support. The main reduction is observed in the 

region of lower pore diameter (1.7-3.9 nm). An approximately 1.1 nm thickness of the pore 

inside surface of the support has been covered by the metal oxides impregnation. 
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Table 5.2 Pore size distribution of Ni-Bi-O/SBA-15 catalyst and support. 

Material Support: SBA-15 Catalyst: Ni-Bi-O/SBA-15 

Pore diameter 

(nm) 

Pore surface area 

(m2/g) 

Pore volume 

(cm3/g) 

Pore surface area  

(m2/g-support) 

Pore volume 

(cm3/g-support) 

1.7-3.9 
714 

(66.1) 

0.523 

(48.4) 

213 

(43.2) 

0.096 

(18.5) 

3.9-5.6 
60 

(5.5) 

0.066 

(6.1) 

53 

(10.9) 

0.060 

(11.5) 

5.6-266 
306 

(28.4) 

0.491 

(45.5) 

225 

(45.9) 

0.364 

(70.0) 

Total 
1080 

(100) 

1.080 

(100) 

491 

(100) 

0.520 

(100) 

 

The surface area, pore volume and the average pore diameter of the catalysts with 

reduced Ni and/or Bi loading can be found in the supplementary material [S1]. All the 

catalysts exhibited a reduced surface area and pore volumes compared to the supports. The 

average pore diameter remained unchanged in all the catalysts. 

5.3.1.2   X-ray diffraction 

The X-ray diffraction (XRD) patterns related to Bi oxide species for the mesoporous and 

conventional silica supported catalysts are presented in Figure 5.2. The XRD patterns 

were recorded from a diffraction angle of 2θ = 5 to 90 o. Then, 2θ = 25 to 35 o was selected 

to examine the phases of Bi oxide in the different catalysts precisely. For the conventional 

SiO2 supported catalyst, the main peaks are attributed to beta-Bi2O3 and Bi2SiO5 at 2θ = 
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27.38 o and 29.0 o respectively. This new phase was previously assigned as Bi2O3-a in our 

previous report [27]. However, this has been confirmed as bismuth silicate phase (JCPDS 

00-0287), resulting from the interaction of Bi oxide and silica support. All the 

characteristic peaks associated with this new phase have been successfully identified in 

the silica sol supported catalyst and the mesoporous (SBA-15 and silica foam) supported 

catalysts. A pure Bi2SiO5 phase with peaks at 2θ = 28.95 o, 32.33 o and 33.38 o with (3,1,1), 

(0,2,0) and (0,0,2) diffraction lines, respectively, were identified in Ni-Bi-O/SBA-15 

catalyst. This new phase assignment as Bi2SiO5 agreed with the reports in the literature 

[36-40]. 
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Figure 5.2 X-ray diffraction profiles for support species in 20wt%Ni-30wt%Bi-O catalyst: micro-

mesoporous SiO2: CSS, CSG, CSB, CSF 

 

To further study the degree of formation of the new Bi2SiO5 phase, the metal loadings of 

Ni and Bi on SBA-15 were varied and the results are presented in Figure 5.3. The extent 

of the new phase formation depended on the presence of Ni and mainly Bi species. For 

NiO/SBA-15 catalyst, only NiO phase (JCPDS 00-1159) diffraction peaks at 2θ = 36.8 o 

and 42.9 o were identified. BiOx/SBA-15 showed two main diffraction peaks for beta-Bi2O3 

and Bi2SiO5. The ratio of beta-Bi2O3 and Bi2SiO5 varied according to the Ni and Bi 

loadings on the SBA-15 support. An optimum loading for pure Bi2SiO5 phase is the 20 

wt% Ni and 30 wt% Bi on SBA-15 as presented in Figure 5.2.  
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Figure 5.3 X-ray diffraction patterns for loaded species in NiO/SBA-15, BiO
x
/SBA-15, and Ni-Bi-O/SBA-

15 catalysts. 

5.3.1.3   Temperature programmed reduction 

Temperature programmed reduction (TPR) was utilized to determine the level of active 

species reducibility (reduction temperature and extent of reduction) which is very 

significant for catalysts activity and selectivity to butadiene. H2-TPR profiles of the 

mesoporous silica supported catalysts are presented in Figure 5.4, and was compared with 

conventional silica gel and sol catalysts. 
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Figure 5.4 TPR profile for support species in Ni-Bi-O catalyst: CSGM (Silica gel), CSS (Silica sol), CSB 

(SBA-15) and CSF (SiO2 foam) 

 

SiO2 gel supported catalyst (CSGM) showed a reduction peak of high intensity at 500 °C 

and a small reduction peak from 625 °C to 700 °C. This ease of reduction indicates the 

presence of NiO and BiOx species with large particles and having weak metal-support 

interaction. The SiO2 sol supported catalyst showed a similar pattern with SiO2 gel catalyst 

even though it produced a shoulder peak with high intensity aside from the main peak at 

500 °C. Mesoporous supported catalysts (CSB and CSF) however produced a broad peak 

at higher reduction temperature indicating the formation of non-reducible Bi2SiO5 species 

(caused by the strong interaction of Bi oxide species with mesoporous supports). This 

confirmed the existence of surface heterogeneity which is having more than one species 

contributing to the overall reduction process [32]. The amount H2 consumed by the various 

catalysts is presented in Table 5.3. The values were based on the three temperature 

reduction ranges (low temperature, medium temperature, and high temperature) depicted 
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by the catalysts. The overall hydrogen consumption depended on the availability of easily 

reducible oxide species that are weakly bonded to the support surface. The medium 

temperature region reflects the stability of the redox cycle for dehydrogenation 

Table 5.3 Amount of H
2
 consumed in TPR of supported 20wt%Ni-30wt%Bi-O catalysts. 

