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Chapter 1

Introduction

Enterprise Network (EN) topology design is an important engineering problem.
A tvpical enterprise network consists of a large number of components, such as
main frame computers, mini systems, workstations, PCs, user terminals, printers,
etc., [1]. Various devices such as hubs, workgroup switches, backbone switches,
routers, etc., are used to interconnect and network these computers and peripher-
als. The EN topology is governed by several constraints. Geographical constraints
dictate the break-down of such internetworks into smaller parts or groups of nodes,
where each group makes up what is called a LAN. Thus, we can define an EN as a
collection of interconnected LANs. Further, the nodes of a LAN may be subdivided
into smaller parts, called LAN segments, to satisfy other constraints and objectives,
for example, capacity constraints, cabling limitation, minimizing delay, cabling and

equipment cost etc., [1]. The topology design of LAN itself consists of two main



[

issues: segmentation, where LAN segments are found and design of actual topology,
which consists of interconnecting the individual segments. Topology design at LAN
level requires interconnection of LAN segments via bridges and layer 2 switches
[2, 3]. Users (stations) are allocated to these segments based on some criteria. Only
spanning tree topologies can be used as active LANs configurations [2, 3, 4, 3, 6].
However, when the bridges support the spanning tree protocol, the actual physical
topology does not have to be loop-free.

In designing the topology of these enterprise networks, an important step is to
find the best possible locations of components to optimize the performance criteria,
such as cost and delay. A good and structured enterprise network has three layers

(see Figure 1.1):

1. Local Access Layer, which provides workgroup access to the network.

(V]

Distribution Layer, which provides policy based connectivity among the work-
groups. This layer is implemented with layer 3 switches, routers, and gateways.

This is where packets manipulation takes place.

3. Backbone Layer, which provides high speed optimal transport of data among

local sites.

Thus, the design of such a structured enterprise network can be approached in

four steps:

1. Assignment of users/stations to LAN segments.



V]

. Assignment of LAN segments to local sites that will make up a single LAN.

w

. Design of the internal structure of each local site (i.e., in what topology the

LAN segments of a local site are connected).

. Backbone design, where the local sites are connected to the backbone.

>

Local Site 1 (cluster 1)

o]

Local Site 2 (cluster 2)

2 e s i eeecesNer i cirocsesssnranssevecsogleroeccean
, .
4 :
V4
rd
L. N R RN 4
LAN [ Backbone
segments M SUANR R :
\‘ ‘
\ '
Vo L
\\ ! A
- . !
( 2 é I !
i !
1 !
Backbone | -
Local Site 3 (cluster 3) Layer ! Local Site 4 (cluster 4)
]
Distribution
Layer

Figure 1.1: A typical Enterprise Network .

Topological design of enterprise networks is a hard problem ({1]. Even the
design of a LAN is itself an NP-hard problem (2, 3, 4]. Therefore, we have to use
intelligent methods known as ‘heuristics’ to get near optimal solutions in reasonable
amount of time. There are two categories of heuristics: constructive and iterative.

Constructive heuristics produce a complete solution by making deterministic



moves. Constructive techniques are fast but require careful implementation and
tuning. Because of their local view of the search space and their greedy nature, the
solution they return is usually far from optimum. Further, for highly constrained
problems, they may fail to find a feasible solution [7].

Iterative heuristics attempt to improve a complete solution by making con-
trolled stochastic moves [7]. Generally we can classify iterative schemes into two sub-
classes: schemes which always accept good solutions like local search, and schemes
which occasionally accept bad solutions like simulated annealing [8], genetic al-
gorithms [9], tabu search [7], and simulated evolution [7]. This class of schemes
generally outperform constructive and greedy schemes because their “hill climbing”
property saves them from getting trapped in local optima {7, 10].

Iterative heuristics have been used for topological network design. The use
of Genetic Algorithm (GA) for topological network design has been proposed in
(2, 3, 11, 12, 13]. Similarly, use of Simulated Annealing (SA) has been reported in
[4]. However, there were some concerns over the execution times of these schemes
[14]{15]). Kling and Banerjee proposed Simulated Evolution (SE) heuristic [16] for
VLSI Cell Placement. The heuristic combines iterative improvement and construc-
tive perturbation. It saves itself from getting trapped in local optima by using
stochastic selection of design rcomponents for perturbations.

The EN topology design (TDEN) problem is a constrained multiobjective op-

timization problem, where some of the objectives can only be estimated and where



several decisions are usually based on expert knowledge. For such class of problems,
fuzzy logic provides an easy way of expressing expert human knowledge in decision
making process of any iterative heuristic. The advantage of fuzzy logic over classical
crisp logic is that it establishes an approximate truth value of propositions in accor-
dance with the rules designed by the expert, while in crisp logic the proposition will
either be true or false. Furthermore, it provides a rigorous algebra for dealing with

imprecise information.

Research Objectives

In this thesis we present an approach to TDEN problem based on a Fuzzy Simulated
Evolution Algorithm for multiobjective optimization. In our scheme we minimize
three cost parameters of the topology design: monetary cost, average network delay,
and maximum number of hops between a source-destination node pair. We also
use some other algorithms in this process. We have investigated the fuzzification of
different stages of SE algorithm. The SE algorithm consists of three distinct steps:
evaluation, selection, and allocation. We propose fuzzification of evaluation
and allocation stages of the simulated evolution algorithm. Our proposed fuzzy
evaluation scheme combines monetary cost and delay for evaluating the placement
of a link between two nodes. The proposed fuzzy allocation scheme combines the
monetary cost, average network delay, and maximum number of hops between a

source-destination pair.



Organization of Thesis

The rest of this thesis is organized as follows. In Chapter 2 we review related
literature. This chapter covers different approaches that have been taken in network
topology design problems and the objectives they optimize.

In Chapter 3 we cover different aspects of TDEN problem. This includes the
formal description of the problem, notation, assumptions, terminology, cost function,
and objective values computation. The chapter also gives a background on simulated
evolution algorithm and fuzzy logic.

In Chapter 4 we discuss our proposed fuzzy logic based Simulated Evolution
algorithm for TDEN. In this chapter we describe different steps of our fuzzy SE
algorithm and the approach we have taken to implement each one of them.

In Chapter 5 we present and discuss our experiments and results. The thesis

ends with conclusion and future work in Chapter 6.



Chapter 2

Literature Review

Network topology design is an NP-complete problem [17]. Heuristics have been used
to solve problems that are related to network topology design. Heuristic algorithms
can be classified as constructive and iterative. Constructive heuristics produce a
complete solution by making deterministic moves while iterative heuristics attempt
to improve a complete solution by making controlled stochastic moves [10]. Sim-
ulated Annealing [8], Genetic Algorithm [9], Tabu Search (15, 7], and Simulated
Evolution [18, 19, 20, 21] are examples of iterative heuristics. In this chapter, litera-
ture is reviewed related to constructive and iterative heuristics as applied to network

topology design.
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2.1 Constructive Heuristics

Constructive schemes build a topology in a piecewise manner. These schemes join
two nodes together at a time, until the topology is complete. Such schemes are fast
but fall short of good topology. This is due to the fact that these schemes make
decision about joining two nodes on the basis of partial topology only. Secondly,
once a decision is made, no matter how bad it is, there is no mechanism to reverse
it. Therefore, these schemes may remain trapped in local minima. Following are

some related constructive hesuristics for topology design.

Kruskal Algorithm

Kruskal suggested a greedy algorithm for finding minimal spanning trees (MSTs).
Since the topology of a structured enterprise network is usually a spanning tree,
Kruskal’s Algorithm can be used. The algorithm starts with each node being a
single node fragment. A fragment is a subtree (i.e., a subgraph that is a tree) of
an MST. The algorithm then successively combines two of the fragments by using
the arc that has minimum weight over all arcs that when added to the current set
of fragments do not form a cycle and do not violate other stated constraints. The
algorithm pfoceeds by‘ buiiding up simultaneously several fragments that eventually
join into an MST; however, only one arc at a time is added to the current set of

fragments. The algorithm terminates in (N — 1) iterations [22]. The complexity of



the algorithm is O(m log m), where m is the number of arcs.

Prim Algorithm

Prim [23] suggested an algorithm to find minimum spanning trees, which could be
applied to design spanning tree network topologies. The algorithm starts with an
arbitrarily selected single node as a fragment and enlarges the fragment by suc-
cessively adding a minimum weight outgoing arc. More specifically, the algorithm
starts with one node in the tree and all other nodes not in the tree (out-of-tree).
Then, while there are still out-of-tree nodes, it finds the out-of-tree node which is
nearest to the tree and does not violate constraints, brings that node into the tree,
and records the edge which connects it to the tree. The algorithm also terminates

in (N - 1) iterations and has a worst case efficiency of O(n?)[22, 24].

Esau-Williams Algorithm

Esau and Williams [25] suggested an algorithm for approximating the optimal net-
work topology based on spanning trees. They based their algorithm on the fact that
links have a significant effect on the cost of most telecommunication systems, and it
is important to find a configuration that is reasonably optimal. In their work they
assumed that cost is proportional to distance. The goal is to connect all the nodes to
the central node, using multipoint links, and giving a minimum possible, or rather

an optimal cost. The constraint they assumed is that there is no traffic overflow
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on any link. The problem therefore falls in the category of designing Constrained
MSTs.

The algorithm is suitable for centralized topology design, where the traffic from
all the N nodes must go through the central node (denoted by 0). Therefore, it
can be assumed that there is input traffic only from the non-central nodes to the
central node and the reverse. At each successive iteration, a link (7,0) connecting
some node i with the central node 0 is deleted from the current spanning tree, and

a link (7, 7) is added. These links are chosen so that:

1. No cycle is formed,

o

the capacity constraints of all the links of the new spanning tree are satisfied,

and

3. the saving w;yp — w;; in link weight obtained by exchanging (:,0) with (z,7)
is positive and is maximized over all nodes i and j for which (1) and (2) are

satisfied.

The algorithm terminates when there are no nodes 7 and j for which require-

ments (1) to (3) are satisfied when (z,0) is exchanged with (7. j) [22][23].

The Augmenting Path Algorithm

The algorithm has been used to solve the “terminal assignment problem” where the

terminals (users) in a network are assigned to concentrators (e.g., hubs, or bridges)
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based on a cost function. The algorithm can be used to find an optimal solution [24].

The algorithm is based on the following observations:

1. Ideally, every terminal would be assigned to the nearest concentrator. The only
reason for not doing so is that the capacity constraint (of the concentrator)

prevents this [24] .

o

If a terminal is already assigned to a nearby concentrator, the only reason for
moving it to one that is farther away is to make room for another terminal
that would have to detour even farther. Thus, it is only necessary to move
terminals on concentrators that are full, and then only to make room for

another terminal [24].

3. Given an optimal partial solution with k terminals assigned (i.e., these k ter-
minals are assigned to concentrators at a2 minimum possible total cost), an
optimal partial solution with k£ + 1 terminals can be found by finding the least
expensive way of adding the k + 1st terminal to the k terminal solution. Note

that this may involve reassigning some of the first k terminals [24].

Stated this way, it is clear that with sufficient effort it is possible to find an optimal
solution, since an entirely new solution can be found by reassigning as many termi-
nals as desired. Clearly, any solution, including the optimal one, is obtainable this

way.
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Clustering Algorithms

The identification of the nodes of each local site can be seen as a clustering problem.

A methodology based on this approach has been suggested by Youssef et al,, [1] to

design enterprise network backbones. The methodology consists of two phases:

[\

A clustering phase (Phase-1). The objective here is to decide the number of
devices required to network all the nodes of the computing resources of the
enterprise. The nodes are partitioned into clusters, and a network device of
the appropriate type and capacity is assigned to each cluster. Constraints
considered in this phase include, maximum forwarding capacity of each net-
working device representing a cluster, the type of each node, and the maximum

geographic proximity of a certain node to be included in a cluster [1].

A topology design phase (Phase-2). The outcome of this phase is a minimum
spanning tree that interconnects the networking devices of all the clusters.
Also, a routing matrix is automatically generated to route packets to minimum
hop count metric. In this phase the designer has also the option of specifying

an upper bound on the utilization of each backbone link [1].

NetMod

A modeling tool called NetMod for the design of campus networks is presented

in [26]. The tool provides analysis of different parameters (such as delay, or traffic
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per link), of Token ring and Ethernet networks. Performance measures such as mean
delay, utilization, and throughput are generated for considered networks. Also, the
tool has two user interfaces: a HyperCAD graphical user interface and a spreadsheet
mathematical user interface based on Microsoft Excel. NetMod decomposes the
entire network into a hierarchy of interrelated submodels. A submodel can be any

of the following:
1. Network Devices such as bridges, routers, hubs, etc.

2. Polling Submodel: This submodel is primarily used for token ring networks.
It can also be used as an approximation for FDDI networks under normal
traffic loads. It uses cyclic server queuing system with non-exhaustive service.
Expressions developed by other research works are used for the calculation of

mean waiting time.

3. Ethernet Submodel: Well known CSMA /CD Ethernet protocol formulae based
on the work of Hammond et al. [27] are utilized in this submodel for the
utilization and throughput calculation. Delay calculation is based on the work

done by Lam [26].

