INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
ANALYSIS OF MULTI-LAYER ARROW PLANAR WAVEGUIDE FOR EVANESCENT FIELD ENHANCEMENT IN LOW-INDEX MEDIA

BY

MOHAMMED ABDUL MAJID

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In
ELECTRICAL ENGINEERING

SEPTEMBER 2001
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES

This thesis, written by

MOHAMMED ABDUL MAJID

under the direction of his Thesis Advisor and approved by his Thesis Committee.

has been presented to and accepted by the Dean of Graduate Studies, in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Thesis Committee

4/12/2001

Dr. HUSSAIN A. AL – JAMID (Chairman)

Dr. MAHMOUD M. DAWOUD (Member)

Dr. HUSAIN M. MASOUDI (Member)

Dr. Samir A. Al – Baiyat
(Department Chairman)

Prof. Osama A. Jannadi
(Dean of Graduate Studies)

5/12/-
Date
Dedicated

to

my beloved mother

and

to the memory of my late father and Grandfather.
Acknowledgements

All praise and glory to Almighty Allah (SWT) who gave me courage and patience to carry out this work. Peace and blessing of Allah be upon His last Prophet Muhammad (Sallulah-e-Alaihe-Wassalam) and all his Sahaba (Razi-Allaho-Anhum), who devoted their lives for the spread of Islam.

Acknowledgement is due to King Fahd University of Petroleum and Minerals for providing support for this work.

My deep appreciation goes to my thesis advisor Dr. Hussain A. Al-Jamid for his constant help, guidance and the countless hours of attention he devoted throughout the course of this research work. His priceless suggestions made this work interesting and learning for me. I am grateful to him for providing me some of his own computer programs. At the later stages, he helped me a lot in writing my thesis.

Thanks are due to my thesis committee members Dr. Husain M. Masoudi and Dr. Mahmoud M. Dawoud, for their interest, invaluable cooperation and support.

I am thankful to Dr. Samir A. Al-Baiyat, Chairman Electrical Engineering Department for establishing an excellent graduate research laboratory in our de-
partment.

I am thankful to my mother, brother and to my uncle Mohammed khaja Qutubuddin for their love, guidance and support.

Acknowledgement is due to Muhammed Ajmal Khan and Alisher Abdullah who helped me at various stages of this work.

Contents

Acknowledgements ii

List of Tables ix

List of Figures x

Nomenclature xiii

Abstract (English) xvii

Abstract (Arabic) xviii

1 Introduction 1

1.1 Integrated Optics 1

1.2 Optical Waveguides 3

1.3 ARROW Waveguide 4

1.4 Multi-layer ARROW 5
1.5 Method of Lines and other Numerical Methods .. 7
1.6 Statement of the Problem .. 10
1.7 Thesis Organization .. 11

2 Dielectric Slab Optical Waveguide ... 14
 2.1 Introduction ... 14
 2.1.1 Basic Formulation .. 15
 2.2 Transverse Electric (TE) Guided Modes ... 19
 2.3 Transverse Magnetic (TM) Guided Modes .. 20

3 The Method of Lines .. 23
 3.1 Introduction ... 23
 3.2 Basic Algorithm .. 24
 3.3 Interface Conditions .. 28
 3.4 Higher-Order Approximation of the $\frac{\partial^2}{\partial r^2}$ Operator 30
 3.4.1 Air/GaAs/Air Symmetrical Waveguide 32

4 Analysis of Anti-Resonant Reflecting Optical Waveguide (ARROW) Modes 34
 4.1 Introduction ... 34
 4.2 Eigenmodes of a Basic ARROW .. 38
4.2.1 \(TE\) Modes .. 40
4.2.2 \(TM\) Modes .. 41
4.3 Perfectly Matched Layer (PML) Absorber 45
4.3.1 Miscellaneous results 47

5 Analysis of Multi-Layer ARROW Planar Waveguide 48
5.1 Introduction ... 48
5.1.1 Multi-layer ARROW as polarizer 49
5.1.2 Evanescent Field Enhancement in Low-Index
Superstrate ... 52
5.1.3 Sensitivity of the Multi-layer ARROW 54

6 Method of lines Analysis of Gaussian Beam Coupling to
Multi-Layer ARROW .. 59
6.1 Introduction ... 59
6.2 Coupling Techniques ... 61
6.2.1 Endfire/Butt coupling .. 61
6.2.2 Statement of the Problem 62
6.2.3 Calculation of Power Coupling Efficiency in Edge Coupling 64
6.2.4 The application of the MOL to the Coupling Problem 67
6.2.5 Calculation of Power coupling efficiency using the MOL ... 71
6.2.6 Convergence of the MOL 74
7 Application of Evanescent Field Enhancement in Low-Index

Superstrate

7.1 Introduction .. 80
7.2 Chemical and biochemical sensors 86
7.3 Biosensors .. 89
 7.3.1 Introduction .. 89
 7.3.2 Biosensing Principle 91
 7.3.3 Bioreceptors (Bioelement) 94
 7.3.4 Labelled and non-Labelled Optical sensor 97
 7.3.5 Array Biosensor 103
 7.3.6 Immunosensors 103
 7.3.7 Biochip .. 104

8 Summary, Conclusions and Future Work 108

8.1 Summary .. 109
8.2 Conclusions ... 110
8.3 Future Prospects 111

APPENDICES .. 114

A STF1 Program : Zero Finding Routine, Eigenvalue Finding Rou-
B MOL 3-Point Approximation
C MOL 5-Point Approximation
D MOL 7-Point Approximation
E Multi-layer ARROW
F Gaussian Beam Coupling

Bibliography
List of Tables

4.1 Effective-Indices of different ARROW Modes .. 41

6.1 Coupling Efficiency Versus Spot Size for $t_c = 0.40\mu m$ 76
6.2 Coupling Efficiency Versus Lateral position for $t_c = 0.40\mu m$ 78
6.3 Maximum Coupling Efficiency Versus Core Thickness with Optimum
 Lateral Position and Optimum Spot Size ... 78
List of Figures

1.1 Refractive Index Profile in an ARROW Waveguide .. 5
1.2 Multi-Layer ARROW structure .. 6
2.1 Schematic Diagram of A Dielectric Slab Waveguide .. 16
2.2 A Three-Layer Dielectric Slab Waveguide. 2D view .. 16
2.3 TE Mode Patterns of a Symmetric Slab Waveguide 22
2.4 TM Mode Patterns of a Symmetric Slab Waveguide 22
3.1 Mesh Discretization used in the MOL ... 27
3.2 Discretized Field in the Transverse Direction .. 30
3.3 Relative Error in Phase Parameter for the fundamental TE_0 mode 33
3.4 Relative Error in Phase Parameter for the fundamental TM_0 mode 33
4.1 Typical refractive Index Profile in Planar ARROW Wave-guide 36
4.2 Basic Planar ARROW Wave-guide .. 39
4.3 TE_0 Modal Field of the ARROW .. 41
6.4 The incident, reflected and transmitted fields using the MOL 68
6.5 Coupling Efficiency Versus Spot Size \((w_0) \) 77
6.6 Coupling Efficiency Versus Lateral Position \((x_0) \) 77
6.7 Maximum Coupling Efficiency Versus Core Thickness \((t_c) \) 79

7.1 Conceptual diagram of the biosensing principle 92
7.2 Schematic representation of a biosensor 93
7.3 Labelled optical sensor1 .. 98
7.4 Labelled optical sensor2 .. 98
7.5 Non-Labelled optical sensor 101
7.6 Schematic of biosensor/biochip classification schemes 105
7.7 Schematic of DNA Array detection 106
Nomenclature

English Symbols

\begin{align*}
E & \quad \text{electric field vector. volts/meter} \\
H & \quad \text{magnetic field vector. amperes/meter} \\
N & \quad \text{diagonal matrix of refractive-index squared at mesh grids} \\
I & \quad \text{identity matrix} \\
P & \quad \text{time-averaged power per unit length in the y-direction. watts/m} \\
Q & \quad \text{matrix of the eigen-value equation} \\
R & \quad \text{reflection coefficient} \\
T & \quad \text{transmission coefficient} \\
n & \quad \text{refractive index} \\
k_o & \quad \text{free space wavenumber. radians/meter} \\
w_0 & \quad \text{spot size. micrometer} \\
P_g & \quad \text{guided power. watts/m}
\end{align*}
\(P_i \)
incident power, watts/m