Catalyst (Support) 

 Amount of H2 consumed [m mol/g] (TM [ºC]) 

I (350-550 ºC) 
II (550-650 ºC) III (650-850 ºC) Total 

CSGM(SiO2 gel) 3.74 1.12 0.13 4.99 

CSB (SBA-15) 0.88 1.04 2.43 4.35 

CSF (Foamed SiO2) 0.70 1.01 2.51 4.22 

CSS (SiO2 sol) 3.75 1.10 0.38 5.23 

 

The TPR profile comparison for conventional SiO2 gel supported catalyst (20 wt% Ni-30 

wt% Bi/SiO2 gel) and a catalyst formed using equilibrium adsorption (5 wt% Ni -30 wt% 

Bi/SiO2 gel) as previously reported [14], is shown in Figure 5.5. The EQA catalyst 

contained a reduced amount of NiO species, hence the main component present is Bi oxide 

species. Two Bi species exist on the support surface which are Bi2O3 and Bi2SiO5 and these 

are responsible for the two distinct reduction peaks at 500 °C and 700 °C, respectively. The 

reduced Ni amount resulted in a stronger anchoring of Bi species on the support. This has 

increased the difficulty in reducibility of the EQA catalyst compared to the conventional 

silica supported catalyst.  
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Figure 5.5 TPR profile for impregnation method in Ni-Bi-O, catalyst: CSGM (SiO
2
 gel) and EQA-CSGM 

(SiO2 gel). 

 

To further study the reduction profile of mesoporous support and its interaction 

separately with the active metal species, TPR measurement was carried out on NiO/SBA-

15 and BiOx/SBA-15 and the result is presented in Figure 5.6. Structured SBA-15 can 

anchor both Ni and Bi species strongly more than the conventional silica. The TPR profile 

showed the difficulty in the reducibility of NiO and Bi oxide species on SBA-15 separately 

still remained after co-impregnation. It is evident that oxygen species of NiO are strongly 

bound to the support surface. Similarly, the Bi oxide deposition on the support led to the 

formation of two species similar to the case of EQA catalyst. This also agrees with the 

XRD profiles discussed earlier. The TPR profiles of the various combination of Ni and Bi 

oxides on SBA-15 support are shown in Figure S1 (Supplementary information). All the 

profiles followed the same pattern indicating a stable active species redox cycle.  
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Figure 5.6 H
2
-TPR profiles for catalysts of Ni-Bi-O over SBA-15: (a) 20wt% Ni-O, (b) 30 wt% Bi-O and 

(c) 20 wt% Ni-30 wt% Bi-O 

 

5.3.1.4   X-ray photoelectron spectroscopy 

The chemical states and dispersion of the active metal oxide species in the catalysts were 

examined using x-ray photoelectron spectroscopy (XPS) using the Ar-etching method. The 

XPS spectra are presented in Figure 5.7. The spectra showed before (upper layer) and after 

(lower layer) etching spectrum of Bi and Ni species. Surface Bi species showed XPS peaks 

of Bi 4f7/2 at 158.9 eV and 4f5/2 at 164.3 eV which gave good agreement with reference 

data of Bi2O3 [41], identified as beta phase using XRD result. Inner surface Bi species 

showed XPS peaks of Bi 4f7/2 at 158.4 eV and 4f5/2 at 163.8 eV have 0.5 eV decrease of 

binding energy from reference data of Bi2O3, which was assigned as Bi2SiO5 phase using 

XRD result. Bi in this phase is slightly reduced to lower valency like Bi2O3-a where a is 

estimated around 0.6 based on decreasing percentage to Ni metal’s value.  
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Surface Ni species showed XPS peaks of Ni 2p3/2 at 854.4 eV which also gave good 

agreement with reference data of NiO [42], which is identified as nano-particle NiO using 

XRD result. Inner surface Ni species showed XPS peaks of Ni 2p3/2 at 853.7 eV having 0.7 

eV decrease of binding energy from reference data of NiO, which was assigned for partially 

reduced NiO phase using XRD result. Ni in this phase is slightly reduced to lower valency 

like NiO1-b where b is estimated around 0.4 based on decreasing percentage to Ni metal’s 

value. 

 

Figure 5.7 XPS study for catalysts of 20 wt% Ni- 30 wt% Bi-O over SBA-15: [a] Bi [b] Ni, upper: surface, 

lower: inner surface. 
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5.3.1.5   High-resolution transmission electron microscopy (HRTEM) 

The HRTEM image of SBA-15 supported catalyst as presented in Figure 5.8 shows the 

size and morphology of the highly ordered pores in an array with long 1D channels. The 

HRTEM image agrees with the result of pore distribution measurement by N2 adsorption. 

A lattice spacing of 0.21 nm which corresponded to that of NiO has already been presented 

previously [27]. NiO is dispersed mainly not directly on SBA-15, but through Bi species 

phase in SBA-15. This means that the three oxides, (i) silica ordered in SBA-15 mesopore, 

(ii) Bi2SiO5 (and beta-Bi2O3) ordered on the silica of  SBA-15 in the mesopore and (iii) Ni 

oxide species dispersed on the Bi species phase form into hierarchically layered catalyst 

system. 

 

Figure 5.8 High-resolution transmission electron microscopy (HRTEM) micrographs of SBA-15 

mesoporous silica catalyst. 
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5.3.2   Catalyst Performance Evaluation 

The proposed conversion route from the n-butane to the main product together with 

the byproducts is presented in Figure 5.9. The major pathways are the 1st dehydrogenation 

from n-butane to butenes (1-butene and 2-butene), 2nd step dehydrogenation to butadiene, 

and cracking (to mainly ethylene, propylene, methane, CO, and CO2). The selectivity to 

either dehydrogenation or cracking pathways depend on the strength of the acid and basic 

sites. The role of the active metal oxide species in enhancing the production of the desired 

product is discussed in the next section.  

 

Figure 5.9 Conversion route from the n-butane to the products including co-product formation. 

