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CHAPTER 1 

1. INTRODUCTION

In quantum and classical systems, scattering occurs when an incident wave experiences a 

change in the medium of propagation. In the case of electromagnetic (EM) waves, 

passive optical media are characterized by the real and positive quantities, the 

permittivity ε  and the permeability µ . The magnetic properties of the system will not be 

taken into consideration in this work and hence we will set the permeability equal to 

unity in this work unless stated otherwise. In the case of matter waves, a passive medium 

is represented by a real potential V that can be positive or negative. In the case of active 

media (absorbing or amplifying), the parameters that represent different media are 

complex. For the EM waves, iε ε ε′ ′′→ − , where positive ε ′′  represents amplification 

and negative ε ′′  represents absorption (ε ′  and ε ′′  are real). For matter waves, 

V V iV′ ′′→ + , where positive V ′′  yields amplification and negative V ′′  yields 

absorption (V ′  and V ′′  are real). Unlike in the case of light where the number of photons 

is not conserved, amplification in the case of particles is not physical since there is a 

restricting conservation law [4]. However, amplification of matter waves is one of the 

hottest contemporary research topics [5].  

In the following chapters, the reflectance R and transmittance T in gain media 

(amplifying scattering media) will be calculated using the time-independent and time-

dependent wave equations. Gain media will be represented by the complex parameters 
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stated above. Moreover, the effects of different parameters of the scattering media and 

waves on R and T will be studied. 

A generic picture of a gain system is shown in figure 1.1. Intuitively, as the length L of 

the gain medium or intensity of the gain increases, it is believed confidently that the 

transmitted wave will be further amplified. The transmittance for the system shown in 

figure 1.1 was calculated from the two time-independent wave equations analytically,  

Figure 1.1: A generic picture of a gain system. 

the Schrödinger and the EM wave equations, using the complex media parameters. The 

results were inconclusive. Gain was found to suppress wave propagation beyond some 

critical values of the parameters of the gain medium (length or gain intensity) as if the 

gain converts to loss as illustrated in figures 1.2 and 1.3. These results were reported in 

the literature by Soukoulis et al and others [1-3]. Actually it was generally shown by 

Beenakker et al. [9] that there is a dual symmetry between absorption and amplification 

for the propagation of radiation through a disordered medium with a complex dielectric 

constant. Nevertheless, the problem has to be looked at from another point of view to 

resolve the debate, namely, from the time-dependent wave equations. 

 free space                free space 
         L 

reflected wave              scattering 
    medium with      transmitted wave 

  incident wave         gain 
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Figure 1.2: 
2

ln T  vs. gain medium length for the time-independent Schrödinger (left) and 

EM (right) wave equations. 
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Figure 1.3: 
2

ln T  vs. gain intensity for the time-independent Schrödinger (left) and EM 

(right) wave equations. 

As was stated above, a clue to the resolution of this dilemma may come from the time-

dependent wave equations. Again, intuition tells us that as the length L of the gain 

medium or the gain intensity increases, the transmitted wave will, with no doubt, be 

amplified more. The transmittance for the system shown in figure 1.1 was calculated 

numerically using the Finite Difference method for the two time-dependent wave 

equations (the Schrödinger and EM wave equations). The results showed no wave 

suppression in gain media, as intuitively expected, in accordance with the results reported 



CHAPTER 1: INTRODUCTION 

 4

in the literature [1-3]. Moreover, it was found that there are three main scenarios for the 

transmitted waves in gain media as shown in figure 1.4. At some critical gain intensity 

(V ′′  or ε ′′ ) or critical gain medium length L (of course the two parameters are 

dependent), wave outflow from the ends of the gain medium and wave amplification 

cancel each other. The gain medium serves as an everlasting wave source sending waves 

of finite and stable intensity as transmissions and reflections continuously. In that case 

the gain system is critical. Above this critical amplification threshold the system is 

overcritical and undercritical below it [1-3]. Accordingly, the output when the system is 

critical or overcritical will be infinite as time t → ∞  and no finite stationary solution will 

exist. 
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L = 200
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Figure 1.4: 
2

ln T  vs. time with three different gain intensities for the time-dependent 

Schrödinger (left) and EM (right) wave equations.

Thus our work above confirmed the paradoxical results of the time-independent and time-

dependent wave equations in gain media. The optical transmission through a segment of 

complex dielectric material [12] or the analogous electronic transmission through a 

complex scattering potential [3] exhibited a transition from amplification to absorption at 

a critical value of the gain intensity or gain medium length when treated using the time-
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independent wave equations. However, when the time-dependent wave equations were 

solved for the gain medium, no region of absorption was observed [1-3] even for critical 

systems. Soukoulis et al. [2-3] correctly pointed out the nature of the discrepancy 

between the time-dependent and the time-independent wave equations. However, there 

was no satisfactory explanation of the origin of this apparent paradox prior to this work 

[1]. 

It is worth mentioning that the time-independent EM wave equation was successful when 

used to predict the lasing modes by locating the poles in the complex frequency plane. It 

was also used to examine the spontaneous emissions below the lasing threshold in 

distributed feed back semiconductor lasers. [2]  

A complete treatment of wave propagation in gain media can be achieved, in our view, 

by constructing the time-dependent solution from the whole spectrum of the time-

independent solutions. Thus, both the discrete and continuous spectra should be included 

in the analysis similar to the approach of Hammer et al. [18] in dealing with the general 

solution of Schrödinger equation. The general solution in this case reads  

( ), ( ) ( , ) ( , ) ( ) ( , )
2 2

ni ti t izt
n n n

n

d dz
x t f g x e c g x e f z g x z eωωωφ ω ω ω

π π
+∞

−∞
= + =      (1.1) 

Where ( )f ω  and cn coefficients are determined from the initial value of ( ) ( ),0x h xφ = .

In the last integral one has to choose a complex contour that will reflect the physical 

situation at hand. Keeping in mind that ( ),g x ω  and ( ),n ng x ω , solutions of the time-

independent equation, are not orthonormal to each other because the operator is not 

Hermitian due to its complex nature in gain media. We believe that it will not be an easy 

task to determine analytically or numerically ( )f ω  and cn, given ( )h x .
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In this work, we propose a new approach to explain the origin of the discrepancy between 

the results of the time-independent and time-dependent wave equations. Since the above 

mentioned problem seems to be common to both the EM and Schrödinger wave 

equations we try to keep this parallelism in our analysis setting aside the issue of practical 

relevance for electronic systems mentioned above [4]. In optical systems one can 

phenomenologically understand the increase of light intensity due to an increase in 

photons by means of coherent amplification, as by stimulated emission of radiation in an 

active lasing medium. However, in electronic systems and due to particle number 

conservation one cannot imagine such a violation of current conservation. 

The main idea proposed is to relate the origin of the instability and divergence of the 

solutions of both the Schrödinger and EM wave equations to the time-dependence factors 

iEte−  and i te ω− , respectively [1]. This means that when the eigenenergy or 

eigenfrequency of a stationary eigenstate becomes very close to a particular real 

resonance pole of the system in consideration, the eigenstate will become unstable and 

blow up. Therefore, the pole structure of the transmittance in the complex energy or 

frequency plane will be studied. The value of the intensity of the gain will be tuned till an 

eigenenergy or eigenfrequency under consideration in the lower half of the complex 

frequency or energy plane approaches the real frequency or energy axis and cross it to the 

upper half plane. We speculate that this cross-over at the critical value of the gain is the 

origin of the discrepancy between the time-independent and time-dependent behaviors of 

the transmitted wave in gain media. 
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CHAPTER 2

2. NUMERICAL METHODS

2.1. Finite Difference Methods 

The finite difference methods are probably the most prevailing numerical methods used 

to solve partial differential equations. Although finite difference methods have reliable 

stability, they require long computation times to reach fine accuracy. In the finite 

difference methods, the derivatives in a differential equation are replaced by 

corresponding difference-quotient approximations [23].  

The Taylor expansion of a function ( )xf  about a point 0x  is 

( ) ( ) ( ) ( ) ..........
2

1 2
0000 +′′+′+=+ xxfxxfxfxxf δδδ        (2.1) 

Which can be rearranged and solved for ( )0f x′  to give 

( ) ( ) ( ) ( ) ..........
2 0

00
0 +′′−

−+
=′ xf

x

x

xfxxf
xf

δ
δ

δ
        (2.2) 

In Eq. 2.2, the first derivative is approximated by the slope of the straight line connecting 

the points at 0x  and xx δ+0 . Therefore this method is called the forward-difference 

formula. One can conclude from Eq. 2.2 that this approximation has a truncation error of 

the order xδ  when the second and other higher order derivative terms are ignored. 

Similarly, one can obtain another expression for the first derivative by replacing xδ  by 

xδ− . This method is called the backward-difference formula since the first derivative 
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is approximated by the slope of the straight line connecting the points at 0x and at xx δ−0 .

This method is expressed as 

( ) ( ) ( ) ( ) ..........
2 0

00
0 +′′+

−−
=′ xf

x

x

xxfxf
xf

δ
δ

δ
         (2.3) 

Approximating second derivatives is also straight forward. Adding the Taylor expansions 

of )( 0 xxf δ+ and )( 0 xxf δ−  yields 

( ) ( ) ( ) ( ) ( ) ( ) ..........
12

2 0
4

4
2

0000 ++′′+=−++ xf
x

xxfxfxxfxxf
δδδδ      (2.4) 

Rearranging Eq. 2.4 yields 

( ) ( ) ( ) ( ) ( ) ( ) ..........
12

2
0

4
2

2
000

0 +−
−+−+

=′′ xf
x

x

xxfxfxxf
xf

δ
δ

δδ
       (2.5) 

Ignoring the fourth and other higher order derivative terms leads to an approximation for 

the second derivative with a truncation error of the order 2xδ . In general, one can find a 

difference-quotient approximation for any derivative from suitable Taylor expansions. In 

the coming sections, some finite difference methods for the time-dependent Schrödinger 

and EM wave equations will be introduced.

2.1.1. The Time-dependent Schrödinger Wave Equation 

The time-dependent Schrödinger wave equation in one dimensions with a static potential 

( )xV  in a system of units in which 2 1em= =  (See the last section of this chapter), is 

written as

( ) ( ) ( ) ( )
2

2

, ,
,

x t x t
i V x x t

t x

ψ ψ
ψ

′ ′∂ ∂ ′= − +
∂ ∂

                    (2.6) 
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where em is the electron mass. 