\(P_t \)
transmitted power, watts/m

\(P_r \)
reflected power, watts/m

\(x_0 \)
Lateral Position, micrometer

\(t_c \)
ARROW core thickness, micrometer

\(h \)
mesh size, meter

\(j \)
\(\sqrt{-1} \)

t
time, sec

\(A \cdot B \)
scalar (dot) product of vectors A and B

\(A \times B \)
vector (cross) product of vectors A and B

Greek Symbols

\(\nu \)
general field component of the E or H field

\(\Psi \)
general field component of the E or H sampled field, column vector

\(\varepsilon_0 \)
free space permittivity, \(4\pi \cdot 10^{-7} \) Vs/Am

\(\varepsilon_r \)
relative permittivity

\(\mu_0 \)
free space permeability, \(8.8541 \cdot 10^{-12} \) As/\(\sqrt{\text{m}} \)

\(\mu_r \)
relative permeability

\(\omega = 2\pi f \)
angular frequency, rad/sec

\(\alpha_m \)
mth modal field coefficient

\(\chi \)
Sensitivity
\(\varsigma \)
Fraction of Power

\(\Delta \Phi \)
Phase Difference, degree/millimeter

\(\beta \)
propagation constant, radians/meter

\(\sigma \)
decay factor

\(\lambda \)
wavelength, meter

\(\nabla \)
nabla operator, \(\frac{\partial}{\partial x} \hat{u}_x + \frac{\partial}{\partial y} \hat{u}_y + \frac{\partial}{\partial z} \hat{u}_z \)

\(\nabla^2 \)
Laplace operator, \(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \)

Abbreviations

TE
Transverse Electric

TM
Transverse Magnetic

MOL
Method of Lines

OIC
Optical Integrated Circuit

PML
Perfectly Matched Layer

BPM
Beam Propagation Method

CCD
Charged Coupled Device

HIV
Human immuno Deficiency Virus

DNA
Deoxyribonucleic Acid

RNA
Ribonucleic Acid

GOD
Glucose oxidase

GRIN
Gradient Refractive Index
\(\mu \) TAS \hspace{1cm} \text{Micro Total Analysis System}

ARROW \hspace{1cm} \text{Anti-resonant Reflecting Optical Waveguide}

TIR \hspace{1cm} \text{Total Internal Reflection}

N \hspace{1cm} \text{Pairs of ARROW Layers}

a \hspace{1cm} \text{thickness of layer, micrometer}

d \hspace{1cm} \text{thickness of layer, micrometer}

\(n_{\text{eff}} \) \hspace{1cm} \text{Modal Effective Index}

\(\Delta n_{\text{eff}} \) \hspace{1cm} \text{Difference between two consecutive Refractive Indices}

\(Re \) \hspace{1cm} \text{Real part of a complex number}

\(Im \) \hspace{1cm} \text{Imaginary part of a complex number}

\textbf{Subscripts}

\(A_x, A_y, A_z \) \hspace{1cm} \text{x, y, z components of a vector A}

\(w_0, w_{z1}, w_{z2} \) \hspace{1cm} \text{sample number of field } \psi

\(w_{s1}, w_{s2}, w_{s3} \) \hspace{1cm} \text{field immediately to the left or to the right of a sample point}

\textbf{Superscript}

\(\psi' \) \hspace{1cm} \text{first derivative of } \psi

\(\psi'' \) \hspace{1cm} \text{second derivative of } \psi

\(n_{\text{eff}}' \) \hspace{1cm} \text{real part of the effective index}

\(n_{\text{eff}}'' \) \hspace{1cm} \text{imaginary part of the effective index}

\(A^* \) \hspace{1cm} \text{complex conjugate of } A
THESIS ABSTRACT

Name: MOHAMMED ABDUL MAJID

Title: ANALYSIS OF MULTI-LAYER ARROW PLANAR WAVEGUIDE FOR EVANESCENT FIELD ENHANCEMENT IN LOW-INDEX MEDIA

Degree: MASTER OF SCIENCE

Major Field: ELECTRICAL ENGINEERING

Date of Degree: SEPTEMBER 2001

The ARROW (Antiresonant Reflecting Optical Waveguide) waveguide is a basic component of integrated optical circuits. In this thesis, multi-layer ARROW planar waveguide is studied for the purpose of enhancing the evanescent field in low-index media. This leads to enhancing the sensitivity of optical detection in the low-index media. We have analyzed this structure using water as the low-index superstrate and investigated different aspects which include a study of the polarization properties, sensitivity and coupling loss using endfire excitation. The sensitivity of optical detection and power enhancement of the evanescent field in the low-index superstrate of the multi-layer ARROW waveguide is sufficiently increased as the the core thickness of the multi-layer ARROW waveguide is decreased. Gaussian beam coupling problem which involves a single discontinuity is successfully analyzed using the Method of Lines (MOL). The Perfectly Matched Layer (PML) absorber is used to absorb the radiated fields from this discontinuities. The MOL with Higher-order approximations of the second derivative ($\partial^2/\partial x^2$) operator with appropriate interface conditions are used in the analysis.

Keywords: ARROW Waveguide, Multi-layer ARROW Waveguide, Evanescent Field Enhancement, Sensitivity, Polarization, Gaussian Beam Coupling, Method of Lines (MOL), Low-index Media, Higher-Order Approximations, Perfectly Matched Layer (PML).

Master of Science Degree

King Fahd University of Petroleum and Minerals, Dhahran.
September 2001

xvii
الاسم: محمد عبد الحليم
عنوان الرسالة: تحليل موجة الموجة المتعدد الطبقات
لفرض تعزيز المجال في المواد ذات معامل الانكسار المنخفض.
الدرجة: ماجستير في الهندسة الكهربائية

يعتبر موجة الموجة متعدد الطبقات من العناصر الأساسية في تكوين الدوائر البحرية المدمجة. الخوض من هذه الرسالة هو تحليل هذا الموجه المستخدم لتعزيز المجال الكهرومغناطيسي في المواد ذات معامل الانكسار المنخفض. ينتج من هذا التعزيز زيادة في حساسية استشعار المجال في المواد ذات معامل الانكسار المنخفض. لقد تم تحليل الموجه المذكور أعلاه وذلك باستخدام الماء كمادة ذات معامل انكسار منخفض.

لقد تم دراسة عوامل متعددة منها دراسة خواص الاستقطاب و خواص حساسية الاستشعار وكذلك دراسة كفاءة ادخال الموجة البحرية من خارج الموجه. وبناءً على تلك الدراسة فقد تبين أن كل من قدرة المجال و حساسية الاستشعار تزيد كلما صغر سمك طبقة لب الموجه. أما بالنسبة لكفاءة ادخال الموجة البحرية فقد استخدمنا ضوء غاوي و تم تحليل انكسار واستمرار هذا الضوء عند مدخل موجة الموجة وذلك باستخدام طريقة رقمية تسمى طريقة الخطوط. بالنسبة لطريقة الخطوط تم استعمال الشعاع المتولد باستخدام طبقة امتصاص مثل و كذلك تم استخدام تقريب عالي الدقة لحساب المشتقة من الدرجة الثانية مع مراوغة شروط الحدود للمجال الكهرومغناطيسي.
Chapter 1

Introduction

1.1 Integrated Optics

Dielectric waveguides have been studied since the early years of this century. However, the interest in their applications actually started in the sixties. The possibility of guiding light along dielectric layers has been done experimentally in 1963, which actually stimulated the growth of a new class of passive and active components. The field integrated optics was first proposed in 1969 by S.E Miller of Bell labs [1, 2].

Integrated optics is the name given to opto-electronic systems in which the familiar wires and cables are replaced by light-guiding optical fibres, and conventional integrated circuits are replaced by optical integrated circuits (OICs). In an OIC, the signal is carried by means of a beam of light rather than by an electric current, and the various circuit elements are interconnected on the substrate wafer by optical
waveguides. By combining such layers and shaping them into appropriate configurations, integrated optics technology has realized a large variety of components which can perform a wide range of operations on optical waves. Thus, light can be guided, modulated, deflected, filtered, radiated into space, or by using laser action, it can be generated within thin-film structures.

Two important technical developments gave impetus to this new technology, these are the development of the laser as a source of light that can be manipulated to carry information and the development of the optical fiber as a viable low-loss transmission medium. Some advantages of integrated-optic systems includes small size and low weight, much increased bandwidth, immunity to electro-magnetic interference as well as low loss in signal transmission. When the basic components: source, waveguide and detector are all integrated on a single substrate, we have a monolithic OIC. Compound semiconductors such as gallium arsenide (GaAs) and indium phosphide (InP) are the candidate substrates for this type of OIC. When the components are made of dissimilar materials, we have a hybrid OIC. For example, the source and detector are made of compound semiconductors such as silicon (Si) and the waveguide is made of dielectric materials such as lithium niobate (LiNbO₃) or silica (SiO₂).