Add-Drop Algorithms

These algorithms are used in mesh topological design of networks. Mesh topologies

can be produced by starting with a topology, usually a feasible topology, and then
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locally modifying it by adding or dropping links. The add or drop procedure is
usually in some sense greedy, maximizing or minimizing some figure of merit [24].
It is possible, for example, to start with a minimal spanning tree with adequate
capacity to carry the entire load at a reasonable level of delay. Then, links are
added to the network in a greedy way (i.e., the links which give the minimum
increase in cost) while still satisfying the requirements on throughput and delay.
Another possibility is to start with a complete graph and then identify a link to
drop. Again, we can choose a link which, for example, gives the highest reduction

in the cost [24].

2.2 Iterative Heuristics

In contrast to constructive techniques, iterative schemes require larger computa-
tional time to generate good network topologies. Iterative techniques start with an
initial solution and repeatedly modify the solution in each iteration until no more
improvement occurs. The modification in solution is intended to reduce the cost
of the solution. Iterative schemes can be further classified on the basis of whether
they can accept bad solutions probabilistically or not. Those iterative algorithms
which allow acceptance of bad moves probabilisficé.lly fall in the sub-categbry of
“stochastic iterative algorithms™. This property is called “hill climbing property”.

It saves algorithms from getting trapped in local minima. However, it is required
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that acceptance of bad moves be controlled to avoid random traversal of search
space. Examples of such probabilistic iterative schemes are simulated annealing
(SA), genetic algorithm (GA), simulated evolution (SE), and tabu search (TS). Of
these schemes, SA and GA have been successfully applied to topology design of

networks. Following is a brief review of these implementations.

Simulated Annealing

Simulated Annealing is a popular combinatorial optimization algorithm proposed by
Kirkpatrick et. al. [8]. It is derived from the analogy of the physical annealing pro-
cess of metals. SA works on a single solution. The neighborhood state of the solution
is generated by randomly selecting modules and interchanging their positions. All
good moves are accepted. However, bad moves are stochastically accepted. The ac-
ceptance probability of bad moves is controlled by a cooling schedule. In early stage
of the search, number of bad moves are accepted with high probability. However,
as search progresses, temperature decreases and so does the probability of accept-
ing bad moves. In the last part of the search, SA behaves as a greedy algorithm,
accepting only good moves. For details of simulated annealing algorithm, interested
readers are referred to [7].

Ersoy et al. [4] have used an approach based on Simulated Annealing (SA) for
topological design of interconnected LAN/MAN networks. The main objective is

to minimize the average network delay. They have considered transparent bridges,
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which are required to form a spanning tree topology. To measure the quality of
solution, they found a lower bound for the average network delay. First, minimal
delay spanning tree networks are identified using SA algorithm. Then, overall back-
bone interconnecting these networks with a minimum delay is constructed. The
topology is modeled by a network of queues. The objective is to optimize the de-
lay of the spanning tree connecting N different LANs with N-1 bridges such that
traffic flow constraints are satisfied. It is noticed here that certain constraints are
not considered, such as cost, and bridge capacities. SA is used again to identify
the minimal delay of the MAN interconnecting the LANs constructed in the first
stage. The objective function is similar to stage one with one additional constraint,
that only one bridge per cluster is allowed. Finally, clusters with a maximum access
time exceeding a certain threshold are revisited. Each cluster with such situation is
allowed to have one more bridge to lower its delay below the access time threshold.
If the cluster maximum access time still exceeds the threshold, another bridge is
added and so on. Simulation showed that the algorithm found optimal solution for
smaller problems. For larger size problems, comparison with lower bound indicated
that the solution found was not very far away from the global optimum.

Fetterolf [6] used simulated annealing to design LAN-WAN computer networks
with transparent bridges. He developed mathematical models of LAN-WAN net-
works and formulated an optimization problem. A simulated annealing algorithm

was proposed which generates sequences of neighboring spanning trees and evalu-
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ates design constraints based on maximum flow, bridge capacity, and end-to-end
delay. As the annealing temperature is lowered the algorithm moves towards the
global optimal solution. Experimental results showed that LAN-WAN designs using

simulated annealing were better than 99.99% of all feasible designs.

Genetic Algorithm

Another powerful and popular optimization algorithm is Genetic Algorithm (GA)
which works by emulating the natural process of evolution as a means of progressing
toward optimum. It was first suggested by Holland [28]. Unlike simulated annealing,
which works repeatedly on single solution, GA works on a set of solutions in parallel.
The set of solutions are known as a population. Each solution is represented by a
string of symbols known as chromosome. Four genetic operators, namely, selection,
crossover, mutation, and inversion are repeatedly applied on a collection of solutions
to generate new offsprings. Extensive literature is available on genetic algorithms
and their use in combinatorial optimization problems. Interested reader is referred
to [7, 9.

Pierre et al. [29] used genetic algorithm to solve the topological design problem
of distributed packet switched networks. The goal was to find a topology that
minimizes the communication costs by taking into account constraints such as delay
and reliability. They conducted experiments to measure the quality and sensitivity

of solutions provided by their algorithm. The results showed that the set of solutions
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obtained at each generation followed a normal distribution, based on Wilk’s test for
normality [29]. Furthermore, other experiments undertaken to study the influence
of probability variations associated with genetic operators showed, that in terms
of network cost, a crossover of 60% generated better solutions in general. They
also observed that the higher the crossover probability, the greater is the dispersion
of results. Also, a high inversion probability seemed less beneficial than a lower
one. This lower probability was in the order of 10%. A comparison of this Genetic
Algorithm was done with Simulated Annealing to evaluate the effectiveness of GA.
In almost all cases, GA led to better solutions than SA, both in terms of network
cost and average delay. GA was also compared to cut-saturation algorithm [30] on
2-connected networks with sizes ranging from 10 to 25 nodes. The costs found by
GA turned out to be better than those obtained with cut-saturation on medium-
size networks. However, GA takes much more time than cut-saturation algorithm
to converge to a good solution.

Dengiz et al. [12][13] used genetic algorithm to optimize a network topology
using the cost and reliability as optimization measures. They called their algorithm
GA with knowledge-based steps (GAKBS). A comparison between GAKBS and a
simple GA (GA which does not include problem-specific structure). It appeared
that GAKBS performed better than simple GA in terms of finding optimal costs.

In [3], Gen et al. used genetic algorithm for topological network design based

on spanning trees. Here, two criteria are optimized: average network message delay,



19

and connecting cost. They have used two main entities which they call service
centers (e.g., a bridge) and nodes (i.e., user) which are connected to service centers.
The constraints they have considered are that the number of nodes connected to a
service center must not exceed the capacity of the center and that the traffic flowing
through a service center must not exceed its traffic capacity. They have used Prufer
number [3] based encoding to represent their solution. Simulation analysis was done
on different test cases and registered Pareto optimal solutions technique was used to
give out the compromise solution and the TOPSIS method (3] was used to determine
the best compromise solution among Pareto solutions.

Elbaum et al. [2] have used GA for designing LANs with the objective of min-
imizing the average network delay. The constraint they considered is that the flow
on any link does not exceed the capacity of that link. The topology design approach
they took includes issues such as determination of the number of segments in the
network, allocating the users to different segments, and determining the intercon-
nections and routing among the segments. They have used Huffman encoding to
represent their solution. Lower bounds on the average network delay have been
developed. Simulation results were obtained for different test cases. The average
network delay of the obtained designs was compared with average network delay
lower bounds. Results suggested that the GA performs well for the test cases con-

sidered.



2.3 Conclusion

In this chapter, literature related to network topology design has been reviewed. The
chapter covers different approaches that have been taken in the network topology

design problems and the objectives they optimize.



Chapter 3

Preliminaries

3.1 Introduction

In this chapter, neccessary problem specific information is included. This infor-
mation is required in order to understand concepts, terminology, and related work
described in subsequent chapters. Section 3.2 gives the assumptions and terminol-
ogy we have adopted. The formal definition of the TDEN problem, along with the
notation, is given in Section 3.3. Section 3.4 describes the objective function for
TDEN problem. In Section 3.5, we describe the objective values computation as
well as the constraints we considered in our research.

This research is based on the use of the simulated evolution algorithm. Thus,
a quick review of this heuristic is given in Section 3.6. A primer on fuzzy logic is

given in Section 3.7. The chapter ends with a conclusion in Section 3.8.
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3.2 Assumptions and Terminology

e A single user (station) is called a “node”.

e A “LAN segment” (or simply a segment) is a part of a cluster and is comprised

of nodes.

e A “cluster” (also called Local Site) is an interconnected collection of LAN

segments.

e The “capacity” of a network device is defined as the number of interfaces it

has.

e The location of a node within a cluster can be represented by its (z,y) coor-

dinates with respect to some reference point.

e A node is either 10/100baseT Ethernet [31, 32, 33] or Token Ring type [31,

32, 33].

e A cluster is either made of 10/100baseT Ethernet segments only or all Token

Ring segments.

e The backbone is assumed to be running on Fast Ethernet using Fiber Optic.
The “root™ node is a collapsed backbone with given Ethernet and Token Ring

interfaces.
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e Within a local site, only Category 5 cable [34, 35| is used, while between two

local sites, only fiber optic cable [34, 35, 31] is used.

e If the distance between two local sites is less than 2 km, multi-mode fiber optic
cable is used. If distance is less than 3 km, a single-mode fiber optic cable is

used [34, 35].

e Class C networks are assumed. Therefore, we limit the number of nodes per

local site to at most 254.

e The number of segments is known a priori and nodes have already been as-

signed to segments.

e Hubs, bridges, routers and other networking devices cannot be placed in any

location. There are designated locations to do so.

3.3 Formal Description and Notation
Topology design of enterprise networks is formally described as follows:

1. Let O be the set of n local sites: O = {01,02,...,0, }.

[NV

. Let L be the set of m backbone links: L ={},b,....,lnr} and | L | = 1("2—'11

3. Let R be the root node.
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S* is the set of p segments associated with local site o; € O: §* = {s},s).....s}},

and let S = {S?,52,...,5%,...,59}. The cardinality of set S%, ie., | S |, is

generally different for each local site o; € O.

F' is the set of w networking devices associated with local site o; € O:
F'o= {f{.f%-fL}, and let F = {F1,F?,__F* _ F"} The cardinality

of set F*, | F*|, is generally different for each local site o; € O.

Q' is the set of klocal site links associated with local site 0; € O: Q' = {q!, ¢5, ...

and let Q = {Q1,Q2,...,Q",...,Q"}. The cardinality of set Q',i.e.,| Qf | = £z=1)

U = [w;] is a n x n traffic matrix where w; represents the traffic from local

site o; to local site o;.

V! = [u;] is 2 w X w traffic matrix where v; represents the traffic from network

device f; to network device f; within local site O'.

A = [a;] is a n x n distance matrix where a;; represents the distance from

local site o; to local site o;.

Let E = [e;;] is a w x w distance matrix where ¢;; represents the distance from

a network device f; to another network device f; within the same local site.

Given the above, a topology has to be designed such that:

n local sites and root R are connected together using links from set L, thus

forming the spanning tree backbone.
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2. m segments of a local site o; are connected to w network devices.

3. w network devices of a local site o; are interconnected.

The objectives to be optimized are monetary cost, network average delay, and
maximum number of hops between any source destination pair, while satisfying

some constraints, which follow in Section 3.5.4.

The notations that has been used is presented below.

n number of clusters.
m number of LAN segments in a cluster.
Tt n x n local site topology matrix where t?; = 1, if local sites i and j are

connected and t*;; = 0 otherwise.

T! w x w within-cluster topology matrix where /;; = 1, if network devices
i and j are connected and t/;; = 0 otherwise.

X® n x1 coordinate vector which gives the = coordinate of each local site
(i.e.,  coordinate of the network device which is connecting the local
site to the backbone).

Yy n x1 coordinate vector which gives the y corrdinate of each local site
(i.e., y coordinate of the network device which is connecting the local

site to the backbone).
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cost of fiber optic cable per unit length.

cost of twisted pair cable per unit length.

cost of a switch.

cost of a router.

cost of a single port of a hub.

traffic within cluster 1.

traffic on link i.

capacity of link 1.

number of links of the proposed topology.
delay due to network devices.

maximum number of cluster which can be connected to cluster :.
external traffic between clusters 7 and j.

overall external traffic.

the forwarding speed of network device k.
number of hops between cluster 7 and cluster j.
the maximum number of ports of a router.
the maximum number of ports of a switch.

the maximum number of ports of a hub.



3.4 Objective Function

As mentioned earlier, topology design of enterprise networks is a hard problem.
There could be several criteria, such as cost, delay, throughput, utilization, number
of hops etc., which could be optimized. In this research, the criteria in the objec-
tive function are: monetary cost, maximum number of hops between any source-

destination pair, and average network delay.