 

5.3.2.1   Effect of bismuth oxide loading 

The effect of Bi species amount available on the mesoporous SBA-15 support surface on 

the catalyst performance is presented in Table 5.4.  Reducing BiOx species increased the 

ratio of the Bi2SiO5/β-Bi2O3 species as depicted by XRD measurements. The presence of 
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bismuth silicate species improved NiO species dispersion thereby enhancing the catalyst 

activity with selectivity towards both 2nd step dehydrogenation and cracking pathways. 

Table 5.4 Comparison of Ni/Bi as the metal amount in the supported catalysts. 

Catalyst HN-HB HN-LB MN-LB LN-LB 

Support SBA-15 SBA-15 SBA-15 SBA-15 

Ni/Bi [wt%]/[wt%] 

(Ni/Bi atomic ratio) 

20/30 

(2.4) 

20/10 

(7.2) 

14/10 

(5.0) 

10/10 

(3.6) 

n-C4H10 conversion [%] 28.9 30.0 27.7 23.5 

Selectivity*1 [C%]     

DH 75.2 71.8 78.4 83.5 

             2-C4H8 15.4 14.6 15.0 17.8 

            1-C4H8 12.3 7.8 10.2 11.2 

      BD 47.5 49.4 53.2 54.5 

PO 24.8 28.2 21.6 16.5 

     OC 19.7 28.2 17.1 12.1 

     CO 5.1 0.0 4.5 4.4 

(1-C4H8 + BD)*2 59.8 57.2 63.4 65.7 

BD/(1-C4H8 + BD) %*3 79.4 86.3 83.9 82.9 

BD yield 13.7 14.8 14.7 12.8 
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5.3.2.2     Effect of nickel oxide loading 

The effect of reducing the amount of NiO species deposited on the support is presented in 

Table 5.4. The activity of the catalysts reduced with a successive reduction in NiO amount, 

which reduces the selectivity of the catalyst towards the undesired cracking products. 

However, the dehydrogenation (and butadiene selectivity) increased mainly because of the 

increase in the ability of the BiOx to effectively disperse the NiO species for stable and 

continuous performance.    

5.3.2.3     Effect of Bi-loading on Bi-phase and Performance of Mesoporous SiO2 

Catalysts 

The amount of Bi was reduced from 30 wt% to 10 wt% to investigate the NiO active species 

dispersion ability through dispersed BiOx of the different mesoporous support. The results 

are presented in Table 5.5. Reducing Bi amount changed the surface concentration of the 

BiOx species on the support that influenced the resultant dispersion of NiO. A sol-type and 

gel-type conventional silica supported catalysts were included for comparison with the 

different mesoporous supports. For the sol-type silica supported catalyst, the activity of the 

catalyst remained unaffected with a reduction in Bi amount while the dehydrogenation 

selectivity and butadiene selectivity were greatly decreased. It is an indication that the 

reduction in the surface of dispersed BiOx on silica sol affects the dispersion and ease of 

reducibility of NiO species. For the gel-type supported catalyst, the catalyst activity 

improved with reduction of Bi amount indicating that for effective NiO dispersion, low Bi 

is enough. The increased activity reflected in increasing OC products selectivity with a 

reduced dehydrogenation selectivity. The selectivity for butadiene is similar for the two 

catalysts even though there is an improved 2nd step dehydrogenation selectivity with the 
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reduced Bi amount resulting from increased 1-butene adsorption. Hence yield of butadiene 

greatly improved for the reduced Bi amount among the gel-type supported catalyst.  

For the mesoporous silica foam supported catalyst, conversion was increased with a 

reduction in Bi amount but DH selectivity (and BD selectivity) decreased. OC selectivity 

increased due to increase in NiO concentration on the catalyst surface. The 2nd step 

dehydrogenation selectivity slightly improved while the overall butadiene yield remained 

unchanged. In the case of SBA-15 supported catalyst, the activity remained the same for 

both cases, but dehydrogenation selectivity improved slightly. OC selectivity also 

increased due to an increase in NiO dispersion on the surface which interacts with oxygen 

species active for cracking reactions. Due to the fact that SBA-15 support has high 

dispersion ability and NiO adsorption capacity, the 2nd step dehydrogenation selectivity 

and butadiene yield were improved even with the reduction in Bi amount. 
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Table 5.5 Comparison of Bi/Ni 0.42 to 0.14 as sub metal amount in Ni-Bi-O/support catalysts. 

Catalyst  
CSGM-LB 

(CSGM) 

CSB-LB 

(CSB) 

CSF-LB 

(CSF) 

CSS-LB 

(CSS) 

Support SiO2 gel SBA-15 SiO2 foam SiO2 sol
 
 

Bi/Ni 0.14 (0.42) 0.14 (0.42) 0.14 (0.42) 0.14 (0.42) 

n- C4H10 conversion [%] 29.3 (17.6) 30.0 (28.9) 34.1 (29.2) 35.7 (35.6) 

Selectivity*
1
 [C%]      

DH 67.5  (79.1) 71.8  (75.2) 69.0  (77.6) 57.4  (78.3) 

              2- C4H8 16.6  (21.7) 14.6  (15.4) 18.8  (17.2) 11.3  (18.6) 

              1- C4H8 18.0  (25.5) 7.8   (12.3) 11.4  (14.8) 11.1  (18.1) 

          BD 32.9  (31.9) 49.4  (47.5) 38.8  (45.6) 35.0  (41.6) 

PO 32.6  (20.9) 28.2  (24.8) 31.0  (22.4) 42.6  (21.6) 

         OC 26.7  (17.5) 28.2  (19.7) 30.5  (21.0) 41.2  (20.5) 

         CO 5.9  (3.4) 0.0   (5.1) 0.5   (1.4) 1.4   (1.1) 

(1- C4H8 
+ BD)*2 50.9  (56.4) 57.2  (59.8) 50.2  (60.4) 46.1  (59.7) 

BD/(1- C4H8+ BD) %*3 64.6  (55.6) 86.3  (79.4) 77.3  (75.4) 76.0  (69.7) 

BD yield 9.6  (5.6) 14.8  (13.7) 13.2  (13.3) 12.5  (14.8) 

*1, *2 and *3 are same as reported previously [27] 

5.3.3   Modeling of Catalyst Character and Performance  

The schematic representation of the effect of SBA-15 support, its interaction with the metal 

oxide species, and the effect of varying the amount of the active species on the selectivity 

to butadiene is shown in Figure 5.10. The production of butadiene depended on the 

formation of active Bi2SiO5 and β-Bi2O3 species due to their role in active oxygen supply 

and stabilizing the NiO species for the successive dehydrogenations at low cracking. The 
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proposed model for the selective production of butadiene from n-butane is shown in Figure 

5.11.  