Using the substitution ( ) ( ) ( ), ,i V xx t e x tψ ψ′ →  Eq. 2.6 becomes 

( ) ( )2

2

, ,x t x t
i

t x

ψ ψ∂ ∂
=

∂ ∂
.           (2.7) 

The transformation above is performed in a region where ( )V x  is constant over space 

(the scattering medium) so that all of its spatial derivatives vanish. The latter equation is 

simpler and very similar to the classical heat equation. The imaginary number i  is 

ignored as it will not change the numerical solution method of the equation. It may be, for 

example, absorbed in t. Now, using Eq. 2.2 and Eq. 2.5 to approximate the derivatives 

one finds 

   
( ) ( ) ( ) ( ) ( )

2

, , , 2 , ,i j i j i j i j i jx t t x t x x t x t x x t

t x

ψ δ ψ ψ δ ψ ψ δ
δ δ

+ − + − + −
=      (2.8) 

where i (this i is an index that is different from the imaginary number i that was ignored 

as stated above) is the spatial index that runs from 0 to xN  and j is the temporal index 

that runs from 0 to tN . Since 1i ix x xδ ++ =  and 1j jt t tδ ++ = , Eq. 2.8 can be rewritten 

neatly as 

1
1 1

2

2j j j j j
i i i i i

t x

ψ ψ ψ ψ ψ
δ δ

+
+ −− − += .          (2.9) 

 Now, rearranging Eq. 2.9 and solving for 1+j
iψ  yield the following difference equation 

( ) ( )1
1 11 2j j j j

i i i iψ λ ψ λ ψ ψ+
+ −= − + +          (2.10) 

where 2t xλ δ δ= . This equation can be written in matrix form as follows 

1−Ψ=Ψ jj A            (2.11) 
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where ( )1 2 1, ,....,
x

tj j j j
Nψ ψ ψ −Ψ =  and A is a tridiagonal matrix that reads 

1 2 0 0

0 0

0 0 1 2

A

λ λ
λ

λ
λ λ

−

=

−

        (2.12) 

It is important to recall that the boundary conditions impose that 0 0
x

j j
Nψ ψ= =  for all j.

Eq. 2.11 is straightforward to solve. One needs to know jΨ  to directly find 1+Ψ j . The 

truncation error in approximating the derivatives in this method is of the order 2x tδ δ+ .

However, this method is a forward-difference method or explicit method which is 

conditionally stable. The condition of stability is 212 ≤= tx δδλ .

An alternative way to have an unconditionally stable method is to use a backward-

difference method or implicit method. This can be achieved via using the backward-

difference formula stated as Eq. 2.3 to approximate the time derivative instead of the 

forward-difference formula stated as Eq. 2.2. With this modification, Eq. 2.9 becomes 

1
1 1

2

2j j j j j
i i i i i

t x

ψ ψ ψ ψ ψ
δ δ

−
+ −− − += .           (2.13) 

Rearranging Eq. 2.13 yields the following equation 

( ) ( ) 1
1121 −

−− =+−+ j
i

j
i

j
i

j
i ψψψλψλ .         (2.14) 

And in matrix notation 

1−Ψ=Ψ jjB            (2.15) 

where B is obtained by replacing λ  with λ−  in Eq. 2.12 and reads 
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1 2 0 0

0 0

0 0 1 2

B

λ λ
λ

λ
λ λ

+ −
−

=
−

− +

        (2.16) 

A disadvantage of using the implicit method is that matrix inversion is needed to obtain 

1+Ψ j  from jΨ , i.e. 

11 −− Ψ=Ψ jj B .          (2.17)  

Eq. 2.15 can be solved using the Crout Factorization or the SOR (successive over 

relaxation) method which is more suitable for large xN  [23]. Like the explicit method, 

the truncation error in approximating the derivatives in this implicit method is of the 

order 2x tδ δ+ . This requires making 1<<tδ  especially for large tN .

The solution to this shortcoming is the Crank Nicolson method in which the forward-

difference method 

1
1 1

2

2j j j j j
i i i i i

t x

ψ ψ ψ ψ ψ
δ δ

+
+ −− − +=              (2.9) 

 and the backward-difference method stated as Eq. 2.13 advanced by one step in time 

1 1 1 1
1 1

2

2j j j j j
i i i i i

t x

ψ ψ ψ ψ ψ
δ δ

+ + + +
+ −− − +=         (2.18) 

 are averaged. The resultant equation is 

1 1 1 1
1 1 1 1

2 2

2 21

2

j j j j j j j j
i i i i i i i i

t x x

ψ ψ ψ ψ ψ ψ ψ ψ
δ δ δ

+ + + +
+ − + −− − + − += + .      (2.19) 

Rearranging Eq. 2.19 and putting it in matrix notation one obtains 

1j jB A+′ ′Ψ = Ψ           (2.20) 
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where A′  and B′  are like A and B but with λ  being replaced with 2λ . The solution to 

the latter difference equation is obtained directly by inverting B′

1 1j jB A+ −′ ′Ψ = Ψ .          (2.21) 

The truncation error in approximating the derivatives in this method is of the order 

2 2x tδ δ+ , which is very advantageous. Like the implicit method, the Crank Nicolson 

method is unconditionally stable. 

2.1.2. The Time-dependent EM Wave Equation 

The classical wave equation that is used to describe electromagnetic wave propagation 

reads in one dimension 

( ) ( )2 2

2 2 2

, ,1W x t W x t

x tυ
∂ ∂

=
∂ ∂

          

(2.22)

where ( ),W x t  is the electric (or magnetic) field and υ  is the speed of the wave in some 

medium (c in vacuum). To solve the EM wave equation one needs to know W and its first 

time derivative at the initial time. Let us denote the former by ( )xf  and the latter by 

( )xg . Now, to approximate the solution of Eq. 2.22, the EM wave equation, using the 

finite difference method, the second derivatives are approximated using Eq. 2.5. The EM 

wave equation will then appear as 

( )j
i

j
i

j
i

j
i

j
i

j
i WWW

x

t
WWW 112

2
211 22 −+

−+ +−=+−
δ
δυ .       (2.23) 

Using t xλ υ δ δ=  and solving for 1+j
iW  give 
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( ) ( ) 1
11

221 12 −
−+

+ −++−= j
i

j
i

j
i

j
i

j
i WWWWW λλ .       (2.24) 

To solve this difference equation, a relation between j
iW  and 1−j

iW  must be stated. This 

relation can be supplied from the knowledge of ( )xg . Approximating the first derivative, 

one can write 

( ) ( ) ( )21 0
0 0

2

, ,
..........

2
i i

W x t W x tW W t
g x

t t t

δ
δ

∂ ∂−= = − +
∂ ∂

     (2.25) 

By solving for 1
iW  and dropping the second and higher order derivatives terms one 

obtains

( )1 0
i iW W t g i xδ δ= + .         (2.26) 

Although simple, Eq. 2.26 has a truncation error of the order tδ  [23]. More complicated 

analysis can lead to an alternative expression which has a truncation error of the order 

3tδ  [23], it reads 

( ) ( ) ( )
2

1 2 0 0 0
1 11

2i i i iW W W W k g i x
λλ δ+ −= − + + + .       (2.27) 

Eq. 2.24 can be written in matrix form as 

   11 −+ −= jjj C ���           (2.28) 

with ( )1 2 1, ,....,
x

tj j j j
NW W W −=�  and C is a tridiagonal matrix that has the form 

( )

( )

2 2

2

2

2 2

2 1 0 0

0 0

0 0 2 1

C

λ λ

λ

λ
λ λ

−

=

−

.         (2.29) 
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The solution of Eq. 2.28 is straight forward since the relation between j
iW and 1−j

iW  is 

known. The truncation error in approximating the second derivatives in this method is of 

the order 2 2x tδ δ+ . However, this explicit method is conditionally stable. It requires that 

1≤= xt δδυλ .

To obtain an implicit method for the EM wave equation, the spatial derivative is 

approximated at two different times separated by tδ2 . The difference equation will then 

take the form [24] 

( )1
1

11
1

1
1

11
12

22
11 22

2
2 −

−
−−

+
+

−
++

+
−+ +−++−=+− j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i WWWWWW
x

t
WWW

δ
δυ

.   (2.30) 

Rearranging, one finds the equation 

( )
( )

2 1 2 1 2 1
1 1

2 1 2 1 2 1
1 1

2 1

4 2 1 .

j j j
i i i

j j j j
i i i i

W W W

W W W W

λ λ λ

λ λ λ

+ + +
+ −

− − −
+ −

− + + −

= + − + +
       (2.31) 

In matrix notation 

ED jj +=+
�� 41           (2.32) 

where D is obtained by replacing 2λ  by 2λ−  in C

( )

( )

2 2

2

2

2 2

2 1 0 0

0 0

0 0 2 1

D

λ λ

λ

λ
λ λ

+ −

−
=

−

− +

      (2.33) 

and E contains all the 1j−
� terms in the right hand side of Eq. 2.31. Again matrix 

inversion is required for the solution since the method used is implicit, and the relation 

between E and j
�   can be obtained directly from Eq. 2.27. The truncation error in 
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approximating the derivatives is not improved, however, this method is implicit and 

unconditionally stable.     

2.1.3. Stability Criteria 

2.1.3.1. Stability of an Explicit Method 

The error in finite difference methods is not merely the truncation error in approximating 

the derivatives. Propagation of the initial errors must be taken into account [23]. Let us 

consider the explicit method for the Schrödinger equation that has, in matrix notation, the 

following finite difference form (the indices in this section will be in parenthesis to 

distinguish them from powers)  

( ) ( )1j jA −Ψ = Ψ                         (2.11)  

where A was defined above. 

If the error present in the initial condition ( ) ( ) ( ) ( )( )0
1 2 1, ,....,

x

t

Nf x f x f x −Ψ =  at time 0t

is ( ) ( ) ( ) ( )( )0 0 0 0
1 2 1, ,....,

x

t

Ne e ee −= ,  then the error that will propagate to the next time  step ( )1Ψ

will be of ( )0Ae . Therefore, one can write 

( ) ( ) ( )( ) ( ) ( )1 0 0 0 0A A Ae eΨ = Ψ + = Ψ + .          (2.34)  

 At the nth time step, the error in ( )nΨ  initiated from ( )0e  will be of ( )0nA e  [23]. Usually 

it is true that 1n . Hence, the method will be stable if the initial error does not grow up 

with time or when ( ) ( )0 0nA e e≤  or 1nA ≤ . This is true for the matrix A if ( ) 1Aρ ≤ ,
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where ( )Aρ  is the spectral radius of  the matrix A defined as its maximum eigenvalue. 