Coupling loss is an important design parameter in Optical Fiber Communications and Integrated Optics. There has been a considerable interest during the past two decades in the development of new means of increasing the efficiency of the input
and output coupling arrangements. A substantial portion of the light power can be lost in the region between the waveguide and the open-space or between the IO waveguide and the optical fiber, making the analysis of the factors that influence the coupling efficiency of great importance.

1.2 Optical Waveguides

An optical waveguide is a device which can confine light energy and transport it from one region of space to another with low power loss. A well-known and important example of an optical waveguide is the optical fiber which is a cylindrical waveguide. Total-internal-reflection (TIR) phenomenon is utilized to design such an arrangement. Another example is the dielectric slab waveguide which has a middle layer of high refractive index surrounded by layers of lower refractive indices on both sides. Thus, electromagnetic energy can be trapped inside the high index layer (core) by TIR phenomenon on both sides of the core and can be transported over a long distance. These waveguides could also have a multi-layer structure with more than three layers. The refractive index profile may be uniform (step-index) or continuously varying (graded-index) in each layer.
1.3 ARROW Waveguide

Anti-Resonant Reflecting Optical Waveguides have received much attention due to their attractive features such as low transmission loss, high polarization selectivity, compatibility with mono-mode optical fibers [3] due to the large core size and small refractive index mismatch. They can be easily integrated monolithically with electronics components as they use SiO$_2$/Si material system [4]. This makes it a favorable candidate for designing complete integrated optics circuits having all the necessary components, that is: source, waveguide and detector on a single wafer of Silicon. These devices are used in optical communication networks, wavelength selective filters, directional coupler, power splitter, modulator, semiconductor laser sources, detectors and optical sensors.

A typical ARROW waveguide is shown in the figure 1.1. The ARROW structure is characterized by the presence of a high index layer n_2 which provides the high reflectivity required to achieve low loss operation of the waveguide. It is also noted that TE modes of the ARROW waveguide are generally low loss while the TM modes are of high loss [5, 6], since TM reflections are always lower by the same phenomenon which gives rise to the Brewster angle. Therefore, this device also behaves as a TE pass polarizer.

Unlike conventional waveguides that depend on total internal reflection (TIR) phenomenon for guidance of the optical field in a region of high refractive index sur-
rounded by regions of lower refractive index, the ARROW structure partially depends on anti-resonant reflection [7] for guidance in a medium of low refractive index surrounded by a medium of high refractive index. Since TIR at the core-cladding interface may not be realized in this situation, the ARROW structure is essentially a leaky waveguide [8] and thus ARROW modes have a complex propagation constant. The radiation losses of the leaky waves are reduced by the high reflectivity of an anti-resonant cladding layer.

![Refractive Index Profile in an ARROW Waveguide](image)

Figure 1.1: Refractive Index Profile in an ARROW Waveguide

1.4 Multi-layer ARROW

Figure 1.2 shows the waveguide structure based on multi-layer ARROW (Anti-resonance Reflecting Optical Waveguide) for sensing operation [9]. It will be shown later that an appropriate choice of design parameters of the proposed structure leads
Figure 1.2: Multi-Layer ARROW structure
to considerable enhancement of the evanescent field in low index superstrate, while maintaining low leakage loss.

In this work we choose water as the low index superstrate material because its refractive index approximates most fluids found in nature. The layer immediately below water is made of silica with an assumed refractive index \(n_s = 1.46 \) and thickness \(t_C \). We shall refer to this layer as the core. The layer below the core is made of high index material \((n_H = 2.3) \) having thickness \(t_H \). This is an ARROW layer [9] which is used here to cause wave reflection in the vertical direction towards the core layer. The next set of layers consists of a total of \(N \) identical pairs of layers. Each pair consists of a silica layer \((n_s = 1.46) \) on the top of a high-index \((n_H = 2.3) \) ARROW layer. The thickness of the silica and the high-index layers are \(t_s \) and \(t_H \) respectively. The bottom most layer is the substrate, which is also assumed to be made of silicon dioxide (SiO2). When \(N=1 \), the total number of layers in the vertical direction is exactly four. This includes the superstrate, the core layer, a single high-index ARROW layer and finally the substrate.

1.5 Method of Lines and other Numerical Methods

Optical waveguide problems that can be analytically solved are limited to simple structures and devices. For complicated devices, either analytical solutions do not
exist in closed form or even if they exist, they are difficult to obtain. Several numerical methods have been developed to model longitudinally-varying waveguide structures. Among these methods are the Collocation Method [10], Method of Lines (MOL) [11, 12], Mode Matching Method (MMM) [13], Beam Propagation Method (BPM) [14, 15] and the Finite Difference Time Domain (FDTD) method [16]. These Methods and other methods are best reviewed in [17, 18]. The basic BPM can not be used to model waveguide discontinuities due to its inability to account for backward reflected waves at a longitudinal discontinuity. It is also an approximate method which requires the wave to be paraxial [13]. The FFT-BPM version is also known to be inefficient in problems having large index discontinuities in the transverse direction. Hence, it is good only for low contrast waveguides and for gradual bends in optical waveguides.

The FDTD method can be used to model longitudinal discontinuity problems but it requires the whole structure to be discretized and stored in computer memory. Hence to model long gratings, the FDTD requires excessively large memory. Also this is a time-domain method and the algorithm should be run for considerable amount of time to get steady state response and some post-processing may be necessary. At any rate this method has gained popularity due to both its ease of understanding and implementation.

The Collocation Method is based on the Helmholtz equation [19]. In this method, the field is expanded into a set of suitable orthogonal basis functions $\omega_n(x)$ in the
transverse direction. The choice of basis functions depend on the problem geometry. Since these basis are not eigen-modes of the problem, we need a larger number of basis functions to achieve accurate results.

The Mode Matching Method (MMM) or Eigenmode Propagation Method (EPM) employs eigen-mode expansion of the field, in which the discrete guided modes, the continuous radiation modes and continuous evanescent modes are taken as basis [20]. The choice of these basis functions is problem dependent. The reflected and transmitted fields are solved through a mode matching procedure.

The Method of Lines (MOL) is a semi-analytical technique used to solve partial differential equations (PDE). For an n-independent variable PDE, only (n-1) variables are discretized to obtain a system of ordinary differential equations (ODE) [21, 22] in the remaining independent variable, which can be solved analytically. This results in a higher numerical accuracy due to the reduced number of discretized variables, less computational time due to the analyticity in the remaining independent variable and smaller memory requirements as we do not need to discretize in the analytical direction. Instead of approximating the field by a series expansion of basis functions (as done in the Mode Matching Method), the second-derivative operator is approximated by a finite-difference scheme. The resulting matrix ODE is solved to find the eigenmodes of the structure. This method can account for backward reflected field due to longitudinally inhomogenous structures, which permits the analysis of planar waveguides having longitudinal discontinuities.
1.6 Statement of the Problem

The Method of Lines is chosen for the analysis of waveguide structures in this thesis, because it is a rigorous method and can model high-contrast waveguides. It can account for the reflected field at sudden longitudinal waveguide discontinuities, junctions and bends. The basic three-point central-difference approximation of the second derivative operator, which is used in the Method of Lines gives relatively poor estimate of the modal fields and effective indices of a multi-layer waveguide structure. Thus we will use higher-order approximations of the second derivative operator with appropriate interface conditions to improve the accuracy while using fewer discretization lines to sample the problem space. This helps to reduce the computational time required to obtain stationary solutions as well as the analysis of multiple discontinuity problems. Another improvement to MOL is achieved by using a non-uniform meshing scheme to reduce the number of required sampling points. When radiative fields are involved in the problem, we need to terminate the problem space by an appropriate absorbing boundary condition to model an infinite space. In this thesis, a Perfectly-Matched-Layer (PML) [23] is used as an absorbing layer.

MOL will be used to find modal fields and effective indices of the Basic and Multi-layer ARROW. The ARROW is relatively new waveguide structure and there is much interest in its applications in integrated optics. The Multi-layer ARROW
which is to be analyzed in this thesis to understand different aspects of the structure which includes coupling loss of a Gaussian beam using the end fire approach, polarization properties and effects of variations of the real and imaginary parts (sensitivity) of the refractive index of the low-index superstrate on the optical properties of the fundamental TE mode of the structure. This includes calculations of the acquired phase difference and modal attenuation due to variation of the complex refractive index of the superstrate.

In this thesis we will study different sensing application based on evanescent field which includes Chemical sensing, biochemical and Biosensing. A special device called Biochip will be discussed. We will also study the Bio part of biosensing and some basics of medical field will be explained in conjunction with the optical part for better understanding.