 

Figure 5.10 Preparation scheme for Bi-Ni oxide/SBA-15 catalyst: Effect of support and NiO on hierarchical 

NiO-Bi2SiO5 nano-particle cohabitation. 

 

 

Figure 5.11 Model for a selective butadiene production from n-butane on SBA-15 supported catalyst. 
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Conclusion 

NiO-beta-Bi2O3-Bi2SiO5/SBA-15 catalyst system showed good performance in the 

oxidative dehydrogenation of n-butane to butadiene, resulting from the formation of Bi2O3 

and Bi2SiO5 phases on the catalyst.  The change in phase between Bi2SiO5 and beta-Bi2O3 

was determined by the Ni/Bi ratio and loading ratio to the support due to the template 

effects of Ni and mesoporous SiO2 support to Bi oxide. The formation degree of oxide 

phase Bi2SiO5 and beta-Bi2O3 phase reflected in the butadiene selectivity through 

reducibility and dispersion properties as evident from TPR and XRD studies. The catalyst 

with moderate loadings of both Ni and Bi exhibited a clear superiority in the catalytic 

performance compared to the other catalysts. The increase of Ni loading resulted in 

increased activity, while the increase of Bi loading led to the butadiene selectivity 

improvement. The catalytic performance of other mesoporous support catalyst also 

depends on Ni and Bi loaded amount. The catalyst characteristics agree with the catalytic 

performance in the view of the proposed scheme for selective production of butadiene via 

intermediate butenes. 

Acknowledgment 

The authors highly appreciate King Fahd University of Petroleum & Minerals 

(KFUPM). Also, the involvement of Japan Cooperation Center, Petroleum (JCCP) in this 

joint research is greatly appreciated. 

References 

[1]  IHS, Butadiene: Chemical Economics Handbook, HIS Markit, (2018) London. 

[2]  J.C. Gottifredi, E.L. Sham, V. Murgia,  E.M. Farfa, Appl. Catal. A: Gen. 312       (2006) 

134-143. 



138 

 

[3]   Y. Xu, J. Lu, M. Zhang, J. Wang, J. Nat. Gas Chem. 18 (2009) 88-93. 

[4]   B.M. Weckhuysen, D.E. Keller, Catal. Today 78 (2003) 25-46. 

[5]   I. Rossetti, G. F. Mancini, P. Ghigna, M. Scavini, M. Piumetti, B. Bonell, F. Cavani, 

A. Comite, J. Phy. Chem. C. 116 (2012) 22386-22398. 

[6]   E. Santacesaria, M. Cozzolino, M. Di Serio, A.M. Venezia, R. Tesser, Appl. Catal. A: 

Gen. 270 (2004) 177-192. 

[7]   A. Dejoz, J.M. Lopez Nieto, F. Marquez, M.I. Vazquez, Appl. Catal. A: Gen 180 

(1999) 83-94. 

[8]   J. K. Lee, H. Lee, U. G. Hong, Y. Yoo, Y-J. Cho, J. Lee, H-S. Jang, J. C. Jung, I. K. 

Song, J. Ind. Eng. Chem. 18 (2012) 1096-1101. 

[9]   M.A. Volpe, G.M. Tonetto, H. De Lasa, Appl. Catal. A: Gen. 272 (2004) 69-78. 

[10]   J. Rischard, C. Antinori, L. Maier, O. Deutschmann, Appl. Catal. A: Gen. 511 (2016) 

23-30. 

[11]   B.R. Jermy, B.P. Ajayi,  B.A. Abussaud,  S. Asaoka, S. Al-Khattaf,  J. Mol. Catal. A 

Chem. 400 (2015) 121-131. 

[12]   B. R. Jermy, S. Asaoka, S. Al-Khattaf, Catal. Sci. Technol. 5 (2015) 4622-4635. 

[13]   G. Tanimu, B. R. Jermy, S. Asaoka, S. Al-Khattaf, J. Ind. Eng. Chem. 45 (2017) 111-

120. 

[14]   G. Tanimu, S. Asaoka, S. Al-Khattaf, Mol. Catal. 438 (2017) 245-255. 

[15]   J. Liang, Z. Liang, R. Zou, Y. Zhao, Adv. Mater. 29 (2017) 1-21. 

[16]   C-Y. Lai, J. Thermodyn. Catal. 5 (2013) 1-3. 

[17]   R. H-Acuna, R. Nava, C. L. P-Ledesma, J. L-Romero, G. A-Nunez, B. Pawelec, E. 

M. R-Munoz, Mater. 6 (2013) 4139-4167. 

[18]   A. Ramanathan, B. Subramanian, Molecules 23 (2018) 263-276. 

[19]   T. I. Bhuiyan, P. Arudra, M. Akhtar, A. Aitani, R. Abudawoud, M. Al-Yami, S. Al-

Khattaf, Appl. Catal. A: Gen 467 (2013) 224-234. 

[20]   T. I. Bhuiyan, P. Arudra, M. Akhtar, A. Aitani, R. Abudawoud, M. Al-Yami, S. Al-

Khattaf, Can. J. Chem. Eng. 92 (2014) 1271-1282. 



139 

 

[21]   M. A. Ibrahim, M. N. Akhtar, J. Cejka, E. Montanari, H. Balcar, M. Kubu, S. Al-

Khattaf, J. Ind. Eng. Chem. 53 (2017) 119-126. 