3.5 Computation of Objective Values

3.5.1 Monetary cost

The goal of monetary cost optimization is to find the topology with minimum pos-
sible cost, while meeting all £he requirements and constraints. There are several
factors that govern the cost of the network. This includes costs of cabling, routers,
switches, hubs, etc. To further categorize, there are several categories of the same
tvpe of cables, where each category is suitable for a certain kind of application.
Similarly, network devices are also available with many different combinations of
technologies and ports, which change their cost drastically. Thus, the function for
monetary cost has been devised considering these facts. Before proceeding further,
it is important to mention that, as indicated earlier, we have to design topology at

two levels: backbone level, and local site level. Since the cost of the cable and the
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cost of the network devices are the two main entities affecting the monetary cost,

our function for monetary cost can mathematically be defined as:

cost = (s X ccable) + (Cnd) (31)

where s represents the total length of cable, c.one represents the cost per unit of the
cable used (whether fiber optic or twisted pair), and c,q represents the combined
costs of all the routers, switches, and hubs used. This function is used for calculating
the monetary cost of the backbone topology design as well as local site topology

design.

3.5.2 Average network delay

Another important criterion 1;.0 consider is the average network delay per packet.
The goal, of course, is to minimize the delay as much as possible, while considering
the constraints and requirements. A high network average delay would show that
there is a very high link utilization and load has built up on network devices. A
low average network delay would mean a faster travel of information, thus a good
quality of service to users.

To devise a suitable function for average network delay, we proceed as follows:
We use an M/M/1 model to describe the behavior of a link and network device. For

M/M/1 model, the average delay of the next packet sent over link i is expected to



be [2]:

1

b = uCi — A;

(3.2)

where C; is the capacity of link 1, % is the average packet size in bits, and A;
is the average number of packets that traverse link 2 for given topology. The delay
per bit due to network device between local site ¢ and jis B;; = ub;;, where b;; is
the delay per packet. If -y,; is the total traffic through the network device between
local sites ¢ and 7, then the average delay due to all network devices is:

Dni = ¥4 Bij (3.3)

d
= 1

d

1
o=t

1;
Given the above definitions, we conclude that the total average network delay
is composed of delays of links and network devices. The average network delay D is

therefore {2]

m Ai 1 n n
> by —+=2>_ 2 7By (3.4)

1
Yot Amazi — A Y DT =t

3.5.3 Maximum number of hops

The maximum number of hops between any source destination pair is found through
a subroutine in the program. The subroutine starts from one node and keeps count-

ing the number of nodes until it reaches the destination node.
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3.5.4 Constraints

Four important constraints are used in this research. These are explained below.

1.

N

The first set of constraints is due to the limitation of the capacity of the
links. A good network would be one in which links are “reasonably™ utilized,
otherwise this would cause delays, congestion, and packet loss. Thus the traffic

flow on any link 7 must never exceed a threshold value:

Ai < Amazi 1=1,2,....€ (3.5)

The second constraint is that the number of clusters attached to a network
device G must not be more than the port capacity of that device. Mathemat-

ically, we can represent this constraint as:

Sth<g i=12..n Vi # j (3.6)

The third possible constraint is that the designer might like to enforce certain
hierarchies on the network devices. For example, he might not allow a hub
to be the parent of a router or a switch to be the parent of a router. This

constraint is dependent on the choice of the designer.
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4. The last constraint is that the total number of links must be equal to one
less than the number of local sites (if we are dealing at the backbone level) to
maintain a spanning tree topology. Thus this constraint can be represented

mathematically as:

L=6-1 (3.7)

where 6 represents n at backbone level and w at the local site level.

3.6 Simulated Evolution

Simulated Evolution (SE) is a general iterative heuristic proposed in [16]. It falls
in the category of algorithms which emphasize the behavioral link between parents
and offspring, or between reproductive populations, rather than the genetic link [15].
This scheme combines iterative improvement and constructive perturbation and
saves itself from getting trapped in local minima by using stochastic approach. It
iteratively operates a sequence of evaluation, selection and allocation (perturbation)
on one solution. Using a time homogeneous irreducible Markov chain formulation,
Kling and Banerjee [19] showed that SE algorithm converges in the limit to a global
minimum with probability one.

In this section we will review simulated evolution (SE) algorithm in detail, as

given in [20].



Description of SE Algorithm

Simulated Evolution is a general heuristic for solving a variety of combinatorial
optimization problems. The SE proceeds as follows. It starts with a randomly
or constructively generated valid initial solution. The main loop of the algorithm
consists of three steps: evaluation, selection and allocation. These steps are
carried out repetitively in a main loop until some stopping condition is satisfied.
Other than these three steps, some input parameters for the algorithm are initialized
in an earlier step known as initialization. Following is the description of these

procedures. The pseudo code of the algorithm is given in Figure 3.1.

Initialization

Initialization step is carried out only once. It conmsists of selecting a starting valid
solution for the problem under consideration. This solution can be generated ran-
domly or the output of any constructive heuristic. The other important parameters
which are initialized in this step are a stopping condition and selection bias (B).
Different stopping conditions can be used. For example, the stopping condition can
be a fixed number of iterations of the main loop or a function of improvement in the
solution cost. Selection bias is used to compensate errors made in the estimation
of the optimum cost used in the computation of goodness (see the evaluation stage
below). The selection bias controls the magnitude of the perturbation of current

solution. It effects the overall execution speed of the algorithm and the quality of



Simulated_Evolution(B, ®;pnitiat, StoppingCondition)

NOTATION
B= Bias Value. ®d= Complete Solution.
e;= Individual link in ®. O;= Lower bound on cost of 7** link.

C;= Current cost of i*" link in ®. g;= Goodness of i** link in &.

S= Queue to store the selected links.

ALLOCATE(e;, ®;)=Function to allocate e; in partial solution ®;
Repeat

EVALUATION: ForEach e; € @ DO

begin
gi = %‘
end
SELECTION: ForEach ¢; € DO
begin

IF Random > Min(g; + B,1)
THEN  begin
S =S U e;; Removee; from @.
end
end
Sort the elements of S
ALLOCATION: ForEache; € S DO
begin
ALLOCATE(e;, ®;)
end

Until Stopping Condition is satisfied

Return Best solution.
(Simulated_Evolution)

Figure 3.1: Structure of the simulated evolution algorithm.
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the final solution. A carefully selected value of the bias results in a good quality

solution.

Evaluation

In this step, each individual member of the solution is evaluated on the basis of
problem constraints and objectives. This evaluation is represented by the goodness
for each element of the current solution. The goodness of an element of the design
is defined as follows.

0

gi=— (3.8)

a;
where o; is the optimum value of the cost of element 7 and a; is the actual cost
estimate for this element in the current design. The goodness represents a measure
of how near each element is to its optimum position. As is obvious from Equation 3.8,
the goodness of an element is between 0 and 1. A value of goodness near 1 means

that element 7 is near its optimum location.

Selection

The goodness is used to probabilistically select elements in the selection step. Ele-
ments with low goodness have a higher probability of getting selected for reposition.
Selection bias (B) is used to compensate errors made in estimation of the optimum
cost. Its objective is to inflate or deflate the goodness of elements. A high positive

value of bias decreases the probability of selection or vice versa. A carefully tuned
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bias value results in good solution quality and reduced execution time [19]. The
selection step results in a partial solution of only unselected elements, while selected

elements are saved in a queue for allocation.

Allocation

The purpose of the allocation is to perturb the current solution in such a way that
better links are selected to form the topology. The allocation function affects the
quality of solution as well as convergence of the search. Different constructive allo-
cation schemes are proposed in [20]. One such scheme is sorted individual best
fit. where all the selected elements are sorted in descending order in a queue with
respect to desired criteria. The sorted elements are removed one at a time and trial
moves are carried out for all the available empty positions. The element is finally
placed in a position where maximum reduction in cost for the partial solution is
achieved. This process is continued until the selected queue is empty. The overall
complexity of this algorithm is O(s2) where s is the number of selected elements.
Other more elaborate allocation schemes are weighted bipartite matching allo-
cation and branch-and-bound search allocation [20]. However, these schemes
are more complex allocation strategies than “sorted individual best fit”, but result

in comparable solution quality [20].
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3.7 Fuzzy Logic

3.7.1 Fuzzy Set Theory (FST)

A crisp set is normally defined as a collection of elements or objects £ € X that can
be finite, countable or uncountable. Each single element can either belong to a set
or not. However, in real life situations objects do not have crisp [1 or 0] membership
criteria. Fuzzy Set Theory (FST) aims to represent vague information, like ‘low
load’, ‘high load’, or ‘low latency’, etc., which are difficult to be represented in clas-
sical(crisp) set theory. A fuzzy set is characterized by a membership function which
provides a measure of the degree of presence for every element of the set [36, 37]. A
fuzzy set A of a universe of discourse X is defined as 4 = {(z, ua(x))| all z € X}.
where p4(z) is a membership function of z € X being an element in A. Figure 3.2
shows one example of a membership function.

Like crisp sets, set operations such as union, intersection. and complementation
etc., are also defined on fuzzy sets. There are many operators for fuzzy union and
fuzzy intersection. For fuzzy union, the operators are known as s-norm operators
(denoted as €). While fuzzy intersection operators are known as t-norm (denoted
as *). Some examples of s-norm operators are given below, (where A and B are

fuzzy sets of universe of discourse X) [36].

1. Maximum. [#AUB(I) = max[p4(x), pp(z)]].



degree of membership
1.0

o5 _ [ _____ (x g, Hp (X))

Universe of discourse X

Figure 3.2: Membership function for a fuzzy set A.

N

. Algebraic sum. [pyj5(z) = pa(z) + pa(z) — pa(z)us(z) |-
3. Bounded sum. | ,uAUB(@ = min(1, pa(z) + pp(r))].

4. Drastic sum. [ payp(z) = wa(z) if pp(z) = 0, pp(z) if pa(z) = 0, 1 if
ra(z), ps(z) > 0].

An s-norm operator satisfies commutativity, monotonicity, associativity and x4 Uo = Ha

properties. Following are some examples of fuzzy intersection operators known as

t-norm.
1. Minimum. [, p(z) = minfpa(z), us(2)]]-
2. Algebraic product. [y p(z) = pa(z)ps(z) |-
3. Bounded product. [ pyn p(z) = max(0, pa(z) + ps(z) - 1)].
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4. Drastic product. [ pAnB(x) = pa(z) if pup(r) = 1, pp(z) if pa(z) = 1. 0 if

pa(z), pp(z) < 1].

Like s-norms, t-norms also satisfy commutativity, monotonicity, associativity and
a1 = Ha properties. Additionally, the membership function for fuzzy comple-

mentation operator is defined as.
pg(z) =1 - up(z)

Ordered Weighted Averaging Operator

Generally, formulation of multi criteria decision functions do not desire pure “and-
ing” of t-norm nor the pure “oring” of s-norm. The reason for this is the complete
lack of compensation of t-norm for any partial fulfillment and complete submis-
sion of s-norm to fulfillment of any criteria. Also the indifference to the individual
criteria of each of these two forms of operators led to the development of Ordered
Weighted Averaging (OWA) operators [38]. This operator allows easy adjustment of
the degree of “anding” and “oring” embedded in the aggregation. According to [38],
“orlike” and “andlike”™ OWA for two fuzzy sets 4 and B are implemented as given

in Equations 3.9 and 3.10 respectively.

kU a(z) = 8 X max(ua, pg) + (1 = 8) X 5(ua +15) (3.9)
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rane(z) =B x min(ua, up) + (1 — 8) x %(ﬁu + ¢5) (3.10)

3 is a constant parameter in the range [0,1]. It represents the degree to which OWA

operator resembles a pure “or” or pure “and” respectively.

3.7.2 Fuzzy Reasoning

Fuzzy Logic is a mathematical discipline invented to express human reasoning in
rigorous mathematical notation. Unlike classical reasoning in which a proposition
is either true or false, fuzzy logic establishes approximate truth value of proposition
based on linguistic variables and inference rules. A linguistic variable is a variable
whose values are words or sentences in natural or artificial language [39]. By using
hedges like ‘more’, ‘many’, ‘few’ etc., and connectors like AND, OR, and NOT with
linguistic variables, an expert can form rules, which will govern the approximate

reasoning.

3.7.3 Linguistic Variable

As defined in [40], a linguistic variable is a variable whose values are words or
sentences in a natural or artificial language. A linguistic variable is characterized

by a quintuple (2, T(2), X, G, N), detailed as follows:
1. Q is the name of the linguistic variable;

2. T(R2) is the term-set of €2, i.e., the collection of its linguistic values;
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3. X is a universe of discourse;
4. G is a syntactic rule which generates the terms in T(2); and

5. N is a semantic rule which associates with each linguistic value its meaning.

N(w) denotes a fuzzy subset of X for each w € T(Q2). Let us take an example
to clarify the meaning of a linguistic variable. Let X be the universe of network
average delay, A be the fuzzy subset network average delay near 0.05 seconds, and
pa(.) be the membership function for A. In this example, network average delay
is a linguistic variable (Q=network average delay). The linguistic values of network
average delay can be defined as T(2)= (very small delay, small delay, delay near
0.05 seconds, large delay, little large delay). Each linguistic value is characterized
by a membership function which associates a meaning to that value. The universe
of discourse X is a possible range of network average delay for some designs. N(w)
defines a fuzzy set for each linguistic value w € T(?). The term-set of a linguistic

variable is the collection of all its linguistic values.