1.7 Thesis Organization

This thesis is organized with a view to present the work from the basic slab waveguide theory to the discussion of results obtained from our study of a multi-layer planar waveguide. This thesis consists of seven chapters. In chapter 1. a basic overview of Integrated Optics, Optical Waveguides, ARROW waveguide, Multi-Layer ARROW Waveguide and Method of Lines is given.

Theory of the dielectric slab waveguide is presented in chapter 2. because the funda-
mental component of guided-wave opto-electronic devices is the optical waveguide, which supports the optical field. This chapter starts by introducing Maxwell's equations. By using Maxwell's equation, the wave equation is obtained and subsequently used to analyze the stationary modes of a slab waveguide.

Chapter 3 starts with the introduction of the Method of Lines (MOL), which is applied to solve the scalar wave equation. The three-point central difference approximation of the second derivative operator is introduced, the five point and the seven point approximation with appropriate interface conditions are briefly discussed. Exact results are compared to the numerical based on the MOL in order to establish the accuracy of the MOL.

In Chapter 4, the Anti-Resonant Reflecting Optical Waveguide (ARROW) is described and the Method of Lines is used to model this structure. The effective indices and modal fields of the ARROW waveguide structure are calculated and compared with analytical results.

In Chapter 5, the Multi-Layer Planar Waveguide is introduced. Evanescent Field Enhancement, polarization properties, effects of variations of the real and imaginary parts (sensitivity) of the refractive index of the low-index superstrate on the optical properties of the fundamental TE mode of the structure (This includes calculations of the acquired phase difference and modal attenuation due to variation of the complex refractive index of the superstrate) are calculated and discussed.
Chapter 6, introduces the basic formulation for the MOL analysis of Gaussian beam coupling to the multi-Layer ARROW waveguide which includes, coupling techniques, calculation of power coupling efficiency in edge coupling, the application of the MOL to the coupling problem, calculation of power coupling efficiency using the MOL. The coupling loss of a Gaussian beam using the end fire approach is presented with the results given at the end of the chapter.

Chapter 7, starts with the introduction of the application of evanescent field enhancement in low index-supersstrate. Different sensing applications based on evanescent field which includes chemical sensing, biochemical and biosensing are discussed. The concept of the Biochip is introduced and some basics of medical field are discussed in conjunction with the optical part.

In the chapter 8, this work presented is summarized along with conclusions and few possible future extensions are proposed.
Chapter 2

Dielectric Slab Optical Waveguide

2.1 Introduction

The simplest of the optical waveguides is the Dielectric slab waveguide. Because of its simple geometry, radiation modes and guided modes (a mode is a transverse field profile that retains the same shape (except for attenuation) as the field propagates along the guide) can be described by simple mathematical expressions. In gaining understanding of the more complicated dielectric waveguide properties study of simple slab waveguide is essential. It must be noted, that slab waveguides are not only useful as models for more general types of optical waveguides but they are actually employed for light guidance in integrated optical circuits [24, 25, 26, 27, 28].

In this chapter, the theory of planar dielectric waveguides will be explained. Starting with Maxwell's equations, we will give a brief description of the propagation of
optical modes in slab waveguide.

2.1.1 Basic Formulation

Figure 2.1 shows a schematic diagram of a three-layer planar waveguide. The core region of the waveguide, which is also called the film, is assumed to have a refractive index \(n_1 \). The film is deposited on a layer called the substrate which has a refractive index \(n_2 \). The cladding on the film is called the superstrate which has a refractive index \(n_3 \).

In this section, we will consider the stationary modes of the basic three-layer dielectric slab waveguide. This structure is an asymmetric dielectric slab waveguide, shown in figure 2.2. As can be seen, this figure shows a longitudinal cross-section of the slab waveguide shown in figure 2.1. In figure 2.2, we assume that the dimension of the slab along the \(y \)-axis is considerably larger than its dimension along the \(x \)-axis and that no material or field variation exist along the \(y \)-direction. Such a waveguide supports a finite number of guided modes as well as an infinite number of unguided radiation modes. Assuming that \(n_1 > n_2 \geq n_3 \), it follows that total internal reflection (TIR) can occur at both interfaces. It should be noted that the number of guided modes that can be supported by a slab waveguide depends on the thickness \(2a \), the wavelength \(\lambda \) and the indices of refraction, \(n_1, n_2 \) and \(n_3 \). Starting with Maxwell’s equations in a source-free region in terms of the refractive index \(n_i \) (\(i = 1, 2, 3 \)) of the three layers and assuming that the material of each layer is
Figure 2.1: Schematic Diagram of A Dielectric Slab Waveguide

Figure 2.2: A Three-Layer Dielectric Slab Waveguide. 2D view
non-magnetic, homogeneous and isotropic (these assumptions are valid throughout this thesis), that is \(\mu = \mu_0 \) and \(\varepsilon \) is uniform and scalar, we have [24]:

\[
\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \tag{2.1}
\]

\[
\nabla \times \mathbf{H} = n_\parallel^2 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \tag{2.2}
\]

\[
\nabla \cdot \mathbf{E} = 0 \tag{2.3}
\]

\[
\nabla \cdot \mathbf{H} = 0 \tag{2.4}
\]

To obtain the above equations, we used \(\mathbf{D} = \varepsilon \mathbf{E} = n_\parallel^2 \varepsilon_0 \mathbf{E}, \mathbf{B} = \mu_0 \mathbf{H}, \mathbf{J} = 0. \)

If we apply the curl operator to equation 2.1, we get:

\[
\nabla \times \nabla \times \mathbf{E} = -\mu_0 \nabla \times \frac{\partial \mathbf{H}}{\partial t} \tag{2.5}
\]

\[
= -\mu_0 n_\parallel^2 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \tag{2.6}
\]

where equation 2.2 has been used to eliminate \(\mathbf{H} \). To simplify further, we use the vector identity

\[
\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} \tag{2.7}
\]

where \(\mathbf{A} \) is an arbitrary vector field. Using equations 2.3 and 2.7, equation 2.6 can
be simplified to:

\[\nabla^2 \mathbf{E} = \mu_0 \varepsilon_0 n_1^2 \frac{\partial^2 \mathbf{E}}{\partial t^2} \quad (2.8) \]

Writing the above equation in phasor notation (assuming a time-harmonic field of the form \(e^{-j\omega t} \)) we obtain \([24, 25]\):

\[\nabla^2 \mathbf{E} + k_0^2 n_1^2 \mathbf{E} = 0 \quad (2.9) \]

which is the familiar three-dimensional vector wave equation for a uniform dielectric with refractive index \(n_1 \). Here \(k_0 \) is the free-space wave number given by \(k_0 = \omega \sqrt{\mu_0 \varepsilon_0} \). The electric field vector \(\mathbf{E} \) in equation 2.9 is a phasor quantity, which is complex and has both a magnitude and a phase. In addition, \(\mathbf{E} \) is in general a function of space co-ordinates \(x, y, z \) and angular frequency \(\omega \). \(\mathbf{E} \) is independent of time since the time dependence has been removed by the phasor transformation.

We may simplify equation 2.9 by assuming that the structure is uniform in the \(y \)-direction (see Figure 2.1) and extends to infinity in the \(y \)-direction. This allows us to assume that the field \(\mathbf{E} \) is also uniform in this direction. Thus \(\frac{\partial}{\partial y} \) is replaced by zero. If we further assume a \(z \)-dependence of the form \(e^{j\beta z} \), with \(\beta \) as the longitudinal propagation constant. Equation 2.9 is simplified and takes the form:
\[\frac{d^2E}{dx^2} + (k_0^2n_1^2 - \beta^2)E = 0 \] (2.10)

The above equation is known as Helmholtz equation. In this case \(E \) is a function of \(x \) only and the equation is a second order ordinary differential equation. The propagation constant \(\beta \) can be expressed as \(\beta = k_0 n_{eff} \), where \(n_{eff} \) is called the effective index. The field of a slab waveguide is in general a superposition of Transverse Electric (TE) polarized field and Transverse Magnetic (TM) polarized field. The field components of the two polarizations are \(H_x \), \(E_y \) and \(H_z \) for TE-polarized waves and \(E_x \), \(H_y \) and \(E_z \) for TM-polarized waves.