[22]   W. Liu, S.K. Lai, H. Dai, S. Wang, H. Sun, C.T Au, Catal. Lett. 113 (2007) 147-154. 

[23]  R. Bulanek, A. Kaluzova, M. Setnicka, A. Zukal, P. Cicmanec , J. Mayerova, Catal. 

Today 179 (2012) 149-158. 

[24]   M. Setnicka, P. Cicmanec, R. Bulanek, A. Zukal, J. Pastva, Catal. Today. 204 (2013) 

132-139. 

[25]   X. Wang, G. Zhou, Z. Chen, W. Jiang, H. Zhou, Microporous Mesoporous Mater. 

223 (2016) 261-267. 

[26]    C. Wang, J-G. Chen, T. Xing, Z-T. Liu, Z-W. Liu, J. Jiang, J. Lu, Ind. Eng. Chem. 

Res. 54 (2015) 3602-3610. 

[27]   G. Tanimu, A. Palani, S. Asaoka, S. Al-Khattaf, Catal. Today 324 (2019) 97-105. 

[28]   A. Palani, H-Y. Wu, C-C. Ting, S. Vetrivel, K. Shanmugapriya, A.S.T Chiang, H-

M. Kao, Microporous Mesoporous Mater. 131 (2010) 385-392 

[29]   A. Palani, A. Pandurangan, J. Mol. Catal. A 226 (2005) 129-134 

[30]   G. Qi, L. Fu, B. H. Choi, E. P. Giannelis, Energy Environ. Sci. 5 (2012) 7368-7375 

[31]   P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 115 (2015) 6687-6718. 

[32]   M. R. Quddus, M. M. Hossain, H. I. de Lasa, Catal. Today 210 (2013) 124-134. 

[33]   S. Adamu, M. Y. Khan, S. A. Razzak, M. M. Hossain, J. Porous Mater. 24 (2017) 

1343-1352. 

[34]   P. E. Boahene, K. P. Soni, A. K. Dalai, J. Adjaye, Appl. Catal. A: Gen. 402 (2011) 

31-40. 

[35]   Y. Wang, M. Noguchi, Y. Takahashi, Y. Ohtsuka, Catal. Today 68 (2001) 3-9. 

[36]   H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao, Y. Zhu, Appl. Catal. B: 

Environ. 237 (2018) 59-67. 

[37]   K. Hayashi, K. Yameda, M. Shima, Mater. Lett. 200 (2017) 24-26. 

[38]   H. W. Gao, X. F. Wang, D. N. Gao, Mater. Lett. 67 (2012) 280-282. 

[39]   L. Zhang, W. Wang, S. Sun, J. Xu, M. Shang, J. Ren, Appl. Catal. B: Environ. 100 

(2010) 97-101. 



140 

 

[40]   J. Lu, X. Wang, Y. Wu, Y. Xu, Mater. Lett. 74 (2012) 200-202. 

[41]   https://xpssimplified.com/elements/bismuth.php Retrieved: 12th February, 2019. 

[42]   T. Kimura, H. Imai, X. Li, K. Sakashita, S. Asaoka, M. N. Akhtar, S. S. Al-Khattaf, 

Arab. J. Sci. Eng. 39 (2014) 6617-6625.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://xpssimplified.com/elements/bismuth.php


141 

 

CHAPTER 6 

Elucidation of the Reaction Network for n-Butane ODH and 

Kinetic Modelling 

Published as: 

Gazali Tanimu 2, Sulaiman S. Al-Khattaf 1,2, Michael T. Klein 1,3 

Energy Fuels 2019, 33, 2, 1473-1478. 

 

 

1  Center of Research Excellence in Petroleum Refining and Petrochemicals, King 

Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia 

2  Department of Chemical Engineering, King Fahd University of Petroleum & 

Minerals, Dhahran 31261, Saudi Arabia 

3  Department of Chemical and Biomolecular Engineering, University of Delaware, 

Newark, Delaware 19716, United States. 

 

Abstract 

The reaction network for the oxidative dehydrogenation of n-butane to butadiene was 

examined. Delplots for experiments with n-butane, 1-butene, and 2-butene feeds were 

constructed. These analyses revealed that butadiene formed from both 1-butene and 2-

butene. The experimental ratio of 2-butene and 1-butene was far from the equilibrium 

value, suggesting that the 2-butene to 1-butene equilibrium was not established, supporting 

the existence of the direct reaction of 2-butene to butadiene. 

Keywords: Reaction network, Oxidative dehydrogenation, n-Butane, 1,3-Butadiene, 

Delplots 
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6.1      Introduction 

Butadiene is an important petrochemical raw material used mainly in the production of 

synthetic rubbers and automobile tires. Increased demand for this raw material has resulted 

in an intensive search toward an on-purpose production method to complement the 

conventional production methods. The oxidative dehydrogenation (ODH) reaction of n-

butane involves the use of gas-phase oxygen as a co-feed, thereby prolonging the catalyst 

life. This reaction is not limited by thermodynamic equilibrium and hence, it can be carried 

out at relatively low temperatures compared to that required for the direct dehydrogenation 

reactions. 1-3  

In the ODH of n-butane, butadiene is obtained through a successive dehydrogenation 

sequence (first step dehydrogenation to butenes and second step dehydrogenation to 

butadiene). A major challenge is the loss of selectivity as a result of deep oxidation to 

carbon oxides. This motivates our interest in understanding the reaction network and the 

associated kinetics to enable the design of highly selective catalysts and reactors for an 

improved result. 