3.7.4 Fuzzy Rules

One of the major components of a fuzzy logic system are Rules. The rules are
expressed as logical implications. Fuzzy logic rules are “if-then ” rules and define
relations between linguistic values of outcome (then-part, i.e., consequent) and lin-

guistic values of condition (if-part, i.e., a ntecedent) [41]. They are expressed as:
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IF v is Fy! and w is F)! and ... u, is F,] THEN vis G

where I=1, 2, ..., M.

F! and G' are fuzzy sets. For example:

If the monetary cost is low and mazimum number of hops are low and network
average delay is low Then the solution is good.

Here ﬁonetam cost, marimum number of hops, network average delay, and
solution are linguistic variables and low and good are linguistic values.

Rules are a form of propositions. A proposition is an ordinary statement involv-
ing terms which have been defined. In traditional propositional logic, an implication

is said to be true if one of the following holds:
e antecedent is true, consequent is true,
e antecedent is false, consequent is false, and

e antecedent is false, consequent is true.

Rules may be provided by experts or can be extracted from numerical data. In
either case, engineering rules are expressed as a collection of IF-THEN statements.

Basically, building a rule needs the understanding of{41]:

. linguistic variables versus numerical values of a variable;

—

N

. quantifying linguistic variables by using fuzzy membership functions.

3. logical connections for linguistic variables;



4. implications, i.e., “IF A THEN B";

5. additionally, combination of more than one rule.

3.7.5 Fuzzy Logic System (FLS)

A Fuzzy logic system (FLS) [36], shown in Figure 3.3, is a model of fuzzy based
decision making in engineering applications. It accepts crisp data as input and
converts it into fuzzy input sets through fuzzifier block. This is needed in order
to activate rules which are expressed in terms of linguistic variables. The decision
making is carried out in the inference engine, which is governed by the rules. The
output of the decision making is fuzzy sets. If an application requires crisp output
data then FLS contains a defuzzifier module to convert fuzzy output to crisp values.
Generally, optimization applicétions do not require crisp output, therefore defuzzifier

module is not used.

Fuzzy Logic System

Fuzzy
.- Ouput Sets

§
|

Figure 3.3: Fuzzy logic system.
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3.8 Conclusion

In this chapter we have seen background material for subsequent chapters. We have
defined the topology design of enterprise network (TDEN) problem and reviewed the
cost functions with respect to monetary cost, average network delay, and maximum
number of hops between a source-destination pair. The given inputs, assumptions,
terminology, and constraints have also been mentioned. We have also reviewed the
simulated evolution heuristic and fuzzy logic. This heuristic is a powerful stochastic
iterative heuristic for general combinatorial optimization problems. It is based on
the analogy between evolutionary processes and optimization. Underlying principle
of this heuristic is that evolutionary system be subjected to the evaluation process
such that it stochastically discards inferior parts and retains superior parts of the
system. The constructive pert}urbation in allocation stage ensures that the algorithm
will converge to a suboptimal solution. On the other hand, fuzzy logic provides a

convenient algebra of combining conflicting objectives and expert human knowledge.



Chapter 4

Fuzzy Logic Based Simulated

Evolution Algorithm for Network

Topology Design

4.1 Introduction

In Chapter 2, we reviewed different literature with respect to iterative heuristics.
which included genetic algorithm, and simulated annealing, as applied to topology
design problem. Most of these included delay, or the cost, or both, for optimization.
There are some other measures, such as maximum number of hops, which is also
an important objective to optimize. All these criteria together make the topology

design problem a multiobjective optmization problem. Thus, in our scheme, we

44
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optimize three cost parameters of the topology: monetary cost, average network
delay, and maximum number of hops between any source destination pair.

When dealing with conflicting objectives, the concept of optimum is not clear.
Further, it is not clear how one can precisely compare two competing topologies
when one topology is not better across all three criteria. Let C;, D;, and H; be the
monetary cost, delay, and maximum hops of a topology solution S; . A solution S;
is said to dominate a solution S;, denoted as S; < S; iff

C:< G
D; < D;
H; < H;

Obviously if S; < §;, then S; is a better solution than S;, and the solution
that dominates all other solutions is the best solution. Unfortunately the relation
< does not define a partial order on all possible solutions, i.e., there are numerous
cases where two solutions only partially dominate each other with respect to one or
two of the objective criteria. To deal with this problem, researchers traditionally

adopted one of the following two approaches:

1. Ranking, where individual objectives are ranked against each other. For ex-
ample cost would be number 1 objective, then delay, then maximum hops.

Then a solution S; is better than §; if

C; < Cj,or
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(Ci = C; and D; < Dj) or

((Cg= q, and D,"—'—'Dj) and H; <fIJ)

2. Weighted sum approach, where we use a utility function that combines the

indivdual criteria in a weighted sum, that is
f(C,D,H) = WeC+ WpD + WgH

where Wo, Wp, and Wy are the weights associated with cost, delay, and
maximum hops. Usually We+ Wp+ Wg = 1. The problem with this approach
is that it needs a careful tuning with respect to each objective that needs to
be optimized. Furhtermore, the results show good solutions only for the case

on which the tuning has been made.

During the topology design process, some desirable objectives, such as the
delay, can only be imprecisely estimated. Fuzzy logic provides a rigorous algebra
for dealing with imprecise information. Furthermore, it is a convenient method of
combining conflicting objectives and expert human knowledge. From the pseudocode
of the SE algorithm given in Figure 3.1, it is clear that there are two phases of the
algorithm which could be modeled to include multiple objectives. These phases are
evaluation and allocation. We have used fuzzy logic based reasoning in these two
phases. We have used two objectives in the evaluation phase and three objectives
in the allocation phase.

In this chapter, the proposed scheme and implementation details are discussed.
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This chapter is organized as follows. In Section 4.2, proposed schemes and step by
step details of implementation of different stages of the SE algorithm are given. We
first describe the generation of initial solution in Section 4.2.1. Following this, the
proposed fuzzy evaluation scheme is presented in Section 4.2.2. After covering the
selection process in Section 4.2.3, proposed fuzzy allocation scheme is described in
Section 4.2.4. Stopping criteria is discussed in Section 4.3. A conclusion is given in

Section 4.4.

4.2 Proposed Scheme and Implementation De-
tails

This section describes our proposals of fuzzification of different stages of the SE
algorithm. The description is combined with the implementation details of the SE

algorithm for topology design.

4.2.1 Initialization

The initial topology, which is a spanning tree, is generated randomly, while taking
into account the constraints mentioned in Chapter 3. Thus the initial solution is a
valid solution. The initialization step works in the following manner. We start from
the root node. Then, another node, say X is selected randomly and is trial connected

to the root. If this connection does not violate any constraint, the link joining them
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is made permanent, otherwise another node is selected randomly. Once this is done.
a new node is randomly chosen, and can be tried to be connected either to the root,
or to node X, which is also done randomly, while checking the feasibility constraints.
This procedure is repeated until all the nodes are connected and a complete topology
is formed. Note that only one link at a time is connected.

Some parameters are also initialized in this phase. These include the maximum
number of iterations for which the algorithm has to be run, and the selection bias

B. Selection bias B and its effect are discussed in Section 4.2.3.

4.2.2 Proposed Fuzzy Evaluation Scheme

The goodness of each individual is computed as follows. In our case, an individual
is a link which interconnects two local sites (at the backbone level) or two network
devices (at the local site level). In the fuzzy evaluation scheme, satisfaction of
optimum monetary cost of a link and optimum depth of a link (with respect to
the root) are combined using fuzzy logic. The following rule and the subsequent

equation are used for this purpose.

Rule 4.1: IF a link is near optimum cost AND near optimum depth

THEN it has high goodness.

2
g = 4(z) = a* x min(ui(), g5(@)) + (1 — o) x 3 S pi@)  (41)

=1
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The superscript e stands for evaluation and is used to distinguish similar no-
tation in other fuzzy rules. In equation 4.1, u°(z) is the fuzzy set of high goodness, g,
is goodness value, and a® is a constant. The uf(z) and u5(z) represent memberships
in the fuzzy sets near optimum monetary cost and near optimum depth.

In order to find the membership of a link with respect to near optimum mon-
etary cost, we proceed in following manner. From the cost matrix, which gives the
costs of each and every link possible, we find the minimum cost of all the costs and
maximum cost of all the costs. We take these minimum and maximum costs as the
lower and upper bounds and call them “LCostMin” and “LCostMax” respectively
and then find the membership of a link with respect to these bounds. Furthermore.
In this work, we have normalized the monetary cost with respect to “LCostMax™ as

follows:

: LCost LCostMin
1 if LCostMaz S LCostMaz
) = ¢ LCostMaz—LCost ¢ LCostMin LCost 4.2
'ul( ) LCostMar—LCostMin if LCostMazx S LCostMazx -<— 1 ( )
: LCost
0 if LCostMazx 2 1

.

In the same manner, we can find the membership of a link with respect to near
optimum depth. The lower limit, which we call “LDepthMin” is taken to be a depth
of 1 with respect to the root. This is logical to take as the lower bound since there
can be no link which is connected to the root at a depth of zero. This is clarified

in Figure 4.1. The upper bound, which we call “LDepthMax” is taken to be 1.5
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times of the maximum depth generated in the initial solution or a maximum of 7.
For example, if in the initial solution, the maximum depth turns out to be 4, then
“LDepthMax” for the depth membership function would be 6. This is done to give
flexibility to links which may have more depth than the one in the initial solution, to
show that they are also important to be considered, to some extent. If we take the
initial solution maximum depth as “LDepthMax”, then in the following iterations
some links with higher depths will have a membership value of zero (with respect
to depth membership function, of course) and thus they will not be able to play
any role as far as depth is concerned. However, due to technological limitations,
we have limited the maximum possible depth to 7, in the case when “LDepthMax”
turns out to be more than 4. The reason for having the maximum depth of 7 is that
the hop limit for RIP protocol is 15. This means that if a maximum depth of 7 is
taken. then in the worst case we would have a total of 14 hops from a source to a
destination. The membership function with respect to near optimum depth can be

represented mathematically as follows:

1 if LDepth < LDepthMin

poz) = | LDepthMas—LDepth if LDepthMin < LDepth < LDepthMaz (4-3)

0 if LDepthMaz < LDepth

\
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Figure 4.1: Depths of links with respect to the root.

The membership functions in graphical form for near optimum monetary cost

and near optimum depth are given in Figures 4.2 and 4.3 respectively.

4.2.3 Selection

In this stage of the algorithm, for each link !;, where i = 1.2,....(n-1) currently
present in the topology (at the backbone level) a random number in the range
[0.1] is generated and compared with g, + B, where B is the selection bias. If
the generated random number is greater than g, + B then link !; is selected for
allocation and considered removed from the topology. Thus the selection bias B is
initially fixed so as to secure a selection set of a reasonable size.

In addition to the above approach, another bias methodology called variable
bias has also been tried. This approach was suggested by Hussain et. al. [21]. The
variable bias is a function of quality of solution. Average link goodness is 2 measure

of how many “good” links are present in the topology. The bias value changes
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Figure 4.2: Membership function for monetary cost of a link.
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Figure 4.3: Membership function for depth of a link.
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from iteration to iteration depending on the quality of solution. The wvariable bias
is calculated as follows:
By, =1- Gx—;
where B; is the bias for k* iteration and Gi_; is average goodness of all the

links at the end of (k — 1)* iteration. Interested readers are referred to [21].

4.2.4 Proposed Fuzzy Allocation Scheme

During the allocation stage of the algorithm, the selected links are removed from
the topology one at a time. For each removed link, new links are tried in such a
way that they result in overall better solution. Before the allocation step starts, the
selected links are sorted according to their goodness values, the link with the worst
goodness being the head-of-line in the queue.

In earlier chapters we mentioned that there are three criteria to be optimized
with respect to the overall solution. These criteria are monetary cost, average net-
work delay, and mazimum number of hops between a source-destination pair. In the
fuzzy allocation scheme, these criteria are combined using fuzzy logic to characterize
a good topology, as depicted in Figure 4.4.

The following rule and the subsequent equation are used for this purpose.

Rule 4.2: IF a solution has low monetary cost AND low average network delay

AND low mazimum number of hops between any source-destination pair



Good Topology
Low maximum Low average
Low éﬂ:sft'efafy number of hops network delay
between s-d pair

Figure 4.4: Basic components for a good topology.
THEN it is a good topology.

3
1(x) = 5% x min(ui(e), p(e), (@) + (1 = B x S pz)  (49)

i=1

where u%(z) is the membership value for solution zin the fuzzy set good topology

and 3° is a constant in the range [0,1]. The superscript a stands for allocation. Here,
p;® for 7 = {1,2,3} represents the membership values of solution z in the fuzzy sets
low monetary cost, low average network delay, and low mazimum number of hops
between any source-destination pair respectively. The solution which results in the
maximum value for Equation 4.4 is reported as the best solution found by the SE
algorithm. Below we will see how to get the membership functions for the three

criteria mentioned above.