2.2 Transverse Electric (TE) Guided Modes

By using equation 2.10, the TE scalar wave equation and Maxwell's equations [29], for guided mode then applying the boundary conditions at \(x = 0 \) and at \(x = 2d \) to the solution of \(E_y \) and \(H_z \) in the three regions and eliminating the arbitrary constants [24, 25, 29], we get

\[
\tan(2dq) = \frac{q(p + r)}{q^2 - pr} \] (2.11)

where \(r^2 = \beta^2 - k_0^2n_3^2 \), \(q^2 = k_0^2n_1^2 - \beta^2 \) and \(p^2 = \beta^2 - k_0^2n_2^2 \). This is the eigenvalue equation for the TE modes of the asymmetric slab waveguide. Equation 2.11 is an
implicit relationship which involves the wavelength, refractive indices of the layers and core thickness as known quantities, and the propagation constant β as the only unknown quantity. It can be shown that only certain discrete values of β can satisfy the above equation, so this waveguide will only support a discrete set of guided modes. The symmetric waveguide ($n_2 = n_3$) can only support modes with even or odd electric field patterns. In this case it can be easily shown that the eigen-value equation 2.11 reduces to ($p = r$):

$$\tan(2dq) = \frac{2pq}{q^2 - p^2}$$ \hspace{1cm} (2.12)

An example of the field pattern of the TE modes for a three-layer slab waveguide is given in figure 2.3. From the figure one can infer that TE_0 is tranverse field profile which doesn't cross the axis, but the higher order modes such as TE_1 crosses once. TE_2 crosses twice and so on.

2.3 Transverse Magnetic (TM) Guided Modes

The wave equation for this polarization is obtained in terms of the magnetic field component H_y. Using scalar wave equation 2.10 and Maxwell's equation [29], and applying boundry conditions at $x = 0$ and at $x = 2d$ to the solution of H_y and E_z in the three regions [24, 25, 29]: we get
\[
\tan(2dq) = \frac{qn_1^2 (n_2^2 p + n_3^2 r)}{n_2^2 n_3^2 q^2 - n_1^4 pr}
\]

(2.13)

which is the eigenvalue equation for TM modes of an asymmetric slab waveguide.

For symmetric case equation 2.13 reduces to:

\[
\tan(2dq) = \frac{n_1^4 2pq}{n_2^4 q^2 - n_1^4 p^2}
\]

(2.14)

An example of the TM mode patterns for a symmetric slab waveguide is given in figure 2.4. As evident from the figure, \(H_y\) is continuous across a layer interface but its derivative is discontinuous there, causing a sudden change in the slope of \(H_y\).
Figure 2.3: **TE Mode Patterns of a Symmetric Slab Waveguide**

Figure 2.4: **TM Mode Patterns of a Symmetric Slab Waveguide**
Chapter 3

The Method of Lines

3.1 Introduction

For the analysis of optical waveguide structures various numerical algorithms have been proposed and successfully implemented. One of these methods is the method of lines (MOL), which is a semi-analytical technique resulting in higher accuracy, less computational time and smaller storage requirement. The MOL has been applied to several types of planar longitudinally uniform waveguide problems. It has been used to analyze single [30, 31] and multiple discontinuities in optical waveguides [11, 22, 32, 33, 34, 35, 36] and to solve non-linear waveguide problems [37] as well as diffraction problems from waveguide ends [38]. It had been successfully used to model 3-D problems [39, 40, 41] for both optical and microwave wave-guides. The method in general has been applied in other branches of science as well.
3.2 Basic Algorithm

When the MOL is applied to two dimensional structures, the waveguide geometry is discretized in the transverse direction (the direction normal to the direction of propagation) and calculated analytically in the longitudinal direction [36](direction of propagation). Figure 3.1 shows a planar waveguide structure in which the interfaces of layers are parallel to the z-axis. Discretization is done in the x-direction. This implies that the field will be calculated on lines that are equidistant from each other and parallel to the z-axis. In some cases it is better to have non-equidistant discretization (i.e., non-uniform). In locations where the field changes rapidly we can use more lines per unit length whereas in locations where the field changes slowly we can use few lines. This approach improves the computational time and memory requirement. The computational window is bounded by an electric wall where \(E_y = 0 \) or a magnetic wall where \(H_y = 0 \) as appropriate. It must be noted that discretization is done in one coordinate and calculated analytically in the other coordinate. Consider the two dimensional wave equation:

\[
\frac{\partial^2 \psi(x, z)}{\partial x^2} + \frac{\partial^2 \psi(x, z)}{\partial z^2} + k_z^2 n^2 \psi(x, z) = 0
\]

(3.1)

The \(\frac{\partial^2}{\partial x^2} \) term in equation 3.1 is replaced by a three-point central difference approximation of the form:
\[\frac{\partial^2 \psi_i}{\partial x^2} = \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{(\Delta x)^2} \quad (3.2) \]

For detail formulation refer to [29]: At the \(ith \) grid we get

\[\frac{\psi_{i+1}(z) - 2\psi_i(z) + \psi_{i-1}(z)}{(\Delta x)^2} + \frac{d^2 \psi_i(z)}{dz^2} + k^2 \alpha n^2 \psi_i(z) = 0 \quad (3.3) \]

If the field in the \(x \)-direction is discretized into \(M \) points, then Equation 3.3 results in the following \(M \) equations:

\[i = 1 : \quad \frac{1}{(\Delta x)^2} [\psi_2 - 2\psi_1 + \psi_0] + \frac{d^2}{dz^2} [\psi_1] + k^2 \alpha n^2_1 [\psi_1] = 0 \quad (3.4) \]

\[i = 2 : \quad \frac{1}{(\Delta x)^2} [\psi_3 - 2\psi_2 + \psi_1] + \frac{d^2}{dz^2} [\psi_2] + k^2 \alpha n^2_2 [\psi_2] = 0 \quad (3.5) \]

\[i = 3 : \quad \frac{1}{(\Delta x)^2} [\psi_4 - 2\psi_3 + \psi_2] + \frac{d^2}{dz^2} [\psi_3] + k^2 \alpha n^2_3 [\psi_3] = 0 \quad (3.6) \]

\[\vdots \]

\[i = M : \quad \frac{1}{(\Delta x)^2} [\psi_{M-1} - 2\psi_M + \psi_{M-1}] + \frac{d^2}{dz^2} [\psi_M] + k^2 \alpha n^2_M [\psi_M] = 0 \quad (3.7) \]
The above equations can be written in matrix form as:

\[
\begin{bmatrix}
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
1 & -2 & \cdots & \cdots & \cdots & \cdots \\
0 & 1 & -2 & 1 & \cdots & 0 \\
\end{bmatrix}
\begin{bmatrix}
\psi_1(z) \\
\psi_2(z) \\
\psi_3(z) \\
\vdots \\
\psi_M(z) \\
\end{bmatrix}
+ \frac{d^2}{dz^2} \begin{bmatrix}
\psi_1(z) \\
\psi_2(z) \\
\psi_3(z) \\
\vdots \\
\psi_M(z) \\
\end{bmatrix} = 0
\]

written in a compact notation, we get:

\[
\begin{bmatrix}
\begin{bmatrix}
\psi_1(z) \\
\psi_2(z) \\
\psi_3(z) \\
\vdots \\
\psi_M(z) \\
\end{bmatrix} \\
\end{bmatrix}
= \begin{bmatrix}
n_1^2 \\
n_2^2 \\
n_3^2 \\
\vdots \\
n_M^2 \\
\end{bmatrix}
\]

\[
\frac{1}{(\Delta z)^2} C \Psi + \frac{d^2}{dz^2} \Psi + k_0^2 N \Psi = 0
\]

(3.8)

where \(C \) is a tri-diagonal second-order central-difference matrix, \(N \) is a diagonal matrix whose elements are \(n_1^2, n_2^2, \ldots, n_M^2 \) and \(\Psi = [\psi_1(z), \psi_2(z), \ldots, \psi_M(z)]^T \) is the
discretized field vector. We can define Q as:

$$Q = \frac{1}{(\Delta x)^2} C + k_o^2 N$$ \hspace{1cm} (3.9)$$

Equation 3.8 can be modified as:

$$\frac{d^2}{dz^2} \Psi + Q \Psi = 0$$ \hspace{1cm} (3.10)$$

This is a 2nd-order differential equation whose solution is given by [11]:

$$\Psi = e^{i\sqrt{Q} z} A + e^{-i\sqrt{Q} z} B$$ \hspace{1cm} (3.11)$$
where $e^{j\sqrt{Q}z}$ represents field propagation in the $+z$ direction and $e^{-j\sqrt{Q}z}$ represents field propagation in $-z$ direction. Substituting $z = 0$, in equation 3.11 results in

$$\Psi = A + B$$

(3.12)