The reaction network for the ODH reaction is not fully understood. The major 

challenge is whether 1,3-butadiene is obtained only from 1-butene intermediate or from 

both 1-butene and 2-butenes. The formation of 1,3-butadiene from 1-butene only is 

supported by the work of Blasco et al.4 who suggested two different mechanisms for ODH 

of n-butane depending upon the acid-base character of the catalyst. Catalysts with higher 

basic sites favor 1-butene formation and its subsequent dehydrogenation to butadiene, 

while catalysts with acidic character resulted in a high content of initial 2-butenes, which 
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further give carbon oxides through a series reactions. This also agree with the findings of 

Chaar et al., 5 Harding et al., 6 and Madeira et al.7  

Similarly, recent reports by Tanimu et al. 8-9 using a Ni-BiO/supported catalyst 

suggested that the mechanistic route in the ODH also depends upon the acid-base nature of 

the catalyst and that 1,3-butadiene is formed only from 1-butene. Their proposed 

mechanism is shown in Figure 6.1. The butadiene selectivity was shown to depend upon 

the selective dehydrogenation to 1-butene and successively to butadiene. The basic 

character of catalyst withdraws a hydrogen atom as a proton at the α-methyl carbon of n-

butane, while hydrogen is selectively withdrawn as a hydride by the acidic character of the 

catalyst from the β-methylene carbon of n-butane. The basicity of the catalyst ensured 

selective abstraction of hydrogen (from both butane and 1-butene), and the weak acidity 

played a role in the adsorption of the intermediate without desorption into the gas phase, 

isomerization to 2-butenes, and deep oxidation into COx products. Their proposal was that 

the reaction network starting with n-butane proceeds through 1-butene and then to 1,3-

butadiene in series, while 2-butene either isomerizes to 1-butene or forms cracking and 

deep oxidation products. 
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Figure 6.1 Schematic reaction mechanism for ODH of n-butane to butadiene. 
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catalyst, a Bronsted-catalyzed mechanism or an allylic mechanism can be proposed for the 

successive dehydrogenation to butadiene. The nature of the oxygen species also plays a 

role in the product obtained because lattice oxygen leads to dehydrogenation (to olefins 

and diolefins), while adsorbed oxygen leads to deep oxidation to carbon oxides. The 

reaction system follows the Mars-van Krevelen mechanism. 

 

Figure 6.2 Reaction network for ODH of n-butane and butenes. 

 

The foregoing allows for the inference that the intermediate allylic species can be obtained 

from both 1-butene and 2-butene, because it affords a stabilized allylic bond between 

secondary carbons (methylene) in the compounds. The extent of isomerization (dependent 
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to a large extent upon the catalyst acidity) also plays a role as a competitive side reaction 

that can affect the butadiene formation. 

The essential issue in these network scenarios is whether the formation of butadiene is from 

both 1-butene and 2-butene or 1-butene only. To this end, experiments were carried out in 

support of the Delplot method for reaction network elucidation to help resolve this conflict. 

The Delplot method is used to determine the rank of the various products in the reaction 

sequence of observable species. It comprises a set of plots that enable the separation of 

products based on their ranks. A first-rank Delplot is a plot of yield/conversion (Y/X) for 

each observed product versus conversion (X) of the reactant. The ranks of the product are 

determined on the basis of the intercepts as X→0. Primary products will have a non-zero 

intercept, while higher-rank products will have zero intercepts. Higher-rank Delplots fill 

out the reaction network because the intercept X→0 of Y/Xn against X will either have a 

finite intercept for an nth rank product, a zero intercept for higher-rank products or a 

divergence for lower-rank products.13-15 

6.2      Experimental Section 

The ODH reaction was carried out in an automated fixed-bed reactor purchased from 

MicrotracBel, Corp, Japan. A total of 300 mg of the as-prepared catalyst 8-9 was loaded 

into the reactor and calcined under an air atmosphere. The detailed synthesis procedure, 

and chemical and textural properties of the catalyst have been discussed previously.8 After 

calcination, the reaction started in a nitrogen atmosphere. The effects of six different 

temperatures (300-550 oC) and different feeds (n-butane, 1-butene, and 2-butene) were 

tested. The products were analyzed through an online gas chromatograph (GC) system, 
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(Agilent, 7890N). The details of the GC can be found in our previous studies.8-9 The 

conversion (1-NA/NAO), product selectivities (Ni-Nio)/NAO, and yields (Ni/NAO) were 

measured to probe the kinetics and reaction network. 

6.3      Results and Discussion 

The major products were 1-butene, trans-2-butene, cis-2-butene, 1,3-butadiene, cracking 

products (ethylene and propylene), and carbon oxides (CO and CO2). Gases, such as CH4, 

C2H6, and C3H8 were also detected but in negligible quantities.  

Panel a and b of Figure 6.3 show the dependence of the product yields upon the temperature 

and contact time, respectively. 
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b) 

Figure 6.3 Plots of the yield versus (a) reaction temperature at a contact time of 100 gcat.min/gbutane and (b) 

contact times at 450 oC. 

 

The plot of the main product yield against temperature is shown in Figure 6.3a. At lower 

reaction temperatures up to 400 oC and contact time of 100 gcat.min/gbutane, the yields of 

both 1-butene and 2-butene were higher than that of 1,3-butadiene. The yield of 2-butene 

was higher than that of 1-butene over all of the reaction temperatures and they both 

increased up to 450 oC before decreasing at higher temperatures. This is an indication that, 

at higher temperatures, the rate of their consumption to secondary products is greater than 

the rate of their production from n-butane. 1,3-Butadiene increased at a lower rate up to 

400 oC, after which the rate of production rapidly increased up to 500 oC.  
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The dependence of the main product yields against the contact time at 450 oC is shown in 

Figure 6.3b. 2-Butene was produced in a higher yield than 1-butene at all contact times. At 

higher contact times, the yield of 2-butene remained constant, while that of 1-butene 

decreased. The yield of 1,3-butadiene increased continuously with an increase in contact 

time. This is an indication that, at the studied reaction temperature, an increased contact 

time favored both first and second step dehydrogenation to butadiene without further 

reaction. These results were examined further through the construction of Delplots. 