Membership Function for Monetary Cost

First, we detenﬁine two extreme values for monetary cost, i.e., the minimum and
maximum values. The minimum value, “TCostMin”, is found by using the Esau-
Williams algorithm, with all the constraints completely relaxed. This will surely
give us the minimum possible monetary cost of the topology. The maximum value
of monetary cost,“TCostMax”, is taken to be the monetary cost generated in the
initialization step. The monetary cost is normalized with respect to “TCostMax”.
The shape of the membership function is shown in Figure 4.5. The membership

value for the normalized monetary cost is then computed using Equation 4.5.

w4
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Figure 4.53: Membership function for monetary cost.



1 if TCost TCostMin
TCostMaz — TCostMaz
T) = { TCostMar—TCost ;¢ TCostMin TCost 4.5
#1( ) TCostMar—TCostMin if TCostMaxr — TCostMazx -<- 1 ( )
: TCost
. 0 if TCostMazx Z 1

Membership Function For Average Network Delay

We determine two extreme values for average network delay. The minimum value,
“TDelayMin”, is found by connecting all the nodes to the root directly ignoring all
the constraints and then calculating the average network delay using Equation 3.4.
The maximum value of average delay, “TDelayMax”, is taken to be the average delay
generated in the initialization step. The average delay is normalized with respect to
“TDelayMax”. The shape of the membership function is shown in Figure 4.6. The

membership value for the normalized average delay is computed using Equation 4.6

¢
: T Delay TDelayMin
1 if TDelayMaz S TDelayMazx
/l‘)(l') = TDelayMaz—T Delay if IDelayMin . _TDelay | (46)
= TDelayMaz~T DelayMin TDelayMar — TDelayMaz —
: T Delay
L 0 if TDelayMaz 2 1

Membership Function For Maximum Number of Hops Be-
tween any Source-Destination Pair

Again, two extreme values are determined. The minimum value, “THopsMin”, is

taken to be 1 hop, which will be the minimum possible in any case. The maximum
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Figure 4.6: Membership function for average network delay.

value,“THopsMax", is taken to be the maximum number of hops between any source-
destination pair generated in the initialization step. The shape of the membership
function is shown in Figure 4.7. The membership value for the normalized average

delay is computed using Equation 4.7

1 if THops < THopsMin

us(z) = | grllemeMes_Thops if THopsMin < THops < THopsMaz — (47)

0 if THopsMazx < THops

.

In the proposed allocation scheme, all the selected links are removed one at a

time and trial links are placed for each removed link. We start with the head-of-line
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Figure 4.7: Membership function for maximum number of hops between a source-
destination pair.

link, i.e. the link with the worst goodness. We remove this link from the topology.
This divides the topology into two disjoint topologies, as depicted in Figure 4.8.
Now the placing of trial links begins. In this work, the approach to place trial
links is as follows. At most ten trial moves (i.e., trial links) are evaluated for each
removed link. One point to mention is that for the ten moves, some moves may be
invalid. However, we search for only four valid moves. Whenever four valid moves
are found , we stop, otherwise continue until a total of ten moves are evaluated
(whether valid or not). The removal of a link involves two nodes P and @, of which
node P belongs to the subtree which contains the root node and node @ belongs to
the other subtree, as shown in Figure 4.8. For the ten moves we make, five of them

are controlled and five are random. For the controlled moves, we start with node
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Q and five nearest nodes in the other subtree are tried. For the random moves. we
select any two nodes in the two subtrees and connect them. The process is shown

in Figures 4.9 and 4.10.

Figure 4.9: Controlled moves. The dotted lines show five controlled moves.
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Figure 4.10: Random moves. The dotted lines show five random moves.

It may so happen that all the ten moves are invalid, in which case the orig-
inal link is placed back in its position. The valid moves are evaluated based on
Equation 4.4 and the best move among the ten moves is made permanent. This

procedure is repeated for all the links that are present in the set of selected links.

4.3 Stopping Criterion

In our experiments, we have used a fixed number of iterations as a stopping criterion.
\We experimented with different values of iterations and found that for all the test
cases. the SE algorithm converges within 4000 iterations or less. For smaller graphs.
a major reducticn in fuzzy cost occurs in the first 2000 iterations. while for bigger

circuits, major reduction in fuzzy cost occurs in the first 2500 iterations.
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4.4 Conclusion

The topology design of enterprise network is a hard and ill-defined problem with
many conflicting objectives. In order to identify the best solution generated by the
SE algorithm, we proposed fuzzification of evaluation and allocation stages of the
simulated evolution algorithm. The proposed fuzzy evaluation scheme uses cost and
depth of a link for the goodness computation. It combines three objectives, which
are cost, average delay, and maximum number of hops between a source-destination
pair, and optimizes these three objectives through the fuzzy function that combines

them.



Chapter 5

Experiments and Results

5.1 Introduction

In this chapter we will discuss the experiments conducted and the results obtained.

There are three main stages of topology design of enterprise networks. These stages

are

e Stage 1: Assignment of LAN segments to network devices in each local site,

where a local site will make up a single LAN.

e Stage 2: Design of the internal structure of each local site (i.e., in what

topology are the network devices with LAN segments of a local site connected).

e Stage 3: Backbone design, where the local sites are connected to the back-

bone.

62
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To achieve these objectives, we have used

—

. Augmenting Path algorithm for stage 1.

o

. Fuzzy Simulated Evolution algorithm for stage 2, and
3. Fuzzy Simulated Evolution Algorithm for stage 3.

The chapter is organized as follows. We will start with Backbone design
(stage 3) in Section 5.2, and discuss the experiments and results obtained for this
stage. Section 3.3 discusses the results for stage 1. Section 5.4 discusses the experi-

ments and results for stage 2. A conclusion is given in Section 3.3.

5.2 Backbone Design Using Fuzzy Simulated Evo-

lution Algorithm

This section summarizes the expermimental study of variations of SE algorithms

implemented in this work, namely

1. Fuzzy evaluation and fuzzy allocation based simulated evolution algorithm
implementation with fixed bias controlled selection. This implementation is

labelled as SE_FF.

2. Fuzzy evaluation and fuzzy allocation based simulated evolution algorithm

implementation with variable bias controlled selection. This implementation
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is labelled as SE_VB.

3. Fuzzy evaluation and fuzzy allocation based simulated evolution algorithm
implementation where the allocation scheme incorporates Tabu Search char-
acteristics. This implementation has variable bias controlled selection and is

identified as SE_TS.

The characteristics of above listed algorithm variations are summarized in Table
5.1. The parameter values for different stages of the SE algorithm are summarized
in Table 5.2. For example, the values of a® and 3% were chosen after several trials
of combinations of these.

We tested our implementations of the simulated evolution algorithm on five
arbitrary test cases. For each test case, the traffic generated by each local site was
collected from real sites. Other characteristics, such as the number of ports on a
network device, its type, etc., were assumed. However, the costs of the network
devices and links were obtained from vendors. The characteristics of test cases are
listed in Table 5.3. The smallest test network has 15 local sites and the largest has
50 local sites. Also, Table 5.4 lists the characteristics of the equipment used in our
experiments.

Following sets of experiments are carried out.

1. Comparing SE with fixed bias (SE_FF) and variable bias (SE_VB).
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3]

Analyzing the effect of Tabu Search approach based allocation in SE_TS and

understanding the effect of Tabu List size.

3. Comparing SE_FF and SE_TS.

4. Comparing the variation of SE that gives the best results with Esau-Williams

algorithm.

5. Comparing the variation of SE that gives the best results with Simulated

Annealing (SA) algorithm.

| Algorithm Evaluation | Selection Allocation ]

SEFF Fuzzy Fixed bias | Fuzzy

(link cost, depth) (cost, delay, hops)
SE.VB Fuzzy Variable bias Fuzzy

(link cost, depth) (cost, delay, hops)
SE_TS Fuzzy Variable bias Fuzzy

(link cost, depth) (cost, delay, hops)

with tabu search approach

Table 5.1: Classification of our SE implementations.

Stage Parameters
Fuzzy Allocation 3% =0.5
Fuzzy Evaluation at = 0.5
Stopping Condition | Fixed 4000 iterations
Initial Solution Random
Bias (B) Fixed, Variable

Table 5.2: Parameter values for different stages of the SE algorithm.
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Name | # of Local Sites | LCostMin | LCostMax | TCostMin | TDelayMin | Lraffic
nld 15 1100 9400 325400 2.14296 24.63
n25 25 330 8655 469790 2.15059 74.12
n33 33 600 10925 624180 2.15444 117.81
n40 40 600 11560 754445 2.08757 144.76
n30 30 600 13840 928105 2.08965 164.12

Table 5.3: Characteristics of test cases used in our experiments. LCostMin, LCost-
Max. and TCostMin are in US$. TDelayMin is in milliseconds. Traffic is in Mbps.

Parameter Characteristic
Cost of backbone switch with FO interface (8 ports) $ 30000
Cost of router with FO/TP interface(4 ports) $ 20000
Cost of switch with FO/TP interface(8 ports) $ 15000
Cost of hub or MAU with FO/TP interface(12 ports) $ 5000

Cost of fiber optic cable

$ 5 per meter

Cost of Category 5 UTP

$ 0.5 per meter

Delay per bit due to forwarding device 230usec.
Maximum traffic on a link allowed 60 %
Average packet size 300 bytes

Table 5.4: Equipment parameters and their characteristics assumed in our experi-

ments.




5.2.1 Comparison of SE_FF and SE_VB

In the original Simulated Evolution algorithm for VLSI Placement, Kling and Baner-
jee proposed the use of fixed selection bias [20]. The selection bias provides a
mechanism of compensating any errors made in the estimation of the optimum cost
used in the computation of goodness. Furthermore, it is used to limit the size of the
selection set, i.e., controlling the magnitude of the perturbation of current solution.
In case of a fixed bias, the user provides the bias value before the execution of the
algorithm. The bias affects the execution time as well as the quality of solution. A
low bias value takes more execution time than a high bias value [19]. It also poses
one question. How to find the most suitable bias value in advance, which results in
best solution quality and minimum execution time? One solution to this problem is
to do several trial runs of the algorithm with different bias values. However, these
trial runs will result in finding the best bias values for only that instance of the
problem. As the problem changes, or even instance of problem changes, another set
of trial runs are required to find the best bias value. Therefore, it cannot be used
as a general rule for any set of problems. Furthermore, it also causes excessive exe-
cution time for all the trial runs. In order to overcome these issues, Hussain et. al.
[21] proposed the wariable bias scheme which we have recalled in Section 4.2.3.
Table 3.5 shows the best solution achieved with different bias values for SE_FF

for our test cases. It is noticeable that the bias value that gives the best results
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varies from case to case. For example, for n15, a bias value of 0.2 seems to give the
best results considering all the three objectives. Similarly, a bias value of 0.2 for
n23, a bias value of 0.0 for n33, and a bias value of 0.3 for n40 and n30 appear to
give the best results. It is also clear that as the bias value increases, the execution
time decreases. It is due to the fact that by increasing the bias value, fewer links are
selected resulting in less amount of time spent in trial placing of links carried out
in the allocation stage of the algorithm. This is also supported by Figure 5.1. In
this figure, the cardinality of selection set (for n50) is shown against the frequency
of solutions generated by SE_FF for different bias values. For low bias values like
0.0 and 0.1, more solutions have large selection sets, while for higher bias values like
0.3. the frequency of solutions with smaller selection sets increases.

The effect of bias on the quality of final solution can be described as follows.
When we have a verv low bias value, a large number of links are selected in each
iteration. This will decrease the algorithm’s ability to replace links optimally due
to uncertainty about unconnected links. It will also increase the execution time of
the algorithm. In contrast, when bias is very high, algorithm’s ability to get out
of local minima is restricted because “badly placed” links have reduced chances of
selection. Thus the size of the selection set. execution time as well as the quality of
solution space reached are reduced [19).

The results in Table 5.5 point to the fact that proper bias value is highly

dependent on the test case under consideration. It also endorses a fact mentioned
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Test Case | Bias | Monetary Cost | Avg. Delay | Max. Hops | Exec. Time
0.0 310350 5.25 4 5
0.1 301300 3.208 6 5
nl5 0.2 314400 3.282 E 4
0.3 311700 3.658 6 3
0.4 300750 3.899 8 3
0.0 494775 4.277 10 15
0.1 507225 4.298 7 9
n25 0.2 509050 4.26 7 3
0.3 517505 4.48 7 4.8
0.4 520110 4.953 8 47
0.0 687760 4.729 8 40
0.1 682435 4.989 9 16
n33 0.2 663145 6.121 12 15
0.3 697310 17.057 7 6.5
0.4 691180 6.718 9 6
0.0 813520 9.725 14 124
0.1 871215 1.696 9 65
n40 0.2 859720 5.418 9 22
0.3 866900 4.126 8 12
0.4 | 874325 5.936 9 9
0.0 [ 989655 7.526 12 256
0.1 1071700 5.689 11 120
n50 0.2 1080340 6.83 9 34
0.3 1061900 5.32 9 8
0.4 1087390 5.629 8 6

Table 5.5: Best solution for different bias values. Monetary cost is in US $, delay is
in milli seconds per packet, and execution time is in minutes.
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Figure 5.1: Caridinality of selection set for different bias values for test case n30.
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earlier that it is not practical for the user to determine the best bias value in advance
by carrving out several runs of the algorithm. The results of Table 5.5 confirm this
assumption. For example, the best bias values for n25 and n40 are 0.2 and 0.3
respectively.