It can be shown that the eigenvalues of the matrix A are given by [23] 

2

1 4 sin
2i

x

i

N

πµ λ= − .           (2.35)      

Then the expression for ( )Aρ  will read 

( )
2

1 1
max 1 4 sin 1

2xi N
x

i
A

N

πρ λ
≤ ≤ −

= − ≤ .           (2.36) 

Or equivalently 

2
1

0 sin
2 2x

i

N

πλ≤ ≤ .             (2.37) 

At 1xi N= −  and when 0xδ →  or xN → ∞ , we have  

( ) 2
1

lim sin 1
2x

x

N
x

N

N

π
→∞

−
= .         (2.38) 

Therefore, condition 2.37 will be satisfied if and only if 0 1 2λ≤ ≤ . Henceforth, the 

explicit method defined by Eq. 2.11 will be stable only if 

2 1 2t xδ δ ≤ .             (2.39) 

2.1.3.2. Stability of an Implicit Method 

For the implicit method applied to Schrödinger equation that has, in matrix notation, the 

following finite difference form 
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( ) ( )1j jB −Ψ = Ψ               (2.15) 

the error that will propagate from ( )0Ψ  to the next time step ( )1Ψ  will be of ( )01B e− . Then 

one can write 

( ) ( ) ( )( ) ( ) ( )1 0 0 0 01 1 1B B Be e− − −Ψ = Ψ + = Ψ + .         (2.40) 

Hence the propagating error will be of ( )0nB e−  at the nth time step. The method is 

generally stable if and only if ( ) 1nB Bρ= ≥ . The eigenvalues of the matrix B can be 

shown to read [23] 

2

1 4 sin
2i

x

i

N

πµ λ= + .         (2.41) 

And since the spectral radius ( )Bρ  is the maximum eigenvalue, it will be always true 

that ( ) 1Bρ > . Therefore, the implicit finite difference method is unconditionally stable. 

The same argument can be applied to the other methods for the two wave equations 

introduced above to study their stabilities.    

2.2. Practical Remarks on the Finite Difference Methods for the 
Wave Equations  

In this section, the numerical methods presented in the previous section for each of the 

two time-dependent wave equations will comparatively discussed in details, their 

advantages, disadvantages and stabilities in the case of gain. The initial incident 

waveforms and the ways to implement them numerically will be discussed as well. 

Moreover, since the simulated system is finite, the issue of the end effects (reflections at 

the boundaries of the system) will be also investigated.    
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2.2.1. The Schrödinger Wave Equation 

2.2.1.1. Methods Survey and Stability  

In the previous section, three main finite difference methods for the Schrödinger equation 

were introduced, namely, the explicit, implicit and Crank Nicolson methods. The explicit 

method is not used in this work at all since it is conditionally stable and not very different 

from the implicit method. At the beginning of this work, the implicit method was used. 

Although it showed perfect stability in the case of scattering in gainless media and 

reliable stability even in gain media, it required long running time since tδ  had to be 

very small to reach practical accuracy. The method that was used in this work for the 

time-dependent Schrödinger equation was the Crank Nicolson method. It showed perfect 

stability in the case of gainless media and reliable stability in the case of gain media. 

Moreover, the Crank Nicolson method ensured the accuracy goal required within a 

relatively short running time. It is important to mention that even with unconditionally 

stable methods, the risk of instability is evident in the case of gain where the system 

blows up numerically from the gain medium. In certain critical gain media, physical blow 

up exists due to multiple reflections within the system. Thus, it is imperative to 

discriminate between the physical gain and the numerical instabilities. Fortunately, it is 

not difficult to judge whether the blow up is numerical or physical. In the case of the 

latter, the blow up is gradual, smooth and uniform. On the other hand, the numerical blow 

up is sudden and non uniform. Two examples of physical blow up are illustrated in figure 

2.1 and the three main cases of the numerical blow up are shown in figure 2.2. 
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Figure 2.1: two examples physical blow up in critical gain systems due to physical 
amplification of the wave. 
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Figure 2.2: Different forms of numerical blow up for critical and undercritical gain systems. 
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There are several precautions to reduce the possibility of numerical instabilities. First of 

all, the incident wave should not exist initially in the gain medium. Moreover, the 

incident wave should be launched as far away as possible from the gain medium. Second, 

the larger the size of the gain medium is, the more stable the system will be. It should be 

kept in mind that the risk of numerical instabilities in gain media increases greatly with 

the gain intensity. Roughly speaking, the amplification is directly proportional to the gain 

media length and gain intensity. Consequently, we can simulate high amplification away 

from numerical instability by making the gain media larger and decreasing the gain 

intensity. 

2.2.1.1 The Initial Waveform  

The initial waveform used in the time-dependent Schrödinger wave equation was a 

Gaussian waveform centered at 0x  with a variance of σ  and an average momentum of 

0k

( )
( )2

0
2

02,0
x x

i x kx e eσψ
−

−
= .           (2.42) 

Since the Schrödinger equation describes the dynamics of a localized particle, it is not 

worth to discuss a plane wave as an initial waveform since it has lots of numerical 

difficulties that will be discussed later in the EM wave equation case.      
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2.2.1.2  The End Effects 

Numerically, the reflectance R and transmittance T are calculated through the expressions 

[21] 

( ) ( )2 2
,

ix

R t x t dxξ
−∞

=             (2.43)    

( ) ( )2 2
,

fx

T t x t dxξ
∞

=               (2.44) 

where ( ),x tξ  stands for the wave function for the two wave equations ( ( ),x tψ  and 

( ),W x t ), and ix  and fx  stand for the beginning and the end of the gain medium, 

respectively. The simulated system will always be finite. The waves in the simulated 

system will see its ends as an infinite potential barrier (infinite refractive index in the case 

of EM waves) and get totally reflected back to it. The end effects should be dealt with 

carefully. The most secure way to get rid of the end effects is to make the system large 

enough so that all calculations are performed before the reflected (or transmitted) waves 

by (or through) the gain media reach the ends of the system. This way the system will 

react exactly as if it were infinite. However, making the system very large is time 

consuming. It was found in this work that an alternative way to tackle the problem of the 

end effects is to allow the waves to get reflected back to the system by its ends. In this 

case the reflected waves by the ends of the system will be reflected back to it and join the 

other waves in it, and hence R and T will not be affected, as shown in figure 2.3. 

Moreover, this is also safe even in minute gain intensities as clearly indicated in figure 

2.4. It is very important to mention that the waves reflected by the ends of the system 
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must not reach the gain medium in which case the results will be erroneous. Absorbing 

boundaries can be used to prevent reflections at the ends, however, this will not be 

helpful in our problem since R and T will be diminished by the absorbing boundaries as 

the integrations in Eq. 2.43 and Eq. 2.44 will be diminished. Nevertheless, absorbing 

boundaries can be very helpful in deciding whether the system is critical or not. 
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Figure 2.3: 
2

ln T  vs. t for the Schrödinger wave equation with intense gain for a very large 

system (left) and another system in which the reflections by the ends of the system are 
allowed (right).   
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Figure 2.4: 
2

ln T  vs. t for the Schrödinger wave equation with minute gain for a very large 

system (left) and another system in which the reflections by the ends of the system are 
allowed (right). 
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2.2.2. The EM Wave Equation 

2.2.2.1. Methods Survey and Stability  

As expected, the explicit method worked fine in the case of EM wave propagation and 

scattering in gainless media as long as the stability condition is met. Nonetheless, the 

explicit method showed poor stability in gain media although the stability condition was 

not violated. Results were stable only for too small gain intensities. Consequently, the 

explicit method was abandoned. On the other hand, the implicit method was very 

successful in handling gain and served quite well for practical gain intensities and hence 

was adopted overall this work.         

2.2.2.2. The Initial Waveform  

Two initial waveforms were used for the EM wave equation: a Gaussian pulse and plane 

wave. The Gaussian pulse was not quite suitable since its interaction with the scattering 

medium was very dependent on the variance of the pulse and we are interested in 

resonance effects. Therefore, plane waves were adopted in this work in the case of the 

EM waves. But the incident plane wave is not easy to implement numerically since it is 

infinite. Therefore, the initial plane wave should be initially truncated. However, 

truncation will make the wave have sharp edges at which the spatial derivatives may be 

very large. In that case, the higher derivative terms ignored in the difference-quotient 

approximation may cause some trouble. Alternatively, another technique to implement 
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plane waves has been devised. The technique simply approximates a plane wave by the 

waveform 

( )
( )

0

2
0 2

2
1

i x

x x
b

a

e
f x

e

ω

−
−

=

+

             (2.45) 

where a and b are real tunable parameters. It is interesting to note that when the 

exponential in the denominator is very small ( )f x  reduces to a plane wave, and when it 

is very large ( )f x  reduces to a Gaussian waveform. The width of this packet at half 

maximum is 2 ab . In addition, it was found numerically that its Fourier transform is 

almost exactly ( )0δ ω ω−  for large a.

The first time derivative ( )g x  described above plays an important role. It makes the 

initial wave move completely in one direction. However, one can safely set it equal to 

zero. In that case, the initial wave will split and travel in both directions. Consequently, 

the results will merely differ by a factor of half if the part of the wave traveling away 

from the scattering medium is excluded from the calculations.

2.2.2.3. The End Effects  

 Since 
2

R  and 
2

T  in the case of the EM wave equation are calculated using Eq. 2.43 

and Eq. 2.44, the treatment of the end effects in the EM wave equation case is exactly 

similar to that in the Schrödinger wave equation case. In figures 2.4 and 2.5, 
2

ln T  is 

calculated vs. time for a very large system in which the boundaries are not reached and 
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another system in which the reflections by the boundaries are allowed, for large and small 

gain intensities. 
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Figure 2.5: 
2

ln T  vs. t for the EM wave equation with intense gain for a very large system 

(left) and another system in which the reflections by the ends of the system are allowed 
(right). 
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Figure 2.6: 
2

ln T  vs. t for the EM wave equation with minute gain for a very large system 

(left) and another system in which the reflections by the ends of the system are allowed 
(right).
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2.2.3. General Remarks 

There are few general points that need to be mentioned before this numerical issue is 

closed. It is very important to use double precision when implementing the numerical 

algorithms using a programming language like FORTRAN. This is because in multiple 

arithmetical processes especially multiplications of extremely huge numbers by 

extremely small numbers, some significant figures may be lost. Although preferable, 

usually it is not very straightforward to increase the precision more than double precision 

in programming languages, which can be easily done in math softwares like 

MATHEMATICA. However, math softwares are too slow relative to programming 

languages. 