6.3.1   Delplots from Experiments with Butane Feed  

The first-rank Delplot with n-butane as feed is shown in Panel a and b of Figure 6.4, the 

former for the major products of interest and the latter for the minor side products. 

Inspection of Figure 6.4 shows that 1-butene and 2-butene have a finite intercept, which 

implies that they are primary products. Figure 6.4b shows that other products all have 

approximately zero intercepts, indicating that they are higher-rank products. Figure 6.4c 

presents the second-rank Delplot. Both 1-butene and 2-butene have diverging intercepts, 

indicating that they are lower-rank (i.e, primary) products. The finite intercept for 

butadiene indicates that it is a secondary product.  
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c) 

Figure 6.4 First, and second-rank Delplots for experiments with n-butane feed. 
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a) 

 

b) 

Figure 6.5 First, and second-rank Delplots for experiments with 1-butene feed. 
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a) 

 

b) 

Figure 6.6 First and second-rank Delplots for experiments with 2-butene feed. 
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The Delplots for experiments with 2-butene feed are shown in Figure 6.6. The first-

rank Delplots (Figure 6.6a) showed a finite intercept for 1-butene and butadiene, indicating 

that they are both primary products. The second-rank Delplots (Figure 6.6b) further showed 

that the products with finite intercepts in the first rank now diverge.  

This Delplot analysis suggests that, during the ODH of n-butane, the desired 

product 1,3-butadiene forms from both 1-butene and 2-butene and also that a reversible 

isomerization reaction takes place between 1-butene to 2-butene. Collectively, the results 

of this analysis support the conclusions of Lopez Nieto et al.11 and Ramani et al.12 The 

network is consistent with a mechanism where both 1-butene and 2-butene formed an 

allylic species, which eventually dehydrogenates to 1,3-butadiene.  

If the isomerization between 1-butene and 2-butene is very fast, there remains at least one 

possible kinetic scenario in support of the network where 1,3-butadiene forms from 1-

butene only. In this case, the apparent reaction of 2-butene to 1,3-butadiene could take 

place through the rapid reaction of 2-butene to 1-butene, which then produces 1,3-

butadiene in a rate determining step. This would require a virtual equilibrium between 1-

butene and 2-butene, which was probed through the calculation of the equilibrium levels 

of 1-butene to 2-butene as a function of conversion. The results of this analysis which 

accounted for both cis- and trans- isomers of 2-butene, are shown in Figures 6.4a, 6.5a, and 

6.6a as a plot of the calculated equilibrium ratio of 2-butene to 1-butene versus conversion 

(X) and the experimental ratio of 2-butene to 1-butene. This analysis suggests that the 2-

butene to 1-butene equilibrium was not established, which further supports the direct 

reaction of 2-butene to 1,3-butadiene. 
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6.4      Kinetic Studies using Kinetic Model Editor (KME) 

 

Kinetic studies is also a tool that is utilized for further characterization in order to confirm 

the performance of the catalysts. It can also be used in data prediction, reactor design and 

also in improving catalytic performance by tuning it properties. Based on the reaction 

network obtained for n-butane ODH using Delplots techniques, the following reactions (i-

v) were proposed which also agreed with the product distribution. The main reaction 

products are butenes and butadiene while C2H4, C3H6, CO2, CO and H2 are minor products. 

The GC system utilized for this process does not identify water, hence water is not included 

in the product distribution.   

             C4H10 + 0.5 O2 → C4H8 + H2O………………………………………………. (i) 

             C4H8 + 0.5 O2 → C4H6 + H2O ………………………………………………. (ii) 

             C4H8 + 3 O2 → C2H4 + 2CO2 + 2H2O ………………………………………  (iii) 

             C4H8 + 1.5 O2 → C3H6 + CO2 + H2O ………………………………………   (iv) 

             C4H10 + 2 O2 → 4 CO + 5 H2 ………………………………………………    (v) 

Kinetic model editor (KME) is a user friendly software that writes out the system of 

differential equations based on the reactions entered by the user. The user also specifies the 

rate law and reactor type and KME combines the system of equations. The solution 

proceeds as an initial value problem (IVP) with the provision of feed composition in molar 

flow. The INP, COND, RTK and OBS sheets representing input, conditions, reaction 
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parameters, observed, respectively, are all filled with the experimental values in mol/s and 

reactor/reaction conditions (temperature, pressure, outer radius etc). 

6.4.1   Kinetic Parameters Optimization  

For the ODH reaction, PFR and micro-kinetic were chosen as reactor type and rate law 

respectively. For optimizing the kinetic parameters, the objective function F, measures the 

fitting accuracy of the model. It determines how well the predicted molar flows matches 

with the experimental measurements. The expression for determining the objective 

function F, is given in equation vi. 

∑ (
measured i−predicted i (rate parameters)

wi
i,meas )2   ……………………… (vi) 

KME utilizes a global optimization algorithm (Simulated Annealing) to optimize the model 

to experimental data. The results of the optimization are sets of log A and Ea tuned 

parameters. The results can be analyzed by comparing plots of model predictions and 

experimental measurements. 

The values of the model parameters (log A and Ea) are presented in Table 1.0. The apparent 

activation energies revealed how effective the catalyst is in overcoming the activated 

complex barrier from reactants to products. The pre-exponential (frequency) factor A (log 

A) describes the amount and the ease of accessibility to the active sites of the catalyst. The 

second step dehydrogenation has the largest pre-exponential factor which explains why the 

catalyst is more selective towards butadiene compared to the other reaction products. 
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Table 6.1 Kinetic parameters for ODH reaction. 