The variable bias (discussed in Section 4.2.4) was reported to have the following

advantages:

1. Bias value is not arbitrarily selected and no trial runs are required to find
the best bias value. The variable bias automatically adjusts according to the

problem state.

N

For bad quality solutions, the average goodness is low, resulting in a high bias
value. This will make sure that the size of selection set is not excessively large.

It will save the algorithm from making big moves.

3. For good quality solutions, the average link goodness is high. Therefore. a low
bias value is used. It will result in the selection of sufficient number of links

and protect the algorithm from early convergence.

Table 5.6 compares the best solutions generated by best fixed bias SE_FF and
SE_\'B. The results for best fixed bias SE_FF are reproduced here for comparison
purpose. It is clear from the table that, in general, SE_VB produces comparable
results with SE_FF as far as “monetary cost” objective is concerned. For example,

SE_VB produces a result 2.83 % better when compared with SE_FF in the case of
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nl15, while a result of 2.09 % inferior than SE_FF is attained with n33. The only
exception where SE_VB gives a slightly significant improvement is with n40 where
a gain of 7.65 % is achieved compared with SE_FF.

As far as the “average network delay” and “maximum hops” objectives are
concerned, a general trend is that SE_FF performs better than SE_VB. For example,
in case of n15, SE_.VB produces a solution of 25.99 % and 40 % inferior than
SE_FF with respect to average network delay and maximum hops respectively. One
deviation from this trend is seen in n33, where a gain of 12.5 % is achieved by SE_VB
with respect to maximum hops. Another trend is that as the test case size increases,
the performance of SE_VB deteriorates with respect to the average network delay.

Table 5.6 also gives the execution times for SE_FF and SE_VB. From this table
it is clear that for small and medium size test cases (such as n15, n25, and n33),
SE_VB has lower execution time than best fixed bias SE_FF, while for bigger cases
(n40 and n50), SE_VB has higher execution time than SE_FF. However, if we
consider the time spent in trial runs of the SE_FF algorithm to find the best fixed
bias, then SE_VB can be considered better than the fixed bias SE_FF. There were
at least 3 trial runs with different bias values to identifv the best value for each test
case. The other advantage of SE_VB is that there is no need to run several trials.

In order to compare the quality of search space of best fixed bias SE_FF and
SE_VB, we plot different cost parameters versus iteration count of the algorithms for

the test case n33 (bias=0.0). Figure 5.2(a) and (b) respectively depicts the current



Case "SEFF SE_VB % Gain

B] C [T D [H[T| € T D HJ]T C | D | H | T
nl5 |02 ] 314400 | 3.282 | 5| 4 | 305500 [ 4.135 | 7 | 1 | 2.83 | -25.99 | -40 75
n25 |02 | 509050 | 426 | 7| 5 | 512415 | 437 | 7 | 4.4 | -0.657 | -2.51 0 12
n33 | 0.0 | 687760 | 4.729 | 8 | 40 | 702815 | 5.319 | 7 | 17 | -2.19 | -12.48 | 125 | 57.5
n40 | 0.3 | 866900 | 4.126 | 8 | 12 | 800580 | 6.637 | 10 | 42 | 7.65 | -60.85 | 25 | -71.4
n50 | 0.3 | 1061900 | 5.32 | 9 | 8 | 1042080 | 8236 | 10 | 62 | 1.87 | -54.8 | -11.1 | -87.1

Table 5.6: Comparison of SE_FF and SE_VB. B = best bias, C = Cost in US §, D
= Delay in milli seconds per packet, H = hops, and T = execution time in minutes.
The percentage gain shows the improvement achieved by SE_VB compared to SE_FF

and best monetary costs. From these plots, it is clear that SE_FF is able to achieve
lower monetary cost than SE_VB. It is observed that SE_FF decreases the cost
sharply and then carry out gradual refinements in rest of the iterations. However,
SE_\'B decreases cost smoothly and the trend continues till the end. Furthermore,
SE_VB converges to a higher monetary cost than SE_FF. Figure 5.3(a) and (b) shows
the current and best average network delay versus iterations for SE_FF and SE_VB.
A similar behavior is observed here as with the monetary cost above. One notable
thing is that the delay for SE_VB is smaller in earlier iterations and increases later
on. However, there is smoothness in the behavior, in contrast to SE_FF, where there
are some big variations till the middle of run. In Figure 5.4, we observe that SE_.VB
performs better than SE_FF with respect to maximum number of hops objective.
Thus the inferiority of SE_VB in monetary cost and average delay is compensated,
to some extent, by improvement in maximum number of hops.

We have seen that best fixed bias SE_FF has more execution time than SE_VB
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for some test cases (e.g., n33). To see why this is happening, we plot the cardinality
of the selection set against the frequency of solutions in Figure 5.5. From this figure.
it is obvious that for SE_VB, the cardinality of selection set is in the range of 0 to
5 links. On the other hand, this range goes upto 18 links in case of SE_FF. This
trend describes the reason for SE_FF having higher execution time, because more
links are selected for perturbation, causing more time spent in different phases of
the algorithm. The trend also describes the big variations in plots of SE_FF, also
due to the high cardinality of selection set.

Figure 5.6(a) shows the membership in “Good Topology” versus iterations for
n33 for SE_FF and SE_VB. In this figure, it is seen that initially, SE_FF is inferior
in solution quality than SE_VB, but towards the end converges to a better quality
solution than SE_VB. However, in the same figure, bigger variations are observed
with SE_FF than with SE_VB. The reason is that, as depicted in Figure 5.6(b), the
number of links selected in SE_FF are more than those of SE_VB. This causes a
bigger perturbation in the solution for SE_FF.

Figure 5.7 gives the links and their utilizations for best solution generated by
best fixed bias SE_FF and SE_VB for n33. From the figure it is clear that traffic on
any link is not exceeding the maximum allowed utilization, which is 60 Mbps, or 60 %
(since we are using a 100 Mbps FO cable). It can also be seen that SE_FF generates
a better topology than SE_VB since the former is availing all the 8 ports available

on the backbone switch (denoted by 1), while the latter is only using 7 ports. Also,
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there are more links in topology for SE_VB with high utilizations than in SE_FF.
In this figure, all the links that have been used are shown with their respective
utilizations. The figure also defines the topology of the best solution generated.
with the hierarchy of the local sites. For example, in the case of SE_FF, the link 1,2
means that local site 1 (where the backbone switch is located) is connected to local
site 2 and that local site 1 is preceding local site 2 (i.e., local site 1 is the parent of
local site 2). Similary local site 2 is the parent of local site 8. Also, local site 8 is the
parent of local site 6 and so on. If this pattern is followed, the complete topology

can be visualized.

5.2.2 Effect of Tabu Search Based Allocation and Tabu
List Size

\We have seen in Section 53.2.1 that although SE_VB has lesser execution time than
SE_FF, it is not able to reach the same quality of solution as the best fixed bias
SE_FF. In this section, we propose a scheme in which Tabu Search characteristics
are incorporated in the allocation phase of SE_.VB. The purpose of this is to enhance
the quality of search of SE_VB.

Tabu Search (TS) is a general iterative heuristic that is used for solving combi-
natorial optimization problems. The algorithm was first presented by F. Glover [42][43].

A key feature of TS is that it imposes restrictions on the search process, preventing
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it from moving in certain directions to drive the process through regions desired for
investigation [42]. It searches for the best move in the neighborhood of the cur-
rent solution. As opposed to local search, TS does not get trapped in local optima
because it accepts bad moves if they are expected to lead to unvisited solutions [43].
In its verv basic operation, TS works as follows. It starts with an initial solution
s that is selected randomly or using any constructive algorithm. It defines a subset
V*(s) of its neighborhood N(s). The algorithm evaluates the solution in V*(s)
and finds the best (in terms of evaluation function) among them, call it s* to be
considered as the next solution. The algorithm maintains a list of attributes of
accepted moves for the purpose of not cvcling back to recently visited solutions.
This list is called Tabu List. The size of tabu list specifies the number of coming
iterations for which the move remains tabu. An attribute is some characteristic of
a move which is saved in the tabu list, since it is not feasible to store the whole
solution when the solution representation is large or complex. If the tabu list does
not define the move leading to s* as tabu, it is accepted as the new solution even if
it is worse than the current solution in terms of the evaluation function. However. if
the move leading to s* is defined as tabu by the tabu list, the solution is not accepted
until it has one or more features that makes the algorithm override its tabu status
to accept it. Aspiration criterion is used to check whether the tabu solution is to
be accepted or not. For more details, interested readers are referred to {42, 43, 7).

In this research work, we have modified SE_VB algorithm by introducing tabu
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search characteristics in the allocation phase. We call this SE_TS algorithm. Recall
that in the allocation phase (Section 4.2.4), certain number of moves are made
for each link in the selection set and the best move is accepted, making the move
(i.e., link) permanent. This newly accepted link is also saved in the tabu list. Thus
our attribute is the link itself. The aspiration criterion is that if a link that had
been made tabu produces a higher membership value than the current one in the
membership function “good topology”, then we will override the tabu status of the
link and make it permanent.

Table 5.7 shows the results obtained for the test cases using different tabu
list sizes. In this table, monetary cost, average delay, and maximum hops of best
solutions are reported along with the respective tabu list size. In the table we notice
that as the test case size increases, the tabu list that gives the best solution also
increases. For example, in n135, tabu list size of 2 gives the best solution. Similarly,
best solutions are achieved by tabu list sizes of 3, 6, 7, and 7 in n25, n33, n40. and
n50 respectively.

In order to see the behavior of our SE_TS algorithm, we plot different cost pa-
rameters versus iteration count for the test case n50 (tabu list size=7). Figure 5.8
shows the monetary cost of solutions found after every iteration. The plots sug-
gest that the algorithm converges smoothly without making big jumps. A similar
behavior is seen in Figures 5.9 and 5.10 which plot the average network delay and

maximum number of hops respectively. The stability of the algorithm becomes more



Test Case | Tabu list size | Monetary Cost | Avg. Delay | Max. Hops

1 [ 298200 2.935 4

2 297100 2.78 4

nls 3 294350 3.448 6
4 298100 3.037 5

3 296900 3.278 6

3 481745 4.219 8

4 478690 4.189 9

n25 ) 483210 3.537 6
6 479915 4.275 9

7 488400 4.608 9

3 655715 3.772 11

5 652785 4.77 8

n33 6 682465 419 6
7 652310 5.95 10

9 667100 5.087 7

d 783795 4.746 10

6 798695 8.019 12

n40 7 783970 4.441 9
8 786950 5.478 9

. 9 790645 | 5.136 8

4 958995 | 6.739 14

3 967110 9.279 14

n30 7 983020 5.245 11
8 1075450 3.725 9

9 971965 7.13 12
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Table 5.7: Best solution for different tabu list sizes. Monetary cost is in US §, delay
is in milli seconds per packet, and execution time is in minutes.
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obvious in Figure 5.11 where the membership in fuzzy function “good topology™ is
plotted against iterations. The figure shows small moves with constant convergence
towards the optimum. Figure 5.12 shows the frequency of solutions having member-
ship values in different ranges. According to this figure, out of 4000 solutions (since
we run the algorithm for 4000 iterations), most of the solutions are falling in higher
membership ranges, suggesting that the algorithm is concentrating in good solutions
subspace. The convergence of the algorithm towards better solution is dependent on
the average goodness of links. A high average goodness of links suggests that better
links have been found and that there is a little room for further improvement. This
is seen from Figure 5.13, where we see that the average goodness of links is increas-
ing with each iteration. This improvement slows down towards the end, suggesting
that better links have been found throughout the topology. To further strengthen
our claim, we plot the minimum and maximum goodness of a link in each iteration
in Figure 5.14, where the minimum goodness of a link gradually becomes nearer to
average goodness of links, while the maximum goodness of link almost reaches the
“optimum” value of 1. Figure 5.15 shows the solution generated by SE_TS with
links and their utilizations for n50. In this figure we observe that the traffic is not
exceeding the allowed peak utilization (60% or 60 Mbps) on any link and all the 8
ports on the backbone switch have been used.

Table 5.8 gives the results for different test cases considering the frequency of

tabu moves, and the respective tabu list size that gave the best solutions with their
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Figure 5.8: Variation of monetary cost with iterations for n50, Tabu list size=7
(a) current monetary cost (US §); (b) best monetary cost.
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Average network delay vs. Iterations
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Figure 5.9: Variation of average delay with iterations for n50, Tabu list size=7
(a) current average delay (seconds); (b) best average delay.
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Figure 5.10: Variation of maximum hops with iterations for n30, Tabu list size=7
(a) current maximum hops; (b) best maximum hops.
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Figure 5.11: Membership in function “good topology” for n50, Tabu list size=7
(a) current membership; (b) best membership.
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Average goodness of links vs Iterations
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Utilizations vs links for SE_TS, n50

0.6

0.5

0.4 -
0.3 \
0.2

VA A

Utilization

__-0-——-'"";7.

Figure 5.15: Links and their utilizations for best solution generated by SE_TS for
test case n50. Traffic is in Mbps.
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execution times. By frequency of tabu moves we mean the number of times a link
was found tabu. We record this through a counter called tabu counter. The tabu
counter only includes the number of tabu links which could not pass the aspiration
criteria. It does not count the frequency of links which were actually tabu but
managed to pass the aspiration criteria. From this figure, it can be seen that the

percentage of tabu moves varies between 1% and 10%.