A second important remark is that the space and time resolutions, xδ  and tδ , should be 

chosen adequately small to make the simulation accurate enough, especially for long 

times simulations. There are several restrictive criteria on the space and time resolutions 

that are to be satisfied to obtain reliable accuracy [25]. However, the best way to 

determine the optimal resolution is to decrease the space and time steps until the solution 

becomes insensitive to the reduction of steps size. The stabilization of the results 

indicates that practically there is no loss of information due to space and time 

discretizations.                         
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2.3. Complex Roots Finding   

The well-liked method used to solve equations in one real variable is the Newton’s 

iterative method. Fortunately, this method can be generalized and applied safely when the 

variable is complex.  

Consider the Taylor expansion of the complex function ( )f z , which has a root 0z , about 

z , where z  is an approximation to 0z . The expansion reads 

( ) ( ) ( ) ( ) ( ) ( )( )21

2
f z f z z z f z z z f zξ′ ′′= + − + −        (2.46) 

where ( )zξ  lies between z and z . At 0z z=  Eq. 2.46 becomes 

( ) ( ) ( ) ( ) ( )( )2

0 0 0

1
0

2
f z z z f z z z f zξ′ ′′= + − + − .       (2.47) 

Now assuming that ( )0z z−  is very small enables one to drop the third term on the right 

hand side of Eq. 2.47 and write 

( ) ( ) ( )00 f z z z f z′≈ + −          (2.48) 

Therefore an approximation can be obtained for 0z  from Eq. 2.48 

( )
( )0

f z
z z

f z
≈ −

′
          (2.49) 

The assumption above requires that the initial approximation or guess z  is good enough, 

i.e. close to the root 0z . To achieve more accuracy, successive iterations are made as 

follows

( )
( )

1
1

1

n
n n

n

f z
z z

f z
−

−
−

= −
′

          (2.50) 
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here n is the number of iterations. However, it is not guaranteed that successive iterations 

will make the initial guess converge to the root. Further analysis can lead to alternative 

Newton’s methods which are faster in convergence, but again the risk of divergence, or 

numerical overflow or underflow is evident. 

Now, to make efficient use of the Newton’s method for our work, two main obstacles 

must be overcome: the first is the numerical overflow or underflow and the second is 

blindness to multiple roots.  

The first problem can be resolved through two operations. First, the value of the solution 

obtained from the Newton’s method should be checked after every iteration whether it is 

inside some interval out which roots are not expected to occur or are not of interest or 

not. If the solution is outside the circle of interest, then the iterations are stopped. But, 

stopping the iterations may include solutions which are far away from the true roots. 

Therefore a second step is needed in which the solutions are checked.  

The second problem can be solved by starting with different initial guesses. In the case of 

complex functions, an area of interest in the complex plane is scanned within some 

resolution depending on the equation to be solved.              

2.4. Units Conversion 

In many physical equations, constants that are extremely small or big are present, e.g. 2

and 2c . Therefore, the risk of numerical underflow or overflow is very probable. 

Henceforth, it is much securer to set such physical constants to unity or some appropriate 
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value and then perform dimensional analysis to determine the new unit system in which 

those physical constant have the values to which they were set. 

Starting with the Schrödinger equation, there are two numerically risky constants that 

should be disposed of, namely, 2  and the mass m, the mass of electron in our case.  

Before performing dimensional analysis, let us first denote our energy unit by E, time 

unit by T, length unit by L and mass unit by M. In the analysis regarding the Schrödinger 

equation, numerically, it was found very helpful to use 12 == m . Then one can write, 

1E T N J s= =           (2.51) 

and

2

2
2 2 1 1m

E T
m N Kg M

L
= = =          (2.52) 

where xN  is the S.I. numerical value of the constant x (i.e. without units), J denotes 

joules, Kg denotes kilograms and s denotes seconds. Solving for E and L gives a relation 

between the new units and the S.I. units in term of T as follows, 

T

sJ
NE =    (2.53) 

meter
s

T

N

N

Kg

TsJ

N

N
L

mm 22
== .   (2.54) 

For emm =  and sT 1510−= , we find that eVJE 0.658212101.05457 19 =×= −  and 

2.40591ÅL = . These units will be used overall this work for the Schrödinger wave 

equation. The difference between these units and the atomic units is that we have the 

freedom to choose the time unit. The atomic units can be obtained if the time unit was 

chosen as sT 177.4 −= , then, one would have eVE 6.13= and 0.51ÅL = , as expected. 
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In the case of the EM wave equation, the speed of light c was set to unity. Consequently, 

dimensional analysis requires the following 

1c

meter L
c N

s T
= = .   (2.55) 

Therefore, there is complete freedom in choosing L and s. A good choice that satisfies 

Eq. 2.55 is nmL 300=  and 1T =  femtosecond. These units will be used overall this 

work for the EM wave equation.    
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CHAPTER 3

3. MAPPING BETWEEN THE SCHRÖDINGER AND 
ELECTROMANGTIC WAVE EQUATIONS 

The propagation of the electromagnetic waves in a medium free of charges and currents 

is described by the EM wave equation 

( ) ( )2
2

2

,
,

W r t
W r t

t
µε

∂
∇ =

∂
           (3.1) 

where, for a uniform medium, the permeability µ  and permittivity ε  are generally 

space-time dependent and ( ),W r t  stands for the electromagnetic fields, E  or B . The 

time-independent wave equation for oscillatory electromagnetic fields of the form 

( ) ( ), i tW r t W r e ω= , becomes in one dimension 

( ) ( )
2

2
2

W x
W x

x
ω µ ε

∂
− =

∂
.           (3.2) 

The time-dependent EM and Schrödinger wave equations differ principally in the order 

of the time derivative. The chief physical difference between the two wave equations is 

that the former does not support bound states, as far as we know, while the latter does. 

The issue of light localization has been recently argued in the last decade. Rearrangement 

of the time-independent Schrödinger equation makes it read 

( ) ( ) ( ) ( )E r V r rφ φ∇ + = .                   (3.3) 

On the other hand, the time-independent EM wave equation reads 

( )( ) ( )2 0r rω ε φ∇ + =             (3.4) 
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(here ( )rφ  is used in the two wave equations instead of W ( )r  and ( )rψ ). Since 

( )2 Eω ζ= , where ζ  is a function of energy E one can write Eq. 3.4 as  

( )( ) ( ) ( )( ) ( ) ( )1E r r E rζ φ ε ζ φ∇ + = − .           (3.5) 

Direct comparison between Eq. 3.3 and Eq. 3.5 proposes that the two wave equations will 

look similar if the potential V is energy dependent, i.e. 

( ) ( )( ) ( ), 1V r E r Eε ζ= − .              (3.6) 

Anyhow, more rigorous mapping between the two wave equations will be shown below. 

As discussed in chapter 1, the solution of the time-independent EM wave Eq. 3.2 above a 

certain gain threshold in an active medium is not appropriate for the description of wave 

propagation and that dual symmetry between absorption and amplification in such a 

medium is an artifact. Consequently, we attempted an alternative approach that was 

expected to shed some light on the origin of the problem. We did that by studying another 

time-independent but, presumably, equivalent system borrowed from relativistic field 

theory. In that alternative approach the property of the medium is equivalently 

represented by complex potentials that are taken to describe the non-hermitian dynamics 

of the relativistic fields. It goes as follows, Einstein’s relativistic statement for material 

particles is 2 2 2 2 2 4E P c m c= − = , where E  is the four component energy vector 

( ),E c P= ,  is the relativistic energy and P  is the three-vector linear momentum. 

The operator equivalent statement is obtained by the operator substitution ti ∂
∂→  and 

P i→ − ∇  giving the following relativistic wave equation 



CHAPTER 3: MAPPING BETWEEN THE SCHRÖDINGER AND ELECTROMANGTIC 
                      WAVE EQUATIONS 

 33

( ) ( ) ( )
2 2

2
2 2

1
, ,mct r t r

c t
ψ ψ∂∇ − =

∂
         (3.7) 

which describes a free structureless particle of mass m whose dynamics is contained in 

the wave function ( ),t rψ . This is the celebrated Klein-Gordon (K-G) equation. For 

steady state description of particles, where ( ) ( ) i, tt r r eψ ψ −= , it could be rewritten as 

the time-independent equation 

( ) ( ) ( )
2 2

2
2 2

mcr r
c

ψ ψ∇ + = .          (3.8) 

In the massless limit (when the Compton wavelength mc  of the particle becomes very 

large) this equation looks very similar to Eq. 3.2 above. This, of course, is just the well-

known wave-particle duality. Incidentally, using Eq. 3.7 we can study the effect of inertia 

on the transport properties of our system. Let us confine our discussion to problems in 

one dimension corresponding to the propagation of plane waves where Eq. 3.2 is 

rewritten as 

( ) ( ) ( ) ( )
2

2
2

, , 0
d W x

x x W x
dx

ω µ ω ε ω+ =          (3.9) 

The corresponding K-G equation is 

( ) ( ) ( ) ( )
2 2 2

2 2 2
mcd x x

x
dx c

ψ ψ
ψ+ = .        (3.10) 

Now the effects of the property of the medium in Eq. 3.9, which is contained in the 

complex functions ( ), xµ ω  and ( ), xε ω , could be incorporated in Eq. 3.10 by an 

equivalent effect which is introduced in the form of potential interaction. Such interaction 
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could be introduced in the K-G Eq. 3.10 in a gauge invariant way by rewriting it as 

follows [14] 

( ) ( ) ( ) ( ) ( )2 2

2 22

2
1
c

mcd x
V x x x

dx

ψ
ψ ψ+ − =       (3.11) 

where ( )V x  is the time component of a vector potential whose space component is taken 

to vanish. This could also be generalized to include coupling to a space-time scalar 

potential ( )S x  as follows [16, 17] 

( ) ( ) ( )2 2 2 2

2
22 2

2
1 1 0c c

d
V x mc S x x

dx
ψ+ − − + = .     (3.12) 

By now, for a given set of medium configuration, specified by ( ), xε ω  and boundary 

conditions we choose the complex potentials ( )V x  and ( )S x  in Eq. 3.12 with m = 0 that 

will give the same electromagnetic wave equation, Eq. 3.9. The potentials so obtained 

will be our guide in writing the non-relativistic Schrödinger equation to give the quantum 

mechanical analogue of the wave propagation equation. It was hoped that this approach 

will shed light on some aspects of the problem that could help in the resolution of some 

of the discrepancies encountered. We start with a simplified problem where the medium 

is non-dispersive and the relative permeability µ is constant. Further simplification will 

also be introduced by choosing a uniform medium corresponding to complex but constant 

permittivity and potentials.  