Reactions A (mol/gcat.s Ea (kJ/mol) 

I 2.34 41.90 

II 10.21 52.45 

III 1.46 41.97 

IV 0.74 44.67 

V 0.12 55.05 

 

The plots of the model predicted and experimental molar flows against reaction 

temperature for n-butane (main reactant) and butenes/butadiene (main products) are shown 

in Figures 6.7, 6.8 and 6.9 respectively. Good fittings were observed especially for the 

reactant. The deviations in the products fittings can be attributed to other possible series 

reactions that were not captured in the model and possibly due to unavoidable experimental 

errors. 
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Figure 6.7 n-butane molar flows at different reaction temperatures. B: butane, 1, 2 and 3 represents 0.15 g, 

0.30g and 0.45 g catalyst weights respectively. 
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Figure 6.8 Butenes molar flows at different reaction temperatures. C: butenes, 1, 2 and 3 represents 0.15 g, 

0.30g and 0.45 g catalyst weights respectively. 
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Figure 6.9 Butadiene molar flows at different reaction temperatures. D: butadiene, 1, 2 and 3 represents 

0.15 g, 0.30g and 0.45 g catalyst weights respectively. 

 

Conclusion 

The ODH of n-butane to 1,3-butadiene reaction network was investigated using the Delplot 

method. Delplots were constructed for experiments with n-butane, 1-butene, and 2-butene 

feeds. On the basis of the results, the conclusions that can be drawn are that 1,3-butadiene 

is formed from both 1-butene and 2-butene and that 2-butene to 1-butene equilibrium was 

not established. Hence, the reaction network can be visualized as n-butane forming both 1-

butene and 2-butene as intermediates that both undergo dehydrogenation in a series 

reaction to give 1,3-butadiene. The developed reaction network will allow for the 

determination of ODH reaction kinetic parameters. The reaction network was used in 

kinetic model editor and the apparent activation energies estimated for 1st and 2nd step 

dehydrogenations are 41.90 and 52.45 kJ/mol, respectively. 
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CHAPTER 7 

Conclusions and Recommendations 

7.1      Conclusions 

This thesis investigated the oxidative dehydrogenation process for converting n-butane to 

mainly butadiene using metal oxides supported catalysts. The main findings of the work 

can be summarized as:  

• The thermodynamic analyses revealed that the ODH pathway is not 

thermodynamically favorable, hence the need to design a catalyst that kinetically 

promote that pathway 

• Metal oxides supported catalysts comprising of commercially available active 

species and supports were successfully synthesized using co-impregnation 

technique 

• The role of different supports (Al2O3, SiO2, and ZrO2) in dispersing the active 

species of Ni and Bi was investigated. SiO2 supported catalyst gave the best 

dehydrogenation selectivity resulting from it balanced acid and basic sites 

• SiO2 sol supported catalyst resulted in an impressive catalytic performance (n-

butane conversion: 35.6 %, DH selectivity: 78.3 % and BD selectivity: 41.6 %) due 

to its interaction ability with the active species 

• Mesoporous silica (SBA-15, SiO2 foam, MCM-41) supported catalyst were studied. 

They were considered due to their ordered structure, stability and well defined pore-

sizes suitable for stabilizing the performance of the active species 
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• The order of butadiene yield among the mesoporous silica supported catalysts is 

SBA-15 > SiO2 foam > MCM-41 > Conventional SiO2. BD selectivity of 47.5 % 

at n-butane conversion of 28.9 % was achieved with SBA-15 supported catalyst. 

• An optimum loading of Ni and Bi species on SBA-15 supported improved BD 

selectivity up to 53.2 % due to an improved NiO species dispersion and stabilization 

by beta-Bi2O3/Bi2SiO5 species. 

• The catalytic performance of all the catalysts agreed with their physical and 

chemical properties as supported by the various characterization techniques 

including XRD, BET, TPD, TPR, XPS and TEM. 

• Delplots were constructed for experiments with n-butane, 1-butene and 2-butene 

feeds for the elucidation of the reaction network from n-butane to butadiene. It was 

confirmed that butadiene is formed from both 1-butene and 2-butene intermediates. 

• Kinetic model editor (KME) was utilized to determine the ODH reaction kinetic 

parameters based on the developed reaction network. Activation energies of 41.90 

kJ/mol and 52.45 kJ/mol were obtained for 1st and 2nd dehydrogenation steps, 

respectively. 

7.2      Recommendations 

The following points are recommended for further research work on ODH of n-butane to 

olefins: 

• Other group of catalysts like silicalites, hybrid catalyst (consisting of micro and 

mesoporous materials), support modification using promoters (K, Mg, Ce etc) 

should be investigated. 
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• Other preparation methods like precipitation, sol-gel synthesis, and hydrothermal 

synthesis should be investigated and compared with the impregnation method. 

• Different configurations of reactors like circulating bed reactors, membrane 

reactors, and two-zone fluidized bed reactors can be used and the performance 

compared with fixed bed reactor. 

• In-situ characterization techniques that will reveal the changes in catalyst activity 

during operation should be explored. 
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Appendix 

A.1 BET Surface Area 

Table A1 Physical properties of Ni-Bi-O/SBA-15 catalysts. 

Ni-Bi-

O/SBA-15 

BET surface area Pore surface area Pore volume 

Average 

pore 

diameter 

[m2/g- 

catalyst] 

[m2/g- 

support] 

[m2/g- 

catalyst] 

[m2/g- 

support] 

[cm3/g- 

catalyst] 

[cm3/g- 

support] 

 

[nm] 

5 Ni-10 Bi 

(SBA-15: 

SB) 

426 501 505 594 0.51 0.60 4.1 

 (657)  (1080)  (1.08) (4.1) 

10Ni-10 Bi 

(SBA-15: 

SB) 

360 446 443 548 0.46 0.56 4.1 

 (657)  (1080)  (1.08) (4.1) 

14Ni-10Bi 

(SBA-15: 

SB) 

334 431 419 540 0.44 0.56 4.2 

 (657)  (1080)  (1.08) (4.1) 

20Ni-10Bi 

(SBA-

15:SB 

351 479 421 575 0.43 0.59 4.1 

 (657)  (1080)  (1.08) (4.1) 
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A.2 Temperature Programmed Reduction 

 

Figure A1 TPR profile for various metal oxide loaded in Ni-Bi-O/SBA-15 catalyst 
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