This means that the $M \times 1$ column matrix A represents the incident field at $z = 0$, while the matrix B represents the reflected field at $z = 0$. The matrices $e^{j\sqrt{Q}z}$ and $e^{-j\sqrt{Q}z}$ are calculated by diagonalizing the matrix Q to find the eigenvalues and eigenvectors. The matrix Q may then be written in the form:

$$Q = UDV^{-1}$$

(3.13)

where U is the eigenvector matrix and V is a diagonal matrix containing the eigenvalues of Q. The matrix exponential can be found using the well known relation of linear algebra:

$$e^{j\sqrt{Q}z} = Ue^{j\sqrt{V}z}U^{-1}$$

(3.14)

3.3 Interface Conditions

In order to correctly model the electric and magnetic fields behaviour at an interface, the interface conditions (I.C.s.) should be appropriately accounted for in the Method
of Lines formulation. The tangential electric field E_y and its first derivative are continuous across an interface. For TE polarization the interface condition are given by (for detail formulation refer to) [29]:

$$E_y^0^- = E_y^0^- \quad (3.15)$$

$$\frac{\partial E_y^0^-}{\partial x} = \frac{\partial E_y^0^-}{\partial x} \quad (3.16)$$

The tangential magnetic field H_y is continuous but its first derivative is discontinuous at an interface. For TM polarization the interface conditions are given by:

$$H_y^0^- = H_y^0^- \quad (3.17)$$

$$\frac{1}{n_2^2} \frac{\partial H_y^0^-}{\partial x} = \frac{1}{n_1^2} \frac{\partial H_y^0^-}{\partial x} \quad (3.18)$$

Where $n1$ and $n2$ are refractive indices shown in figure 3.2.
3.4 Higher-Order Approximation of the $\frac{\partial^2}{\partial x^2}$ Operator

In this section we will briefly discuss improvements of the three-point formulation with interface conditions for details refer to [29, 22]. The improved formula is given by:

$$
\psi''_{0-} = \psi_{-1} - \frac{\tau_{21}\rho_{21} + 1 + 0.5h_2^2 \zeta_{12}}{0.5h_2(h_1\rho_{21} + h_2)} \psi_0 + \tau_{21}\rho_{21}\psi_{-1}
$$

(3.19)

where $\tau_{21} = \frac{h_2}{h_1}$ (h is mesh size). This relation approximates the $\frac{\partial^2}{\partial x^2}$ operator at any sampling point i in terms of the field values at $i+1$, i and $i-1$ sampling points. So this is a better three-point central-difference approximation of $\frac{\partial^2}{\partial x^2}$ operator since it
accounts for the field at interface boundary conditions. In addition, the non-uniform mesh makes this formulation very efficient.

The improved formula 3.19 for the second derivative approximation has an accuracy of $O(h^2)$ at regions of uniform index and mesh size. Its accuracy decreases at a mesh or index discontinuity. In integrated optical waveguide modeling, the required accuracy in estimating the effective index is fairly high. So we need to use a relatively large number of discretization lines to reduce numerical errors. This leads to larger matrices and longer computational time.

The higher-order approximation scheme of the second-derivative operator $\frac{\partial^2}{\partial y^2}$ presented in references [22, 42] gives sufficiently high accuracy and accurate estimation of the modal field profile and the effective indices. The necessary interface conditions for the electric and magnetic fields are appropriately included in the scheme. This scheme results in a much reduced matrix size, faster computational speed and lower memory usage. Derivation of five-point and seven-point approximation is presented in [22]. I have successfully programmed the five-point and seven-point approximation of the second derivative operator ($\frac{\partial^2}{\partial x^2}$) to model a high contrast waveguide. The effective index n_{eff} and modal field of the fundamental TE and TM modes are calculated using the MOL. These MOL results are compared with exact results and their convergence behavior is studied by decreasing the mesh size (that is increasing the number of discretization points) in the problem space. It is observed that the 7-point formula gives a better estimate of n_{eff} and modal field with relatively few
sample points as compared to the 5-point and the 3-point formulas.

3.4.1 Air/GaAs/Air Symmetrical Waveguide

The waveguide structure considered is given in the inset of figure 3.3. In this simulation, a uniform mesh is used and number of sample points are varied while keeping the outer layer thickness sufficiently large so that the modal field decays to a sufficiently small value (approximately 10^{-5}) as compared to its value at the Air/GaAs interface. The phase parameter, defined as $B = (n_{eff}^2 - 1^2)/(3.6^2 - 1^2)$. The exact values of the TE_0 and TM_0 modes are calculated by STF1 program (see Appendix A).

For the TE_0 mode, we have $n_{eff} = 3.543961609340$ and $B_0 = 0.9665270809765686$. and for the TM_0 mode, $n_{eff} = 3.529434420038923$ and $B_0 = 0.9579353950966126$.

The relative error in the phase parameter which is defined as $\frac{B_{num} - B_0}{B_0}$ is plotted against the mesh size (h) (see figures 3.3 and 3.4). The results show that for relatively small values of the mesh size, the error due to lower order formulation substantially exceeds the corresponding error for the higher order formulation. This shows the superiority of the 5-point and the 7-point formulation to find n_{eff} and modal field for both the TE and TM polarization as compared to the 3-point formulation.
Figure 3.3: Relative Error in Phase Parameter for the fundamental TE_0 mode

Figure 3.4: Relative Error in Phase Parameter for the fundamental TM_0 mode
Chapter 4

Analysis of Anti-Resonant Reflecting Optical Waveguide (ARROW) Modes

4.1 Introduction

Most optical waveguides, confine light inside the core, where the refractive index is higher than surrounding region, the cladding. There is a class of waveguides where the core refractive index is less than that of the cladding, these waveguides are well known as leaky waveguides and have found prominent position in the literature [24, 43]. These waveguides have many unique properties which have been exploited for several applications, such as building waveguides on high-index substrate [5].
confining light in gaseous medium [43], and remote switching [44]. Transmission capabilities are limited by the leakage loss as these waveguides do not support guided modes. By careful design this loss can be reduced, and the most feasible way of realizing low-loss leaky waveguides is to surround the core with high reflective antiresonant cladding.

The Anti-Resonance Reflecting Optical Waveguide ARROW, a leaky waveguide (see figure 4.1), utilizes the high reflectivity of two interference cladding layers (anti-resonant reflection) deposited on the high index substrate. ARROW waveguides have received much attention due to their attractive features such as low transmission loss, high polarization selectivity, compatibility with monomode optical fibers [3] due to the large core size and small refractive index mismatch. They can be easily integrated monolithically with electronics components as they use SiO₂/Si material system [4].

Unlike conventional waveguides that depend on total internal reflection (TIR) phenomenon for guidance of the optical field in a region of high refractive index surrounded by region of low refractive indices, the ARROW structure partially depends on antiresonant reflection [7] for guidance in a medium of low refractive index bounded on one or both sides by a medium of high refractive index. Since TIR is not realized on both sides of the core in this situation, the ARROW structure is essentially a leaky waveguide [8] and thus results in a complex propagation constant. The radiation losses of the leaky waves are reduced by the high reflectivity
of an antiresonant cladding layer. A typical ARROW waveguide is shown in figure 4.1. The ARROW structure is characterized by the presence of a high index layer n_2 which provides the high reflectivity required to achieve low loss operation of the waveguide. It is also noted that TE modes of the ARROW waveguide are generally low loss while the TM modes have high loss [5, 6] since TM reflections are always lower by the same phenomenon which gives rise to the Brewster angle. The degree to which TM loss is higher than the TE loss depends upon the details of proximity of the propagation angle in the core relative to the Brewster angle [5]. This ARROW wave-guide also behaves as a TE-pass polarizer and a wavelength filter.

![Figure 4.1: Typical refractive Index Profile in Planar ARROW Wave-guide](image)

Because of its large mode diameter excellent coupling to external elements can be achieved, such as single-mode optical fibers. Moreover, the ARROW waveguides seem to be promising for integrating various electronic and optical devices on a sin-
gle semiconductor chip. In order to design integrated optical devices, it is necessary to know very precisely the propagation constant or effective index of the leaky modes of this structure.