Let us consider the system that is shown in figure 4.5 (chapter 4). The parameters 

( ), , , , ,V V S Sε ε′ ′′ ′ ′′ ′ ′′  are real. Eq. 3.9 gives in media I and III 
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( ) ( ) 02
2

=+ xW
dx

xWd ω         (3.13) 

And in medium II  

( ) ( ) ( ) 02
2

=′′−′+ xWi
dx

xWd εεω          (3.14) 

On the other hand, Eq. 3.12 with m = 0 and ω= , gives in media I and III  

( ) ( )2
2

0
d x

x
dx

ψ
ω ψ+ =            (3.15) 

And in medium II  

( ) ( ) ( )2 2 2
2 2 2

1 1
1 2 0

d x
V V S x

dx

ψ
ω ψ

ω ω
+ − + − =        (3.16)  

Comparing Eq. 3.14 to Eq. 3.16, we obtain 

( )2 2

2 2 2 21 11 2 V V V S Sω ωε ′ ′ ′ ′′ ′ ′′= − + − − +             (3.17) 

( )2 2
1 12 2V S S V Vω ωε ′′ ′′ ′ ′′ ′ ′′= + −             (3.18) 

Now since the medium is assumed to be non-dispersive (i.e., the permittivity is 

independent of the frequency ω) then we conclude that the constant potentials V and S in 

medium II should be proportional to ω. In other words the vector and scalar potentials in 

the Klein-Gordon equation are energy dependent. They should be proportional to E.

Consequently, we write these potentials as 

V v≡ , S s≡ ,          (3.19) 

where v and s are dimensionless parameters. Thus, we can now write 

2 2 2 21 2v v v s sε ′ ′ ′ ′′ ′ ′′= − + − − +         (3.20)  

2 2 2v s s v vε ′′ ′′ ′ ′′ ′ ′′= + −          (3.21)  
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It might be intuitively obvious that since µ is constant and the property of the optical 

medium is defined by the two permittivity parameters ε ′  and ε ′′  then it is sufficient to 

describe the corresponding K-G system by only one potential function with its two 

parameters (e.g. v′  and v′′ ). Thus, we take S = 0 in which case Eq. 3.20 and Eq. 3.21 will 

determine v′  and v′′  in terms of the parameters ε ′  and ε ′′  as follows 

( ) ( )2 2
1 1 1

2
v

ε
ε ε

′
′ ′′ ′− = ± + + , for 0ε ′± >       (3.22)  

2

1
v

v

ε ′′′′ =
′−
           (3.23)  

Solving Eq. 3.22 and Eq. 3.23 gives   

[ ]( , ) i ( , )V vν ε ε ε ε′ ′ ′′ ′′ ′ ′′= + .         (3.24)  

That is, in our investigation of the wave propagation through the quantum mechanically 

equivalent system we will take the potential in the Schrödinger equation as 

( )iV E v v′′= +  when we try to resolve the paradoxical results described before, where E

is the non-relativistic energy and v′  and v′′  are real potential parameters. This simplified 

analysis clearly shows the highly non-trivial nature of the equivalent potential 

representation. 

It will be shown in the last section of chapter 5 that the Schrödinger equation with the 

described energy dependent potential yields resonance poles of the reflectance and 

transmittance similar to those of the reflectance and transmittance of the EM wave 

equation. It is the only case in which the poles of the reflectance and transmittance of the 

Schrödinger equation are aligned straightly in the complex k-plane similar to those of the 

reflectance and transmittance of the EM wave equation in the complex -plane. The 
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problem of energy-dependent potentials is highly non-trivial problem which is a topic of 

interest on its own. The Schrödinger equation with energy-dependent potentials has been 

recently used in the description of heavy quark systems [26]. In chapter 5 where the 

subject of resonance poles is discussed, the poles of the reflectance and transmittance of 

the Schrödinger wave equation with potentials of various energy dependencies will be 

shown. It will be seen that the best mapping between the EM and Schrödinger wave 

equations is obtained through using an energy dependent potential with direct 

proportionality.  

It is important to mention that the only help ( in the problem of the paradoxical results 

introduced in chapter 1) presented through using an energy dependent potential with 

direct proportionality is that the resonance poles of the reflectance and transmittance of 

the Schrödinger wave equation could be studied analytically.        
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CHAPTER 4

4. TIME-DEPENDENT WAVE EQUATIONS  

One of the corner stones of quantum mechanics is that the time development of the state 

function ( )tx,ψ  for a particle or a system is described by the time-dependent Schrödinger 

equation [20] 

( ) ( )txHtx
t

i ,, ψψ =
∂
∂

                                                   (4.1) 

where the operator H  is the Hamiltonian operator. In one dimension it takes the form 

( )
2 2

22
H V x

m x

∂= − +
∂

.           (4.2) 

The axiom of Hermiticity may be replaced by the more physical condition of space–time 

reflection symmetry [29]. This is much related to this work as gain media are represented 

using a non-Hermitian Hamiltonian. To obtain the time-independent form of the 

Schrödinger equation we replace ( )tx,ψ  in the time-dependent Schrödinger equation 

with ( ) iE tx eψ − . Then Eq. 4.1 becomes 

( ) ( )xExH ψψ =                        (4.3) 

where E is the energy of the system.  

As mentioned in the last chapter, the propagation of electromagnetic waves in any 

medium is governed by the electromagnetic (EM) wave equation 

( ) ( )2
2

2

,
,

W r t
W r t

t
µε

∂
∇ =

∂
.             (4.4) 
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Which reduces in one dimension to 

( ) ( )2 2

2 2

, ,W x t W x t

x t
µε

∂ ∂
=

∂ ∂
           (4.5) 

where ( ),W x t  is the electric or magnetic field and µ  and ε   are the permeability and 

permittivity, respectively, that describe the medium of propagation. In analogy with the 

Schrödinger equation case, a time-independent version of the EM wave equation is 

obtained if we substitute ( )txW ,  in the time-dependent wave equation with ( ) i tW x e ω−

as mentioned in the previous chapter. The new wave equation in any media will look like 

( ) ( )
2

2
2

W x
W x

x
ω µ ε

∂
− =

∂
.           (4.6) 

where  is the frequency of the EM wave. In the coming sections the above two 

stationary wave equations will be used to study the problem of one-dimensional 

scattering through a gainless and gain media.  

Figure 4.1: A one-dimensional scattering problem of an EM or quantum wave by a gainless 
scattering medium of length L.

ε = 1, µ = 1 ε = 1, µ = 1 1, =′= µεε

   V = 0 V = 0'VV =

I II III 
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4.1. One-Dimensional Scattering Through a Gainless Medium 

Our aim now is to solve the time-independent wave equations for the simple scattering 

system depicted in figure 4.1 for any potential. The solutions of the time-independent 

wave equations in the three regions shown in figure 4.1 are, in the Schrödinger equation 

case 

( )
I

II

III

I I

II II

III

ik x ik x

ik x ik x

ik x

e R e

x Ae B e

T e

ψ

−

−

+

= +                 (4.7) 

with ( )( )xVEmk −= 2 . And in the EM wave equation case, the solutions are 

( )
I

II

III

I I

II II

III

i x i x

i x i x

i x

e R e

W x Ae B e

T e

ε ε

ε ε

ε

−

−

+

= +            (4.8) 

To obtain an expression for the transmittance R and reflectance T, one has to match the 

three solutions at the boundaries, 0=x and Lx = , and match their derivatives as well. 

After doing that and solving for R and T, one obtains for the Schrödinger wave equation 

( ) ( )22
2

22

2

2

2

1

VkkVkke

e
VR

VkiL

VkiL

−+−−−

−=
−

−

        (4.9) 

( ) ( )2
2

2
22

2

2

2

4

VkkVkke

Vkke
T

VkiL

VekkiL

−+−−−

−=
−

−−−

       (4.10) 

and for the EM wave equation 

( )( )
( ) ( )222

2

11

11

+−−

−−=
εε

ε
ωε

ωε

iL

iL

e

e
R         (4.11) 
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( )

( ) ( )222

12

11

4

+−−
=

−

εε
ε

ωε

ωε

iL

iL

e

e
T          (4.12) 

Simpler expressions can be obtained if one makes use of the conservation law 

1
22 =+ TR  [20]. However, in gain media, which are of interest to us in this study, this 

conservation law is violated. In figure 4.2, 
2

R  and 
2

T  are plotted for the Schrödinger 

and EM wave equations vs. the scattering medium length L. It is clear in these two 

figures that 
2

R  and 
2

T  always add to 1 as they should. The behaviors of 
2

R  and 
2

T

for the two wave equations are periodic in L. Moreover, the behaviors of 
2

R  and 
2

T  vs. 

potential in the case of the Schrödinger wave equation and vs. permittivity in the case of 

the EM wave equation are depicted in figures 4.3. It is obvious from figure 4.3 (left) that

2
R  is zero when the potential is zero and approaches unity asymptotically, in contrast, 

2
T  is unity when the potential is zero and approaches zero asymptotically, which one 

should get. On the other hand, figure 4.3 (right) shows a periodic like behavior with 

permittivity change which is very interesting. Even for very large refractive index 

resonance transmission still can happen. Finally it is worth to study the behaviors of 
2

R

and
2

T  vs. energy in the case of the Schrödinger wave equation and vs. frequency in the 

case of the EM wave equation. The results are shown in figure 4.4. From figure 4.4 (left), 

one can conclude that the dependences of 
2

R  and 
2

T  on the incident energy are roughly 

opposite to their dependences on the potential. On the other hand, figure 4.4 (right) shows 

periodic behavior but noticeably different form that of figure 4.3 (right). 
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Figure 4.2: 
2

R and
2

T  vs. L for the Schrödinger (left) and EM (right) wave equations. 
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Figure 4.3: 
2

R and
2

T  vs. V for the Schrödinger wave equation (left) and vs.  for the EM 

wave equation (right).    
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Figure 4.4: 
2

R and
2

T  vs. E for the Schrödinger wave equation (left) and vs.  for the EM 

wave equation (right).       
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Figure 4.5: A one-dimensional scattering problem of an EM or quantum wave by a gain 
scattering medium of length L.