Test case | Tabu list size | Total moves | Tabu moves | % Tabu moves | Exec. time ‘

for best solution ,

nld 2 1241 435 3.62 2.25 !

n23 5 2496 39 1.56 4 {
n33 6 1352 93 6.878 8
n40 7 4223 233 5.51 26

n30 7 3995 328 8.21 63 !

Table 5.8: Results for best tabu list size. Execution time is in minutes.

5.2.3 Comparison of SE_FF and SE_TS

In Section 5.2.1, best fixed bias SE_FF and SE_VB were compared and it was found
that overall, SE_FF produced better results than SE_VB. However, as mentioned
earlier, one problem with fixed bias approach is that it needs many runs to find out
the best fixed bias, which is not favorable in terms of time. In Section 5.2.2, the effect
of introducing tabu search characteristics in variable bias based SE algorithm, the
SE_TS algorithm, was studied. In this section, the results of SE_TS with best fixed

bias SE_FF are compared to evaluate the performance of the former with respect
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to the latter. Tables 5.9 and 5.10 show the results for best fixed bias SE_FF and
best tabu list size SE_TS. These results have been reproduced here for the sake of
comparison. The percentage gain shows the improvement achieved by SE_TS when
compared to SE_FF. From these tables it is seen that SE_TS performs better than
SE_FF as far as monetary cost objective is concerned. In all the test cases, a gain
is achieved by SE_TS. For example, a gain of 7.43 % is achieved in case of n50. A
similar behavior is seen for average network delay metric, where SE_TS achieves the
gain in all the cases, with the exception of n40, where a loss of 7.63 % is observed.
Similarly, for maximum number of hops metric, a gain is achieved for small (n15
and n25) and medium (n33) size test cases, with a loss in performance for n40
and n50. However, the loss in maximum hops and average delay metric for n40
is compensated by the improvement in the monetary cost metric. Also, the loss
for n50 in maximum hops metric is compensated by improvement in monetary cost
and average delay metric. However, if we compare the membership values in fuzzy
function “good topology” for SE_FF and SE_TS, we see that in all the test cases,
SE_TS converges to a better overall solution than SE_FF. As far as the execution
time is concerned, a similar behavior is seen as was observed for comparison of
SE_FF and SE_VB, where a gain is achieved for some test cases as well as the
losses. However, it can still be said that SE_TS is better than SE_FF with respect
to execution time if we take into account the time spent in trial runs to find the

best bias in SE_FF. It is also seen that SE_TS performed better than SE_VB, if the
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Case SE_FF SE_TS
B C D |H M [T|TL] C [ D [H M T
nl5 | 0.2 | 314400 | 3.282 [ 5 0.25 4] 2 | 297100 | 2.78 | 4 | 0.318251 | 2.25
n25 | 0.2 | 509050 | 4.26 | 7| 0.26 5 | 5 | 483210 | 3.537 | 6 | 0.352056 | 4
n33 | 0.0 | 687760 | 4.729 | 8 | 0.339005 [ 40 | 6 | 682465 | 4.19 | 6 | 0.352941 | 8
040 | 0.3 | 866900 | 4.126 | 8 | 0.2714 |12 | 7 | 783970 | 4.441 | 9 | 0.337554 | 26
n50 | 0.3 | 1061900 | 5.32 | 9 | 0.264286 | 8 | 7 | 983020 | 5.245 | 11 | 0.32212 | 65

Table 5.9: Comparison of SE_FF and SE_TS. B = best bias, C = Cost in US $. D =
Delay in milli seconds per packet, H = hops, M = Membership in “Good Topology™,

T = execution time in minutes, TL= Tabu list size.

Table 5.10: Percentage gain in improvement achieved by SE_TS compared to SE_FF.
C = Cost in US $, D = Delay in milli seconds per packet, H = hops.

results of Tables 5.6, 5.9, and 5.10 are compared. Figure 3.16 gives the selected links
and their traffics for the best solution for SE_LFF and SE_TS for n40.

To compare the quality of search space between best fixed bias SE_FF and
SE_TS , we plot different cost parameters versus iteration count of the algorithms
for the test case n40 (best bias=0.3 in SE_FF and best tabu list size=7 in SE_TS).
Figure 5.17(a) and (b) respectively give the current and best monetary costs. From
these plots it is clear that SE_TS converges faster towards a better solution. On

the other hand, SE_FF stops improving the cost after around 2000 iterations. Same

Case % Gain

C D I H
nl5 | 55 | 1529 20 |
n25 5.07 1 16.97 | 14.29
n33 | 0.755 | 11.4 25
n40 9.57 | -7.63 | -12.5
ns50 7.43 1.41 | -22.2
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behavior is seen with respect to average network delay and maximum hops parame-
ters in Figures 5.18 and 3.19, where we see that SE_TS performs better than SE_FF
throughout the run. The reason SE_TS has better performance than SE_FF is the
following. In SE_FF, since the search space for valid solutions is limited, it happens
that after some iterations, same moves are repeated and thus the algorithm keeps
searching in the same search space most of the time, while in SE_TS, although the
search space is same, more search space is covered because previous moves remain
tabu for some time, causing the algorithm to diversify the search into another sub-
area. Recall that in the allocation phase, four valid moves are evaluated for each
link in selection set and the best move (link) is made permanent. This new link is
also saved in the tabu list simultaneously. However, it may happen that this new
link may become “bad” (in terms of evaluation function) in the following iterations,
upon which it is removed. But it may be possible that this link may become good
again after one or more iterations, but since it is in the tabu list, it will not be chosen
to be placed again, thus giving room to other links to be chosen. This increases the
search space for SE_TS.

In general we see that SE_TS achieves the same quality of solution as best
fixed bias SE_FF with lesser execution time than SE_FF. The reason for this is that
SE_TS is based on SE_\'B, which visits repectively lesser search space than SE_FF,
but by introducing the tabu search characteristics in SE_TS, we explore a larger

search space than SE_VB.
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Figure 5.17: Comparison of SE_FF and SE_TS for n40 (a) current monetary cost
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Average Network Delay vs. Iterations
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Maximum number of hops vs. Iterations
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5.2.4 Comparison of SE_TS and Esau-Williams algorithm

In Section 2.1, we discussed Esau-Williams (EW) algorithm, which is the most
widely used algorithm for centralized network design. The original algorithm had the
flow of traffic on the links as the design constraint with the objective of optimizing
link cost. In order to analyze the performance of the suggested SE_TS algorithm, we
compare it with the EW algorithm. Since there are more constraints in our case than
the original Esau-Williams algorithm, we have adapted it according to the constraits
considered in this research. Table 5.11 presents the results for EW algorithm and
best tabu list size SE_TS. From this table it is quite clear that SE_TS has far better
overall performance than EW algorithm. We observe that although SE_TS has a
little inferior performance than EW with respect to monetary cost, vet if we consider
the other two objectives. we see a significant improvement by SE_TS. The inferiority
in monetary cost and superiority in average delay and maximum hops of SE_TS is
due to the fact that EW algorithm is considering only the monetary cost as the
objective to be optimized, therefore it reduces only the monetary cost, ignoring the
other two objectives. We also see that although EW algorithm is optimizing only
the monetary cost, it does not have a very significant improvement than SE_TS with
respect to monetary cost objective. On the other hand, SE_TS has a significant gain
in delay and hops objectives. Furthermore, EW algorithm has a local partial view

of the search and always makes a move greedily, while SE_TS works always with
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Case EW SE_TS % Gain

C | D |H T TL C | D H| T C | D] H
nl5 | 292700 | 5.0012 | 9 | 0.017 2 297100 | 2.78 4 | 2.25 1 -1.48 | 444 | 55.56
n25 | 469790 | 5.002 9 | 0.033 5 483210 | 3.537 | 6 4 -2.78 | 29.29 | 33.3
n33 | 624180 | 5.642 | 10 | 0.033 6 682465 | 4.19 6 8 -8.54 | 25.74 40
nd40 | 754445 | 13.491 | 14 | 0.033 7 783970 | 4.441 | 9 26 | -3.77 | 67.1 | 35.71
n50 | 928105 | 7.167 | 14 | 0.083 7 983020 | 5.245 | 11 65 | -5.58 | 26.82 | 21.42

Table 5.11: Comparison of EW and SE_TS. C = Cost in US $, D = Delay in milli
seconds per packet, H = hops, T = execution time in minutes, TL= Tabu list size.
The percnetage gain shows the improvement achieved by SE_TS compared to EW.

complete solution and accepts bad moves to get out of local minima. The difference
in execution times of the two algorithms are due to the reason that EW algorithm

is a constructive heusristic, while SE_TS is an iterative heuristic.

Time Analysis of Different Phases of SE_TS

We also studied the time spent in each phase of SE_TS algorithm, namely, initial
solution, evaluation and selection, and allocation. Table 5.12 shows the results for
n50 and n33 for best tabu list size. In this table we see that the allocation phase
is taking a significant percentage of the total runtime. The reason is obviously that
it is the most complex phase of the algorithm, where most of the manipulation of
the solution takes place. It is also due to the fact that we are having very tight
constraints due to which a larger number of invalid moves take place. Thus to have
valid moves, more time is spent in each iteration. Also, the feasibility constraints

are checked after each move is made. All these factors make the allocation phase a
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very complex one.

Test case | % Init. Soln. | % Eval.+ Select. | % Alloc.
n33 0.208 14.472 85.32
n50 6.15 11.75 82.1

Table 5.12: Time analysis for different phases of SE_TS algorithm.

5.2.5 Comparison of Simulated Annealing and SE_TS

In Chapter 2, Simulated Annealing [7, 8] (SA) algorithm was discussed as applied
to problems related to topology design of networks. In this section, we compare SA
with SE_TS. As known, SA has four important parameters which need to be tuned
verv carefully. These are: cooling rate a, constant 3, initial temperature T, and M
which represents the time until next parameter update. After trial runs. appropriate
values of these parameters were found to be a=0.9, 3=1.0, Ty=10, and M=10.
Table 5.13 presents the results for SA and SE_TS. From this table, it is observed
that SE_TS performs better than SA as far as monetary cost objective is concerned.
In all the test cases, a gain is achieved by SE_TS. For example, a gain of 12.6 %
is achieved in case of n50. A similar behavior is seen for average network delay
metric, where SE_TS achieves gain in all the cases, e.g. in case of n40. where
a gain of 14.81% is observed. Similarly, for maximum number of hops metric, a
gain is achieved for small (n15) and medium (n33) size test cases, with a loss in

performance for n40 and n50. However, the loss in maximum hops for n40 and
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Case SA SE_TS % Gain

C ] D | H | T | TL C D H | T C D H
nls 318000 | 3.469 | 6 | 1.17] 2 297100 | 2.78 4 | 2.25 | 6.57 19.86 | 33.3
n25 511320 | 3.725 | 6 3 5 483210 | 3.537 | 6 4 5.497 | 5.047 0
n33 708135 | 5.189 | 9 5.5 6 682465 | 4.19 6 8 2.76 19.25 | 33.3
n40 903735 ] 5.213 | 8 | 275 | 7 783970 | 4.441 | 9 26 13.25 | 14.81 | -11.1
n50 | 1124720 | 5.943 | 10 | 57 7 1983020 | 5245 [ 11 | 65 12.6 | 11.74 | -9.09

Table 5.13: Comparison of SA and SE_TS. C = Cost in US §, D = Delay in milli
seconds per packet, H = hops, T = execution time in minutes, TL= Tabu list size.
The percentage gain shows the improvement achieved by SE_TS compared to SA.

n30 is compensated by the improvement in the monetary cost and average network
delay metrics. As far as the execution time is concerned, SE_TS has a slightly higher
execution time than SA in most of the cases. It is due to the fact that SA has only
one move in an iteration while SE_TS has multiple moves in a single iteration.

In order to compare the quality of search space of SA and SE_TS, frequency of
solutions for different membership ranges is plotted against the membership value
in Figure 5.20 for n25. It is known that in SA, only one individual (link) is selected
at a time, and only one move is allowed for that selected link. If the new link is
not a feasible one or does not pass the Metropolis criterion, then the original link is
placed back to its position. This implies that there may be iterations where original
links are placed back and no alteration takes place to the currently existing solution.
Therefore, such iterations are not included as giving a new solution for SA. This
in turn gives a total of 2200 iterations (out of 4000 iterations) where an alteration

took place in the solution. Thus, only these 2200 iterations (solutions) are plotted
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in Figure 5.20. In this figure, it is observed that SE_TS has more solutions falling in
higher membership ranges than SA, suggesting that SE_TS is concentrated in good
solution subspace. For example, SA has most of the solutions in the membership
range 0.2-0.25, whereas SE_TS has most of the solutions in the range 0.3-0.35.