M. A. Duguay and co-workers were first to propose the idea of ARROW [5]. The formulae to calculate the thickness of each layer are given in his paper. The modal characteristics of the ARROW waveguide are studied by many authors [45, 4, 46, 3]. In these papers, the ARROW waveguide is analyzed using equivalent transmission-line and transverse-resonance methods. In the previous work, much attention has been paid to the calculation of TE and TM mode losses of the ARROW Waveguide. In [8], the author describes loss calculation for ARROW waveguides using leaky mode solutions of the vector wave equation. General analytical expressions have been reported in the literature for TE, TM, HE and EH modes of multi-layer ARROW waveguides. In [4], standard-transfer matrix method is applied to ARROW waveguide and dispersion plots are given. The ARROW waveguides are also used in wavelength filtering. The structure itself is a wavelength selective structure as the anti-resonance condition is satisfied within a certain wavelength. So for wavelengths above or below the design wavelength, the modes will have higher loss. In [47, 48], the authors describe an ARROW-based optical wavelength filter. In [49], the design of an add/drop filter for wavelength division multiplexing is described. The filter is based on a directional coupler arrangement using two coupled ARROW waveguides.
4.2 Eigenmodes of a Basic ARROW

Basic ARROW structure is taken from references [5, 9] (see figure 4.2), but we calculated the width of the Buffer layer t_s and high-index layer t_H (4.2) by the formula

$$t_m = \frac{\lambda}{4\sqrt{n_m^2 - n_{eff}^2}}$$

(4.1)

where t_m is the quarter wave thickness of the m-th layer ($m = s$ or H), λ is the free space wavelength, n_m is the refractive index of the m-th layer. We will choose the values of t_m such that anti-resonance occurs when the modal effective index n_{eff} is approximately equal to the refractive index of the superstrate. At the operating wavelength $\lambda = 0.45\mu m$, using $n_{eff} = 1.333$ (which is equal to the refractive index of water) in equation 4.1 leads to $t_s = 0.189\mu m$ and $t_H = 0.060\mu m$ for $n_s = 1.46$ and $n_H = 2.3$ respectively. We will take a core size ($t_c = 4\mu m$). The Method of Lines is applied to model the ARROW structure of figure 4.2 and the results are compared with published as well as analytical results using (STF1). A close agreement is found between the MOL calculation of the effective index (real and imaginary parts) of the modal field with those available in the literature. A non-uniform mesh scheme is used in the MoL to model the device efficiently. A double layer PML is used as an absorbing boundary condition. It effectively absorbs the leaky field [45] [4] of the ARROW giving excellent open-space approximation. It is found during the simulation that the performance of the PML depends upon the mesh size and the
Figure 4.2: Basic Planar ARROW Wave-guide

total thickness of the PML. If the sampling period is large, the PML does not absorb the leaky modes effectively giving reflections of the leaky mode from the PML (standing waves pattern is observed). The same effect is observed if the PML thickness is small and if it is prematurely terminated by E/M wall. In this case, the modal field has not decayed to a sufficiently small value and reflection from the E/M wall occur. This reflection can make the calculated power loss much less than it actually is, so we must check for standing wave pattern immediately outside the PML and accordingly we must tune the PML by increasing or decreasing the mesh size. For correct results we must make sure that there is no standing wave pattern immediately outside the PML. To achieve this we must keep dense discretization lines in the first layer and a coarse mesh in the second layer to model a larger distance with relatively fewer sample points.
4.2.1 TE Modes

MOL 5-point approximation is used to analyze the structure shown in figure 4.2, unless specified MOL 5-point approximation will be used to analyze all structures in future chapters. The ARROW modes have complex effective indices (since they are leaky). The imaginary part of the effective index is converted into power loss per unit length, that is in terms of dB/cm. The real part of the effective index lies between that of the cladding layer index and the guide layer index, that is $1.333 < n_{ef} < 1.45$. The results for TE polarization are plotted in figures 4.3, 4.4, 4.5 and 4.6. The real-part of the effective index and power loss per unit distance are also given and found to be in close agreement with those in [5] and with analytical results STF1 (see Appendix). Note from Table 4.1 that only the lowest-order TE_0 mode has a small power loss of 0.64245 dB/cm, while all higher-order modes have much higher loss factor. On the other hand, all TM mode of ARROW are highly lossy. The high loss of the TM waves makes this device a single-mode waveguide and a TE-pass polarizer. All higher-order modes will decay significantly within a short propagation distance due to their high loss factor.
4.2.2 *TM* Modes

The simulations are repeated for the *TM* polarization and the results are shown in figures 4.7 4.8 and 4.9. The *TM* modes have much higher loss factor than the *TE* modes and they decay quickly within a shorter propagation distance.

<table>
<thead>
<tr>
<th>Mode</th>
<th>n_{eff}'</th>
<th>Power Loss (MOL) (dB/cm)</th>
<th>Power loss (STF1) (dB/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE_0</td>
<td>1.4489691</td>
<td>0.64245</td>
<td>0.64633</td>
</tr>
<tr>
<td>TE_1</td>
<td>1.4458735</td>
<td>2.61797</td>
<td>2.629</td>
</tr>
<tr>
<td>TE_2</td>
<td>1.4407051</td>
<td>6.07767</td>
<td>6.084</td>
</tr>
<tr>
<td>TE_3</td>
<td>1.4334505</td>
<td>11.29668</td>
<td>11.259</td>
</tr>
<tr>
<td>TM_0</td>
<td>1.4489424</td>
<td>17.38</td>
<td>17.2996</td>
</tr>
<tr>
<td>TM_1</td>
<td>1.4457705</td>
<td>71.20</td>
<td>70.88</td>
</tr>
<tr>
<td>TM_2</td>
<td>1.4404865</td>
<td>167.06</td>
<td>166.28</td>
</tr>
<tr>
<td>TM_3</td>
<td>1.4330941</td>
<td>315.96</td>
<td>314.384</td>
</tr>
</tbody>
</table>

Table 4.1: Effective-Indices of different ARROW Modes

![Figure 4.3: TE_0 Modal Field of the ARROW](image)
Figure 4.4: TE_1 Modal Field of the ARROW

Figure 4.5: TE_2 Modal Field of the ARROW
Figure 4.6: TE_3 Modal Field of the ARROW

Figure 4.7: TM_0 Modal Field of the ARROW
Figure 4.8: TM_1 Modal Field of the ARROW

Figure 4.9: TM_2 Modal Field of the ARROW
4.3 Perfectly Matched Layer (PML) Absorber

Due to the discretization of $\frac{\partial^2}{\partial x^2}$, an electric or magnetic wall appears at the extreme edges of the computational window. This effect is not desirable, because the reflected field from the walls interferes with the field inside the computational window, leading to erroneous results.

The PML absorbing scheme based on the complex distance approach was first incorporated into the MOL by Al-Bader and Al-Jamid [23]. It has been shown in the literature that the PML can absorb propagating waves over a wide range of incident angles [23] resulting in a very small amount of reflected field. The absorption of the radiative wave is done by transforming the distance x from the real domain to the complex domain. This results in an attenuation factor in the radiative field and hence causes decay of the radiative field in the PML region. The last mesh point is terminated by an electric/magnetic wall boundary condition. The real distance is transformed to a complex one according to:

$$x \rightarrow x(1 + j\sigma) \quad (4.2)$$

Here σ is the decay factor. The wave e^{+jkx} propagating in $+x$ direction in the real space will be transformed to

$$e^{+jkx(1+j\sigma)} = e^{+jkx}e^{-k\sigma x} \quad (4.3)$$
in the complex space. The factor e^{-kx} results in the decay of the field in the $+x$ direction. The choice of the decay factor σ is discussed in [50]. Figure 4.10 shows

![Graph](image-url)

Figure 4.10: TM_0 Modal Field of the ARROW with tuned and Mis-tuned PML

the field due to a tuned and mistuned PML. If the PML is not properly tuned (has an incorrect choice of parameters) then we observe standing wave pattern due to reflection from PML layers. If the PML is tuned properly then the standing wave pattern will die off immediately outside PML region and this indicates that our results, that is power loss and n_{eff} of the waveguide are computed correctly.
4.3.1 Miscellaneous results

Some Miscellaneous facts about the ARROW waveguide are observed which are documented. It has been observed that if the guide layer thickness is reduced while keeping all other parameters constant, the power loss of the fundamental ARROW TE mode increases. We also observed that if the ARROW layer thickness is varied from optimized value the waveguide becomes more lossy and the ARROW does not work in anti-resonance mode to suppress the radiation into the substrate, rather, it works in resonance mode and increases the leakage into the substrate. As the guide layer refractive index is made smaller, the peak of TE_0 moves towards the superstrate and the evanescent field is enhanced in the superstrate, this is accompanied by an increase in the leakage loss. If the guide layer refractive index is increased the field will be more confined to the core and leakage loss decreases. As a matter of fact, if layer refractive index is made higher than the substrate layer, and in this case the ARROW will behave as a regular waveguide with a TIR confined mode.
Chapter 5

Analysis of Multi-Layer ARROW

Planar Waveguide

5.1 Introduction

Figure 5.1 shows the multi-layer ARROW. In this work we choose water as the low index superstrate material. The layer immediately below water is made of silica with an assumed refractive index \(n_c = 1.45 \) and thickness \(t_c \). We shall refer to this layer as the core. The layer below the core is made of a high index material \((n_H = 2.3) \) having thickness \(t_H \). This is an ARROW layer [9] which is used here to cause wave reflection in the vertical direction towards the core layer. The next set of layers consists of a total of \(N \) identical pairs of layers. Each pair consists of a silica layer \((n_s = 1.45) \) on the top of a high-index \((n_H = 2.3) \) ARROW layer. The thickness
of the silica and the high-index layers are \(t_s \) and \(t_H \) respectively. The bottom most layer is the substrate, which is also assumed to be made of silica. When \(N=0 \), the total number of layers is exactly four (Basic ARROW see figure 4.2). This includes the superstrate, the core layer, a single high-index ARROW layer and finally the substrate. We have used the same values of \(t_H \) and \(t_s \) and operating wavelength \(\lambda \), mentioned in last chapter.