4.2. One-Dimensional Scattering Through a Gain Medium 

The main task in this study is to study R and T in gain media. The potential will be of the 

form ''' ViVV +=  and the permittivity will be of the form iε ε ε′ ′′= −  ( 'V , V ′′ , 'ε , ''ε

are real). In the case of gain, 1
22 >+ TR  as one would expect. 

2
R  and 

2
T  for the two 

time-independent wave equations will be studied in parallel for comparison purposes. In 

all cases with gain, 
2

ln R  and 
2

ln T  will be plotted instead of 
2

R  and 
2

T  for 

convenience. First of all, 
2

R  and 
2

T  are studied vs. the gain medium length L as shown 

in figure 4.6. In the Schrödinger wave equation case, as shown in figure 4.6 (left), both 

2
R and

2
T  increase with the gain medium length, which is expected. But in contrast 

with physical intuition, at some critical gain medium length, which is the same for 
2

R

and
2

T , the latter start to drop exponentially to zero after oscillating around the region of 

ε = 1, µ = 1 ε = 1, µ = 1 

   V = 0 V = 0

I II III 

, 1iε ε ε µ′ ′′= − =

ViVV ′′+′=
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the global maxima. Conversely, the former, namely 
2

R , oscillates around the global 

maxima but saturates to some nonzero value. In the EM wave equation case, as shown in 

figure 4.6 (right), the behaviors of 
2

R  and 
2

T  are very similar to those in the 

Schrödinger wave equation case, and the critical gain medium length is again common 

for both 
2

R  and 
2

T . The drop in 
2

R  and 
2

T  is counter-intuitive since wave 

propagation should be enhanced as the wave traverses the gain medium. The 

dependences of 
2

R  and 
2

T   on V ′  in the case of the Schrödinger wave equation and on 

ε ′   in the case of the EM wave equation were studied for a gain medium and the result is 

depicted in figure 4.7. The figure shows very interesting behaviors for both 
2

R  and 
2

T .

Moreover, it will be very illustrative to study the dependences of 
2

R  and 
2

T  on the 

imaginary parts of the potential ''V  and permittivity ''ε . This was carried out and the 

results are shown in figure 4.8. It is clear in the figure that both 
2

R  and 
2

T  for the two 

wave equations increase to a unique maximum and then start to drop exponentially at 

some critical values of ''V  or ''ε . In the case of 
2

T  the drop is to zero while 
2

R

converges to some finite value. Finally, figure 4.4 is reproduced with gain and illustrated 

in figure 4.9. In figure 4.9 (left), it is seen that both  
2

R  and 
2

T  are amplified in the low 

energy region. However, as energy increases, the incident wave becomes insensitive to 

the potential and its behavior becomes asymptotically similar to that in figure 4.4 (left). 

Nonetheless, the behaviors of 
2

R   and 
2

T  in figure 4.9 (right) are very different from 

those in figure 4.4 (right).  
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Figure 4.6: 
2

ln R and
2

lnT  vs. the gain medium length L for the Schrödinger wave 

equation (left) and EM wave equation (right).     
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Figure 4.7: 
2

ln R and
2

lnT  with gain vs. the real potential V ′  for the Schrödinger wave 

equation (left) and vs. the real permittivity ε ′ for the EM wave equation (right).    

It is noticeable that the similarity between the dependences of 
2

R  and 
2

T  on L and 

are evident even with gain in the case of the EM wave equation. 

 Of course there is a relation between the critical gain medium length and the gain 

intensity, the value of the imaginary part of the potential V ′′  or permittivity ε ′′ . The 

relation was studied numerically for the two wave equations and the results are shown in 

figure 4.10. 
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Figure 4.8: 
2

ln R and
2

lnT  with gain vs. the imaginary part of the potential v′′  for the 

Schrödinger wave equation (left) and vs. the imaginary part of the permittivity ε ′′  for the 
EM wave equation (right).      
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Figure 4.9: 
2

ln R and
2

lnT  with gain vs. E for the Schrödinger wave equation (left) 

and vs.  for the EM wave equation (right).       

The relation between ( )cV L′′  or ( )c Lε ′′  (the critical gain intensity at some L) and L is 

roughly inverse proportionality. 

 It is important to say that fixing L and changing V ′′  will show only one peak, as depicted 

in figure 4.8. On the other hand, fixing V ′′  and changing L will result in several peaks as 
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shown in figures 4.6. This issue will be clarified in chapter 5 where resonance poles are 

discussed.
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Figure 4.10: The dependence of ''cV  on L for the Schrödinger wave equation (left) and EM 

wave equation (right).       
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CHAPTER 5

5. RESONANCE POLES 

5.1. Resonance Poles of R and T of the Time-Independent Wave 
Equations 

The resonance poles of R or T are the points in the complex k-plane (or E-plane) in the 

case of the Schrödinger wave equation and in the complex -plane in the case of the EM 

wave equation, at which R or T is infinite. In chapter 4, analytical expressions were found 

for both R and T for the two wave equations 
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for the Schrödinger wave equation, and 
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for the EM wave equation. Due to the fact that R and T have the same denominators, their 

resonance poles are identical. Equating the denominators of these equations to zero yields 

that the resonance poles are those that satisfy the following equations 
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in the Schrödinger equation case, and  

2

21

1
i Le ω εε

ε
+ =
−

            (5.2) 

in the wave equation case. Further discussion on the resonance poles and their correlation 

to the behaviors of R and T will be presented in the next two subsections. 

5.1.1. The Resonance Poles in a Gainless Medium 

The roots (resonance poles) of equations 5.1 and 5.2 are shown in figures 5.1 and 5.2, 

respectively for a gainless scattering medium. The numerical approach used to locate the 

complex poles of Eq. 5.1 was introduced in chapter 2. 

Now let us study R and T in the vicinity of the resonance poles. In figure 5.3 (left), we see 

that 
2

R  and 
2

T  resonate when E becomes very close to the real part of a resonance pole 

in the complex E-plane. The same is true for figure 5.3 (right), where 
2

R and
2

T

resonate when  becomes very close to the real part of a resonance pole in the complex 

-plane. However, in all cases, 
2

R  is minimum when 
2

T  is maximum and vice versa. 

Generally speaking, 
2

R  and 
2

T  will be infinite if and only if a pole has k or  purely 

real, which will never happen in gainless media. This point will be clarified below.   
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Figure 5.1: The resonance poles of R and T the Schrödinger equation in a gainless medium 
in the complex k-plane (left) and E-plane (right).  
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Figure 5.2: The resonance poles of R and T in a gainless medium of the EM wave equation 
in the complex -plane. 
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T in a gainless medium vs. E for the Schrödinger wave equation (left) 

and vs.  for the EM wave equation (right).  



CHAPTER 5: RESONANCE POLES 

 51

5.1.2. The Resonance Poles in a Gain Medium 

In this subsection the figures in the previous subsection will be reproduce but for gain 

media. The poles in a gain medium are shown in figures 5.4 and 5.5 for the Schrödinger 

and EM wave equations respectively. The effect of gain on the poles is very evident. The 

correlation between these poles and the behaviors of 
2

R  and 
2

T  slightly differs from 

that in the previous subsection. Even in the case of gain it is still true that both 
2

R  and 

2
T  resonate, with 

2
R  is minimum when 

2
T  is maximum and vice versa, when E or 

becomes very close to the real part of a resonance pole. However, at some critical 

transition values of E or , both 
2

R  and 
2

T  become maximum or minimum together. 

But it is not completely clear whether the situation will change back or not, i.e. 
2

R  or 

2
T  become maximum when the other is minimum and vice versa. The transition is 

illustrated in figure 5.6 where 
2

R  and 
2

T  are plotted versus E or  for the two wave 

equations.
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Figure 5.4: The resonance poles of R and T for the Schrödinger equation in a gain medium 
in the complex k-plane (left) and E-plane (right).  
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Figure 5.5: The resonance poles of R and T in a gain medium of the EM wave equation in 
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2

R and
2

T  with gain vs. E for the Schrödinger wave equation (left) and vs. 
for the EM wave equation (right).  
     

It is worth mentioning that 
2

R  and 
2

T  will show merely a single peak when they are 

plotted vs. V ′′  or ε ′′ . On the other hand, 
2

R  and 
2

T  will show multiple peaks with 

different heights when they are plotted vs. L, V ′  or ε ′ , or E or . This fact can be clearly 

observed in figures 4.6, 4.7, 4.8 and 4.9. The difference between the effects of these four 

parameters comes from the different influences they have on the resonance poles. As V ′′

or ε ′′   change, 
2

R  and 
2

T  coincide with a resonance pole or bypass it closely, and then 

get away from it and never see its effect significantly. Besides, as L, V ′  or ε ′ , or E or   
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 changes, 
2

R  and 
2

T  coincide with a resonance pole or bypass it closely resulting in a 

peak, and then, as the parameters change more, 
2

R  and 
2

T  coincide with or bypass 

another pole closely resulting in another peak. And this process continues numerous 

times as these parameters change resulting in multiple peaks. It is important to mention 

that 
2

R  and 
2

T  may coincide exactly with a resonance pole once at most when one of 

the parameters is changed. In the special case where the poles are nearly aligned in a 

horizontal line, one would conclude that the effect of altering V ′′  or ε ′′  will be mainly to 

shift the poles vertically. While the effect of altering L, or V ′  or, ε ′  or  or E would be 

mainly to shift, contract or dilate the poles horizontally.    