Figure 5.21 plots the cumulative frequency of solutions for different membership
ranges after each 200 iterations for n25. In Figure 5.21(a) shows the plot of SA.
where we observe that there are no solutions in the membership ranges 0.3-0.35
and 0.35-0.4. The only ranges in this figure where solutions exist are 0.2-0.25 and
0.25-0.3. It is also seen that even in the membership range 0.2-0.23, solutions start
to appear after around 330 iterations. This suggests that before 350 iterations, the
solutions found have all membership values of less than 0.2. Another observation is
that for the membership range 0.23-0.3, there are only a few solutions, which start
to appear after 1000 iterations. The overall effect of Figure 5.21(a) is that although
there is improvement in the quality of search space with the passage of iterations,
vet it is mainly limited to a low membership range of 0.2-0.25.

Figure 5.21(b) shows the plot of the cumulative frequency of solutions for SE_TS
for the same ranges as in Figure 5.21(a). In this figure, we notice that there are
solutions in the membership ranges (such as 0.3-0.35) for which SA had no solution
at all. One important trend here is that solutions with high membership range
start to appear earlier than in SA. For example, we saw above that solutions in

the range 0.2-0.25 start to appear after 350 iterations, but with SE_TS, solutions
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in the same range appear just after 150 iterations. This behavior suggests that
SE_TS starts converging toward better quality solutions faster than SA. Another
important trend is that as the search progresses, SE_TS zooms on better solutions.
For example, in Figure 5.21(b) we see that the cumulative frequency for membership
range 0.2-0.23 increases upto 600 iterations, after which there is no solution in this
range. However, after 400 iterations, solutions in the range 0.23-0.3 begin to appear
and keep accumulating (with a slower pace) until around 1800 iterations. Similarly,
solutions in the membership range 0.3-0.35 begin to appear after 700 iterations and
keep accumulating with a high rate upto 2200 iterations, after which no additional
solutions are found in this range. A point where the number of solutions are nearly
equal in the above three membership ranges appears to be at 1100 iterations. There
are also a few solutions (2 in fact) in the range 0.35-0.4 but they are not visible in
this figure. The net effect of these graphs is that SE_TS is zooming on better quality
solutions as the search progresses. Thus it is observed from Figure 5.21 that SE_TS

achieves solutions with better quality than SA.

5.2.6 Quality of Final Solution with Different Initial Solu-
tions

An experiment was run to see the quality of final solutions with different initial

solutions for SE_TS. For this purpose, two initial solutions were used; one was
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Case | TL EwW Random

C | D JH|] C | D [H

n25 5 | 503715 | 3.377 | 6 | 483210 | 3.537 | 6
n33 6 | 654865 | 4.298 | 7 [ 682465 | 4.19 | 6

Table 5.14: Quality of final solution with different initial solutions for SE_TS. TL=
Tabu list size, C = Cost in US $, D = Delay in milli seconds per packet, H = hops.

generated randomly and the other was as generated by the Esau-Williams algorithm.
Table 5.14 gives the final solutions for test cases n25 and n33. It is clear from this
table that the final solutions reached with both the initial solutions are of the same
quality. This suggests that the quality of the final solution using SE_TS is not
sensitive to the initial solution; the algorithm reaches the same quality of solution

regardless of the quality of initial solution.

5.3 Assignment of LAN Segments to Network

Devices using Augmenting Path Algorithm

In Section 2.1, we discussed the augmenting path (AP) algorithm. The algorithm
was designed to solve the “terminal assignment problem”™ where the terminals (com-
puters) were assigned to concentrators (networking devices). In this work, we have
assumed that terminals have already been assigned to local concentrators, which
make up a “segment” (see Section 3.2). The AP algorithm is also suitable to assign

the segments (hubs) to upper level concentrators (workgroup switch), which when



111

interconnected will create a communication path between any two stations in the
same or different work areas.

An experiment to show the AP algorithm works was conducted. Figure 5.22
depicts a typical local site. In this figure, the segments are denoted by S, and
the concentrators are denoted by C. We see that there are fifteen segments and four
concentrators located at four different places within the local site. Each concentrator
(a2 hub or a switch in this case) has 4 ports. The task is to assign these fifteen
segments to the four concentrators. When the AP algorithm is given the input,
which is basically the distances of each segment from each concentrator, as shown
in Table 5.135, the topology in Figure 5.23 is achieved. Table 5.15 also shows the

concentrator to which the segment has been assigned.

5.4 Design of the Internal Structure of a Local
Site using Fuzzy Simulated Evolution Algo-

rithm

When the segments are assigned to the concentrators, the next step is to join these
concentrators in a minimum spanning tree topology. For this purpose, we have used
the SE_TS algorithm, which has been described in Section 5.2 and was found to

be the best among the approaches introduced in that section. We conducted an
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Figure 5.23: Segments and concentrators after assignment.



Ci|1Cy | C3! Cy Segment
assigned to

511303854 74 C
S, | 46 | 46 | 52 | 84 C;
S3; | 50| 36|38 |78 C,
Sy | 64545296 Cs
Ss | 56 | 60 | 70 | 98 C
Se | 24|24 142 | 26 C
S; 140122 |26 |24 C,
Sg | 60| 46 | 38 | 28 Cy
Se | 52 |1 30 | 20 | 50 Cs
S| 3636|2872 Cs
S11]132]40}134 |22 Cy
S12] 363040 | 16 Cy
S13] 5054|6622 Cy
S14122]20]40 | 60 C»
S15130| 24|36 | 44 Cs
&) 28 | 52 | 30

Cs 28 | 46

Cs 50

114

Table 5.15: Segment-concentrator and concentrator-concentrator distances in me-

ters. The concentrator to which the segment has been assigned is also shown.
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experiment for this. In this experiment, the only difference is the cost of equipment.
Since we have assumed that we are using Category 5 cable within a local site, we will
include the cost of this (mentioned in Table 5.4) instead of cost of fiber optic cable.
Costs of the networking devices are the same as before. For this experiment, we
have assumed that the local site is running on 10baseT Ethernet, and the maximum
allowed traffic on a link should not exceed 6 Mbps (or 60%). When we apply the
SE_TS algorithm to the local site considered in Section 5.3, we get the topology as

shown in Figure 5.24. In this topology, we have

e Total traffic = 4.2 Mbps.

e Traffic on link 1,2 = 2 Mbps.

e Traffic on link 1,3 = 2.6 Mbps.

e Traffic on link 3,4 = 2.7 Mbps.

e Monetary Cost = 80065 dollars.

e End-to-end average delay per packet = 2.894 milli seconds.

e Maximum number of hops = 3.

Note that these statistics include the cost, delay, and hops only of the topology

that includes the concentrators C; to Cy4 (and not the segments).
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5.5 Conclusion

In this chapter, we presented and discussed various experiments that were performed
using the approaches based on SE algorithm, namely SE_FF, which used fuzzy eval-
uation and fuzzy allocation with fixed bias, SE_.VB, which used fuzzy evaluation
and fuzzy allocation with variable bias, and SE_TS, which used variable bias, fuzzy
evaluation, and tabu search characteristics in fuzzy allocation phase. The perfor-
mance of SE_FF with respect to SE_VB was studied and it was observed that SE_FF
performs better than SE_VB. Also, the effect of tabu search characteristics in fuzzy
allocation phase of SE_TS was analyzed along with the variation of quality of so-
lution with tabu list size. The performance of SE_TS with respect to SE_FF was
also compared and it was found that SE_TS performs better than SE_FF. We also
compared SE_TS with Esau-Williams algorithm, which is a greedy algorithm, and
found that in general, SE_TS performs far better than Esau-Williams algorithm.
The SE_TS algorithm was also compared to simulated annealing (SA) algorithm and
it was observed that SE_TS has a better performance. We also used the augmenting
path algorithm to assign segments to networking devices within a local site and then

used SE_TS algorithm to connect these devices.



Chapter 6

Conclusion

6.1 Summary

Topology Design of Enterprise Networks (TDEN) consists of connecting a large num-
ber of computers and peripherals to networking devices and then interconnect these
networking devices while satisfying a number of design constraints and optimizing a
given objective function. The problem is subdivided into many stages and design at
each stage is carried out independently. Being a hard problem, this problem cannot
be solved using full enumeration methods. Therefore, intelligent heursitics are used
to get sub-optimal solutions for this problem. Simulated Evolution (SE) is a general
purpose iterative stochastic heuristic to solve such problems. It combines the itera-
tive improvement and constructive perturbation. We have used SE for optimiztion

of multiple objectives in TDEN problem. We are optimizing monetary cost, aver-
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age network delay, and marimum number of hops between any source-destination
pair. We have used fuzzy logic based reasoning to combine conflicting objectives.
In this thesis, we have fuzzified evaluation and allocation stages of SE algorithm.
Schemes for fuzzy evaluation and fuzzy allocation are proposed. The effect of fixed
bias and variable bias on quality of solution and execution time of the SE algorithm
have also been investigated. Also, the effects of incorporating tabu search charac-
teristics in fuzzy allocation phase of vairable bias based SE algorithm have been
studied. Along with this, we have also studied the performance of variable bias
and tabu search based allocation in SE with respect to Esau-Williams algorithm.
Augmenting path algorithm has also been used in one stage of the problem.

Following are the conclusions of our research.

o Fuzzy Fvaluation and fuzzy allocation based algorithm, the SE_FF. combines
satisfaction of monetary cost and depth of a link in the evaluation phase and
satisfaction of monetary cost, average delay, and maximum hops in the alloca-
tion phase and uses fixed bias in selection phase. This approach gives better
overall results than SE_VB, the variable-bias-based SE_FF, at the expense of

higher runtimes.

e The variation of SE_V'B that incorporates the tabu search characteristics in
fuzzy allocation phase, the SE_TS algorithm, gives the effect of variation of

tabu list size and suggests that the tabu list size for best solution increases
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with problem size.

e The results obtained for comparison of best fixed bias SE_FF and best tabu
list size SE_TS suggest that SE_TS is able to give better overall results than
SE_FF, with the observation that SE_TS gives lower monetary cost than best

bias SE_FF.

e SE_TS algorithm gives a far better overall performance than Esau-Williams
algorithm. With the observation that EW algorithm gives slightly lower mon-
etary cost than SE_TS; SE_TS gives a much lower average delay as well max-

imum hops than EW algorithm.

In Chapter 1, topology design of enterprise networks (TDEN) problem has been
briefly described.

In Chapter 2, literature relevant to TDEN have been reviewed. This review is
classified into “constructive heuristics” and “iterative heuristics”.

In Chapter 3, terminology and notation necessary to understand subsequent
chapters is included. We have also formally defined the TDEN problem. Objective
values computation for monetary cost, average network delay, and maximum number
of hops between any source destination pair are also given. In Chapter 3, simulated
evolution algorithm and fuzzy logic have alos been reviewed.

In Chapter 4, we have described fuzzy logic based SE algorithm for multiob-

jective optimization of TDEN. For the evaluation stage of SE algorithm, a fuzzy
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evaluation scheme has been proposed which tries to identify links which do not
fulfil bounds for monetary cost as well as depth. For the allocation phase of the
SE algorithm, a fuzzy allocation scheme is proposed. This scheme tries to find a
topology considering the three objectives, namely, monetary cost, average delay,
and maximum hops, by combining them through a fuzzy rule.

In Chapter 5, experimental results have been presented. We started with the
backbone design. For this stage, we have studied the effect of bias on the quality
of solution. In this chapter, we have compared the best fixed bias SE algorithm
(SE_FF) with variable bias SE algorithm (SE_VB). The results show an overall
improvement by SE_FF on the quality of solutions, but at the expense of higher
execution time. We have also introduced in SE_\'B algorithm characteristics of tabu
search in allocation phase (SE_TS) and observed that as the test case size increases,
tabu list size that gives the best solution also increases. We have also compared
the best tabu list size SE_TS algorithm with best fixed bias SE_FF algorithm and
found that SE_TS gives better results in over all performance, specially with re-
spect to monetary cost. In the same section we have compared SE.TS algorithm
with Esau-Willams algorithm (EW) and noted that although SE_TS has a slightly
inferior performance than EW algorithm with respect to monetary cost, SE_TS per-
forms much better with respect to the other two objectives. Also, SE.TS has been
compared with simulated annealing (SA) algorithm, which is a well-known heuristic.

It was found that SE_TS performs better than SA. In the same chapter, we have
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used augmenting path algorithm for assignment of segments to concentrators at the

local site level, and also used SE_TS to interconnect these concentrators within the

local site.

6.2 Future Research

Our work can be extended to address the following issues.

e Effect of dynamic bias on convergence of the SE algorithm.

e Implementation of a graphical user interface for our program. This interface
should allow the users to interactively change parameters online as well as

view topology characteristics from time to time.

e Addition of more objectives, such as the average number of hops, in the opti-

mization along with the three objectives we have used.

e Parallelization of the algortihm, especially the allocation phase, as it is the

most complex and time consuming phase.
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