5.1.3. The Resonance Poles in a Gain Medium with an Energy Dependent 
Potential 

A linearly energy dependent potential will be of special interest to us since it serves as a 

link between the two wave equations as was shown in chapter 3. The replacement of V

with vk 2  in Eq. 4.9 and Eq. 4.10 where v  is a proportionality constant, will transform 

them into 
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Also, the poles Eq. 5.1 becomes 
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The analogy between Eq. 5.3, Eq. 5.4 and Eq. 5.5, and Eq. 4.11, Eq. 4.12 and Eq. 5.2 is 

unequivocal. Figure 5.7 depicts 
2

R  and 
2

T  defined by Eq. 5.3 and Eq. 5.4 in gainless 

and gain media. Figures 5.8 and 5.9 show the poles of Eq. 5.5 in gainless and gain media 

in the k- and E- complex planes, respectively. 
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Figure 5.7: 2
R and 2

T  vs. L with a potential directly proportional to the energy for the 
Schrödinger wave equation in a gainless medium (left) and gain medium (right),  
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Figure 5.8: The resonance poles of R and T with a potential directly proportional to the 
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Figure 5.9: The resonance poles of R and T with a potential directly proportional to the 
energy for the Schrödinger wave equation in the complex E-plane in a gainless medium 
(left) and gain medium (right). 

In figures 5.10 and 5.11, the poles of R and T for the Schrödinger equation with potentials 

with two different energy dependencies are shown. It is very evident that the best 

mapping between the EM and Schrödinger wave equations is obtained through using an 

energy dependent potential with direct proportionality. 
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Figure 5.10: The resonance poles of R and T with a potential V E∝ for the Schrödinger 
wave equation in the complex k-plane (left) and E-plane (right). 
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Figure 5.11: The resonance poles of R and T with a potential 2V E∝ for the Schrödinger 
wave equation in the complex k-plane (left) and E-plane (right). 

5.1. Analytical Solutions of the Poles Equations for the EM Wave 
Equation and the Schrödinger Wave Equation with a Potential 
Directly Proportional to the Energy   

Because Eq. 5.2 and Eq. 5.5 are of special significance and have analytical solutions, they 

were studied analytically.  Eq. 5.2 and Eq. 5.5 have the following analytical solutions, 

respectively,  

1 1 1

1 1 1

v
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− − −
         (5.6) 
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With k k i k′ ′′= + , Eq. 5.6 can be separated into real and imaginary parts. After 

sophisticated complex analysis, the following expressions were obtained 
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A similar treatment for equation 5.7 yielded,    
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With these relations, it will be straightforward to study the influence of each parameter 

on the poles.
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CHAPTER 6

6. TIME-DEPENDENT WAVE EQUATIONS  

Due to the unphysical results obtained from the time-independent wave equations, one 

has to look at the same problem from another point of view, namely, the time-dependent 

wave equations. The problem in Chapter 4 that is illustrated in figures 4.1 and 4.5 was 

tackled from the time-dependent approach. The time-dependent Schrödinger and EM 

wave equations were solved numerically using the Finite Difference method. The details 

of the numerical solutions were offered in chapter 2. As mentioned in chapter 2, the 

reflection and transmission coefficients for the Schrödinger wave equations are given 

respectively by [21] 

( ) ( )2 2
,

ix

R t x t dxξ
−∞

=             (2.43)    

( ) ( )2 2
,

fx

T t x t dxξ
∞

=               (2.44) 

The incident wave in the Schrödinger equation case is a Gaussian wave packet with an 

average momentum 0k  and a variance of σ  i.e.

( )
( )2

0
2

02,0
x x

i xkx e eσψ
−

−
= .         (2.42) 

In the EM wave equation case, the initial wave could be a plane wave or a Gaussian 

pulse. However monochromatic waves are more suitable since they are easier to handle 
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than multichromatic pulses, and moreover, we are interested resonance effects. Plane 

wave are approximated using the waveform 
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−
−

=

+

             (2.45) 

 which yields a near exact representation for large a.

6.1. One-Dimensional Scattering Through a Gainless Medium  

The transmission and reflection coefficients were calculated numerically for the two 

time-dependent wave equations as function of time. A Gaussian wave packet was used as 

an initial input for the Schrödinger wave equation while the modified plane wave (see 

chapter 2) was used in the case of the EM wave equation. In figure 6.1 the scattering 

medium is very small relative to the incident waves widths. The results are reproduced 

and shown for media with more intense scattering in figure 6.2. Moreover, 
2 2

R T+  is 

shown as well in the first three figures of this chapter. In figure 6.1 it is evident that 
2

R

and
2

T  add to 1 before and after the scattering occurs. The drop in 
2 2

R T+  is due to 

the fact that a part of the incident waves resides inside the scattering medium for a while. 

This effect is also clear in the case of strong scattering for the two wave equations, as 

shown in figure 6.2. Recalculating 
2

R  and 
2

T  for a scattering medium whose length is 

close to the wave effective incident waves widths (roughly the width at hundredth 

maximum in the case of Gaussian wave packets) will illuminate the interesting result of 

the two previous figures as demonstrated in figure 6.3.      
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Figure 6.1: 2
T and 2

R vs. time for a small gainless medium for the Schrödinger wave 

equation (left) and EM wave equation (right). 
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Figure 6.2: 2
T and 2

R vs. time for a small gainless medium with strong scattering for the 

Schrödinger wave equation (left) and EM wave equation (right). 
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Figure 6.3: 2
T and 2

R vs. time for a small gainless medium with strong scattering for the 

Schrödinger wave equation (left) and EM wave equation (right). 
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In that case, 
2

R  and 
2

T  do not add to 1 for the two wave equations most of the time. 

This is similar to what happened in the last two figures above where a part of the incident 

wave remains in the scattering medium temporarily. It will be seen in the coming sections 

that this temporarily resident part of the incident wave will play a major role in gain 

media.

6.2. One-Dimensional Scattering Through a Gain Medium   

To make parallelism between this chapter and chapter 4, the scattering through a gain 

medium should be tackled from a time-dependent approach as well, which is one of the 

main purposes of this work. The figures in the previous section were reproduced for a 

gain medium. Figure 6.4 shows that the effect of gain on a small medium relative to the 

incident wave width is to amplify the reflected and transmitted waves smoothly. 

Moreover, in a medium whose length is roughly close to the wave width the effect of 

gain is to amplify the reflected and transmitted waves in a step like process as illustrated 

in figures 6.5 and 6.6. In all cases, after some time, 
2

R  and 
2

T  will have nearly the 

same magnitude, but they will remain out of phase as can be seen in figures 6.5 and 6.6. 

The presence of gain in a scattering medium may make it act as an everlasting wave 

source, as in the case of figure 6.6.  
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ln R vs. time for a small gain medium for the Schrödinger wave 
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Figure 6.5: 2
ln T and 2

ln R vs. time for a large size gain medium for the Schrödinger wave 
equation (left) the EM wave equation (right). 
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This will be the case unless the gain medium is below some critical gain value or the gain 

medium size is smaller than a critical size (the two parameters are dependent), as in the 

case of figures 6.4 and 6.5 where 
2

R  and 
2

T  saturate to some finite values. The 

behavior of the transmitted wave in the case of gain for the two wave equations is very 

different from that specified by the time-independent wave equations. The transmission 

coefficient is finite below some critical gain medium length or critical gain intensity. 

Beyond that critical gain medium length or critical gain intensity, the transmission and 

reflection coefficients increase exponentially with no bound with time. This is because 

the wave trapped inside the gain medium gets continuously amplified by more than what 

it loses through leakage at the gain medium ends as reflections or transmissions. Of 

course these results are more physical and realistic than those given by the time-

independent wave equations. The gain in fact enhances wave propagation but does not 

suppress it. This conclusion was previously stated in the literature by Soukoulis et al for 

the EM wave equation [2] and the Schrödinger wave equation [3] as well. Unfortunately, 

no satisfactory explanation for the discrepancy between the time-independent and time-

dependent approaches was available prior to our work [1].    

6.3. Waves Inside a Gain Medium 

To show clearly the mechanism in which waves are being amplified in gain media, it is 

instructive to study the behavior of the waves inside the gain medium as function of time. 

In figures 6.7, 6.8 and 6.9, the wave inside the gain medium is shown vs. time for the 

Schrödinger and EM wave equation.  
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Figure 6.7: wave behavior inside a gain medium for an undercritical system for the 
Schrödinger wave equation (left) and the EM wave equation (right). 
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Figure 6.8: wave behavior inside a gain medium for a critical system for the Schrödinger 
wave equation (left) and the EM wave equation (right). 
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Schrödinger wave equation (left) and the EM wave equation (right). 
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The three main scenarios of the waves in the gain medium can be clearly seen. When the 

system is undercritical, the wave enters the gain medium and gets amplified but the 

amplification is too feeble to compensate for the outflow from the gain medium as seen 

in figure 6.7. In figure 6.8 where the system is critical, the wave entered the gain medium 

is being amplified exactly by the same amount it loses through the outflow. Finally, 

figure 6.9 shows an overcritical system in which the amplification conquers the outflow 

and the wave inside the gain medium keeps building up.     

6.4. The Multiple Reflection Approach  

Since it is not trivial to solve the time-dependent wave equations analytically for R and T

for the system described in chapter 4, it will be very interesting to find an alternative 

approach to tackle this problem. The effect of the imaginary part of the potential or 

permittivity will be mainly amplification while the wave is inside the gain medium as 

well as scattering at the boundaries of the gain medium. However, the scattering will be 

dominated by the real part of the potential or permittivity when the imaginary part is 

small relative to the real part, which is the case in our problem. Therefore, to a very good 

approximation, the effects of the real and imaginary parts of the potential or permittivity 

can be decoupled: the imaginary part will result in amplification inside the gain medium 

and the real part will result in scattering at the two ends of the gain medium as well as a 

phase shift. For an incident wave from the left, part of it will be reflected by the left end 

of the medium and the rest will enter it. Let the reflectance and transmittance at the left 

end of the gain medium be R1 and T1, respectively. The transmitted wave into the system 
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Incident

1R

will be amplified by a factor of  Lae  where a is a real constant. Of course the transmitted 

wave will experience a phase shift of τie  where  is the time it takes the wave to cross the 

system. This scenario is shown in figure 6.10.  

 free space             gain medium                 free space 

                           1T                           ( )
1 2

a i LTT e υ+

Figure 6.10: Reflection and transmission at the ends of the gain system.  

 can be written as υL  where υ  is the speed of the wave inside the gain medium. Let the 

reflectance and transmittance at the right end of the gain medium be R2 and T2,

respectively. Generally, R1 and T1 are, respectively, the reflectance and transmittance for 

a wave entering the gain medium and R2 and T2 are the reflectance and transmittance for 

a wave leaving the gain medium. At the right end of the gain medium, part of the wave 

will be transmitted and the rest will be reflected back. The first transmitted wave will be 

( )LiaeTT υ+
21  as illustrated in figure 6.10. The wave reflected back to the gain medium 

will grow again by Lae  and experience a phase shift of υLie again. Then, part of it will 

get reflected back to the gain medium by the left end of the gain medium, grow by Lae

and accumulate a phase shift of υLie . Again, part of it will be transmitted through the 

right end of the gain medium and the rest will be reflected back to gain medium. 

Therefore, the second transmitted wave will be ( )LiaeRTT υ+32
221 . The same process will 

happen again and again, as demonstrated in figure 6.11.                                       



CHAPTER 6: TIME-DEPENDENT WAVE EQUATIONS 

 67

Figure 6.11: The multiple reflection events inside the scattering gain medium.

The transmission coefficient after all will be given by summing up all partial transmitted 

waves

( ) ( )
2

22 2 2
1 2 2

0

a i L n a i L n

n

T TT e e Rυ υ
∞

+ +

=

= .         (6.1) 

Of course we can express Eq. 6.1 in terms of time instead of the index n using 

−= 1
2

1

τ
t

n .                                                                                                     (6.2) 

For the series in Eq. 6.1 to be convergent, the following condition must be satisfied 

( ) 12 <+ Re Lia υ .            (6.3) 

The critical value of a can be expressed as a function of L by setting the left hand side of 

Eq. 6.3 equal to 1 and solving for a. Doing this leads to the following expression for the 

critical gain intensity 

Incident

1R

( )LiaeTT υ+
21

( )LiaeT υ+
1

( )LiaeRTT υ+32
221

( )LiaeRTT υ+54
221

............................

( )LiaeRT υ+2
21 ( )LiaeRT υ+32

21

( )LiaeRT υ+43
21 ( )LiaeRT υ+54

21

( )LiaeRRT υ+2
211

( )LiaeRRT υ+43
211

............................
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2lni L R
a

L

υ
υ

−= .            (6.4)

Figures 6.12, 6.13 and 6.14 are plots of 
2

lnT  of Eq. 6.1 for three main values of a vs. n

(or time), the summation index. In figures 6.12, 6.13 and 6.14, a is undercritical, critical 

and overcritical respectively. It is clear that when the system is undercritical, waiting for 

longer time (or adding more terms in the summation) has no effect on the output. 

However, the output keeps building up as time elapses (or more terms are added) when 

the system is overcritical.     

Comparison between the numerical solutions of the time-dependent wave equations and 

the multiple reflections approach reveals that this approach may be applied in a more 

rigorous way to get an analytical solution to the time-dependent scattering problem in 

gain media.  

0 100 200 300
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Figure 6.12: 2
ln T vs. time obtained from the multiple reflections approach for undercritical 

gain.
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Figure 6.13: 2
ln T  vs. time obtained from the multiple reflections approach for critical gain.  
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Figure 6.14: 2
ln T  vs. time obtained from the multiple reflection approach for overcritical 

gain.

6.5. Resonance Poles and the Discrepancy Between the Time-
Independent and Time-Dependent Approaches  

It is the main purpose of this research to try to clarify the origin of the discrepancy 

between the time-dependent and time-independent wave equations results in gain media. 

For the sake of comparison, we assert that we should study the Schrödinger wave 

equation with the energy dependent potential with direct proportionality (V vE= , where 
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v  is a proportionality constant) in order to coherently compare it with the corresponding 

EM wave equation. This form of potential will make it possible to study the resonance 

poles analytically, exactly like in the case of the EM wave equation. As what was 

introduced in chapter 1, the approach used here simply relates the origin of instability and 

divergence in the cases of both the Schrödinger and EM wave equations to the time-

dependence factors iEte−  and i te ω− , respectively. It implies that if any of the eigenstates 

of the systems becomes unstable and blows up then this will originate from the fact that 

the corresponding eigenenergy or eigenfrequency is in close proximity to one of the 

system resonance poles whose imaginary part is very small. Thus the structure of the 

resonance poles of the transmission in the complex E- or -plane will be studied. The 

value of the gain ( v′′  and ε ′′ ) will be tuned till one of the energy eigenvalues in the lower 

half of the complex energy plane approaches the real energy axis and cross it to the upper 

half. It is proposed in this work that this cross-over at the critical value of the gain is the 

origin of the discrepancy between the stationary and time-dependent behaviors. 

To support the theory stated above we have to do some numerical verifications. For a 

gain medium with all parameters stated, we want to consider a resonance pole of interest 

and keep an eye on it as the imaginary part of the potential v′′  or permittivity ε ′′  is 

adjusted. The moment of interest is when the pole crosses the real axis in the complex k-

or  -plane. Then, we want to study the time-independent transmission vs. the imaginary 

potential v′′  or permittivity ε ′′  and the time-dependent transmission vs. time for different 

values of the imaginary part of the potential v′′  or permittivity ε ′′  corresponding to the 

pole before, at and after crossing the real axis in the complex planes. In figure 6.15 (or 

figure 6.16) and figure 6.16 a pole under scope is traced as v ′′  and ε ′′  are adjusted in the 
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cases of the Schrödinger and EM wave equations, respectively. Then, in figures 6.18 and 

6.19, the stationary 
2

lnT is plotted vs. v ′′  for the Schrödinger wave equation and vs. ε ′′

for the EM wave equation, respectively. It is very apparent that 
2

lnT  experiences a 

colossally sharp peak at cv ′′  or cε ′′  ( cv ′′  and cε ′′  are the critical parameters at which a pole 

of interest crosses the real axis) for the two time-independent wave equations. These 

results are not at all astonishing since the parameters were chosen to make the 

denominator of the expression for transmittance vanish. The real test will be the time-

dependent wave equations results. 
2

lnT  was obtained by solving the time-dependent 

wave equations numerically for various values of "v  and ε ′′ , below, at and above cv ′′  and 

cε ′′  respectively. The results are shown for the Schrödinger wave equation in figure 6.20 

and for the EM wave equation in figure 6.21. Since 2σ  is large, the approximation 

0V v E v E=  was used, where 0E  is the average energy of the wave packet. This 

approximation was found numerically to be very well. The results in these two figures 

are, with no doubt, very supporting to the theoretical formulation even for skeptics.        
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Figure 1.15:  The resonance pole location in the complex k -plane.  As " increases, the pole 
crosses the real axis when 0.02267cv v′′ ′′= = .
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Figure 6.16:  The resonance pole location in the complex E -plane.  As v′′ increases, the pole 
crosses the real axis when 0.02267cv v′′ ′′= = .
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Figure 6.17:  The resonance pole location in the complex  -plane.  As ε ′′  increases, the pole 
crosses the real axis when 0.01882cε ε′′ ′′= = .
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Figure 6.18: 
2

lnT  obtained from the time-independent Schrödinger wave equation vs. "v .

The figure shows an extremely sharp peak at 0.02267cv v′′ ′′= = .
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Figure 6.19: 
2

lnT  obtained from the time-independent EM wave equation vs. ε ′′ . The 

figure shows an extremely sharp peak at 0.01882cε ε′′ ′′= = .
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Figure 6.20:  
2

lnT  obtained from the time-dependent Schrödinger equation for three 

different main values of "v  vs. time. The figure shows clearly that the system is critical 
when 0.02267cv v′′ ′′= = .
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Fig. 6.21: 
2

lnT  obtained from the time-dependent EM equation vs. ε ′′  for three different 

values of ''ε  vs. time. The figure shows clearly that the system is critical when 
0.01882cε ε′′ ′′= = .
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CHAPTER 7 

7. CONCLUSION

Numerical studies proved that there is a fake dual symmetry between amplification and 

absorption when the problem is studied using the time-independent wave equations. After 

some critical gain medium length or gain intensity, the wave propagation is suppressed as 

if it were in a loss medium. This symmetry was refuted by the time-dependent wave 

equations results and shown to be merely a mathematical artifact in accordance to the 

work in the literature. When the gain system is critical, the reduction of time-dependant 

wave equations to the time-independent versions is not legitimate anymore as the 

stationary states are destroyed.   

The parallelism in studying the Schrödinger and EM wave equations led to a 

mathematical mapping between the quantum waves of massive particles and the 

electromagnetic waves. The mapping is obtained through the use of a linearly energy 

dependent potential in the Schrödinger wave equation.     

In order to investigate the origin of the discrepancy between the time-independent and 

time-dependent wave equations, the resonance poles of the reflectance and transmittance 

for the time-independent wave equations were studied. It was found that reflectance and 

transmittance have common resonance poles. As a support for the mapping between the 

two wave equations, it was found that the Schrödinger and EM wave equations will have 

similar resonance poles structures on the momentum and frequency complex planes, 
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respectively, only if a potential directly proportional to the energy is used in the 

Schrödinger wave equation. 

It was argued that the discrepancy between the time-independent and time-dependent 

wave equations originates from the time-dependence factors. As the pole that corresponds 

to an eigenenergy or eigenfrequency crosses the lower half plane to the upper half plane, 

the time-dependence factors grow with time exponentially with no bound and the 

stationary states are destroyed. The argument was proven numerically for the two wave 

equations. The transmittance for the time-independent wave equations was found to drop 

exponentially after the pole corresponding to the eigenenergy or eigenfrequency crosses 

the lower half plane to the upper half plane, after it experience a sharp peak at the 

crossing event. It was also found that a gain medium is critical when the corresponding 

pole crosses the real axis. It is undercritical before the crossing and overcritical after the 

crossing.                    

In overcritical systems where amplification plays an important role it is expected that 

non-linearity effect will be important which will reduce the amplifying effect in real 

systems. The non-linear Schrödinger equation in one-dimension reads 

( ) ( ) ( ) ( )( ) ( )
22

2

2

, ,
, ,

2

x t x t
i x t V x x t

t m x

ψ ψ
ψ ψ

∂ ∂−= + +
∂ ∂

            (7.1)  

It is also expected that dispersion will play a major role in the real lasing systems and 

consequently its inclusion will be of great benefit.  
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