5.1.1 Multi-layer ARROW as polarizer

In last chapter (refer to figure 4.2, we have used only one pair of high and low index layers with a large core size \(4\mu m \) to analyze the modes of the basic ARROW. We have chosen a large core size in order to reduce the leakage loss since extremely large leakage loss occur when the core size \(t_c \) is made small. Thus, a single layer of ARROW is unable to reduce the leakage loss to acceptable level when core size is small. However, as shown in figure 5.1 and 5.2 that as \(N \), the number of pairs increased, the leakage loss of the \(TE_0 \) mode is is reduced and becomes very small (below \(0.1dB/cm \)), when \(N=5 \) for all values of \(t_c \).

Because the leakage loss of the \(TE_0 \) mode is sufficiently low for \(N=5 \) layers, we choose to fix the number of pairs used to \(N=5 \), before me make any further analysis. From figure 5.2 and 5.3, for \(N=5 \) layers the \(TE_0 \) loss is less then \(0.1dB/cm \) and for the \(TM_0 \) loss is around \(10^5dB/cm \). As all \(TM \) modes are highly lossy, our proposed structure behaves as \(TE \) pass polarizer. In fact it passes \(TE_0 \) mode with low leakage.
loss as compared to higher modes. We can conclude that our proposed structure as
single mode \(TE\) pass polarizer.

Before we proceed with other analysis, we must know some facts about the proposed
structure. As seen from figure 5.2 and 5.3, the smallest core thickness is 0.2051\(\mu m\), if
we decrease the core thickness below that value the \(N_{eff}\), of the waveguide becomes
less then 1.333 (i.e., below the refractive index of the superstrate). This corresponds
Figure 5.2: Variation of leakage loss of the fundamental TE_0 mode

Figure 5.3: Variation of leakage loss of the fundamental TM_0 mode
to the cutoff of the TE_0. We have to look for the minimum core thickness (i.e. the
cutoff core thickness) by trial and error procedure. This procedure is quite time
consuming as we have to take care of reflection from the PML layers (there should
be no ripples in PML region), mesh size for all pairs of layers and for all core
thicknesses from $1\mu m$ to $0.2051\mu m$. We have checked all the results with the STF1
and we got 5 digits approximations for the power loss as well as for the real part of
n_{eff}. It has been observed that a single discretization line and small variation of the
width ($0.01\mu m$) in the PML region can alter the result significantly, so we should
be careful in choosing the number of discretization lines in all PML regions as we
change the core size.

5.1.2 Evanescent Field Enhancement in Low-Index

Superstrate

A number of sensing methods for low-index materials are based on the use of the
evanescent field of guided electromagnetic waves. The measured parameters include
the refractive index variation [51], variation of material absorption [52] and detecting
material fluorescence [53]. The sensitivity of these methods is in general relatively
poor. This is due to the fact that most of the guided optical power resides within the
high-index waveguide core and substrate thus becoming inaccessible directly to the
sensing process. In these cases only the evanescent part of the wave in the low index
superstrate and within a small distance (typically a fraction of wavelength) above the core is directly accessible for measurement. This part of the field carries only a small fraction of the guided wave power, a fact underlying the poor sensitivity of the measurements.

The main purpose of the proposed structure is the enhancement of the evanescent field in the low-index superstrate while maintaining low leakage loss. We assume that some measurement will take place in the low-index superstrate within a small distance (a few wavelengths) from the waveguide surface. For instance an absorption or phase delay measurement may be required in the low-index superstrate. Another possible measurement is the detection of material fluorescence. The low-index superstrate may be air, any other gas or a low index fluid such as water.

Evanescent field enhancement in low-index superstrate is studied by many researchers for different sensing applications [54, 52, 55, 9, 56, 53], which we will see in detail in the next chapter.

Figure 5.4 shows the fundamental TE mode pattern of the multi-layer Arrow. It is clear from the figure that as the core thickness t_c is made smaller, the filed pattern shifts towards the water superstrate, instead of towards the substrate, which would be the case in conventional waveguides or in the case of a single layer ARROW waveguide. For $t_c = 0.81\mu m$, the electromagnetic field lies mostly in the core, however for $t_c = 0.21\mu m$, the field is compelled to move towards the water superstrate due to the high reflectivity from the stack of ARROW layers below the core [9].
This leads to the enhancement of the evanescent field in water. The interesting fact to note is that the peak of the field pattern remains in the core very close to the core-water interface for \(t_c = 0.21 \mu m \) and real part of \(n_{\text{eff}} \) approaches the refractive index of water \((n_w = 1.333) \).

Figure 5.5 shows the fraction of the fundamental TE power in the superstrate and variation of the real part \((n_{\text{eff}}') \) of \(n_{\text{eff}} \) with respect to core thickness. It is observed that as \(t_c \) decreases, \(n_{\text{eff}} \) decreases and tends towards the superstrate refractive index \((1.333) \). On the other hand the fraction of the power \((\zeta = \frac{\text{Power in superstrate}}{\text{Total power in the fundamental mode}}) \) increases and tend towards unity. The value of \(\zeta \) is 0.037 and 0.93 corresponding to \(t_c = 1 \mu m \) and \(t_c = 0.2051 \mu m \), respectively.

As we can see there is an increase in the value of \(\zeta \) by approximately a factor of 25 times. In calculating these results could not be automate the procedure, we had to take manual readings at all core thicknesses by adjusting the parameters discussed in previous section.

5.1.3 Sensitivity of the Multi-layer ARROW

Next we will show the effect of the field enhancement, we increase the refractive index of the water beyond 1.333 (i.e 1.334, 1.335 etc) and calculate the phase difference acquired by the fundamental TE mode. The phase difference (degrees/Millimeter)
Figure 5.4: The Field Pattern of the TE_0 mode for two core thicknesses

Figure 5.5: Fraction of Fundamental TE power in superstrate and Variation of the real part of the model effective index versus Core thickness
can be calculated by the formula:

$$\Delta \Phi = \frac{2\pi}{\lambda} \Delta n_{eff} \frac{180}{\pi} (1\text{mm})$$ \hfill (5.1)

Where Δn_{eff} is the difference between two consecutive effective indices. We have taken zero phase difference for the refractive index of water and changed the refractive index of superstrate (water) and used equation 5.1, for other phase difference calculations, keeping phase difference zero for water as reference.

Figure 5.6 shows the acquired phase difference as a function of superstrate refractive index for $t_c = 0.21\mu m$ and $t_c = 0.81\mu m$. We can observe from the results that the acquired phase difference for $t_c = 0.21\mu m$ is approximately 30 times that for $t_c = 0.81\mu m$. The fact of significance is that an increase of 0.0004 in the refractive index of the superstrate, when $t_c = 0.21\mu m$, results in a phase difference slightly larger than 180 degrees per millimeter. This very high sensitivity may be required for some applications. We can always control the phase sensitivity by adjusting the value of t_c.

Figure 5.7 shows the variation of Modal loss as a function of bulk loss.

we define sensitivity as:

$$\chi = \frac{\text{ModalLoss}}{\text{SuperstrateBulkLoss}}$$ \hfill (5.2)
Figure 5.6: Acquired Phase Difference of the Fundamental TE-like mode as Function of Superstrate Refractive Index

Figure 5.7: Variation of Modal loss of the Fundamental TE as a Function of Superstrate Bulk Loss
Bulk loss means the absorption loss introduced in the superstrate as seen by a plane wave. This loss is represented as $n_s = 1.333 + j \times 10^x$ where x we vary from -4 to -10.

It is clear from the figure that χ, is slightly less then unity for every point on the figure 5.7 for $t_e = 0.21 \mu m$. It is interesting to note that for $t_e = 0.21 \mu m$ sensitivity is approximately 35 times that for $t_e = 0.81 \mu m$, which can be used to detect very small changes in refractive index, material absorption and material florescence.
Chapter 6

Method of lines Analysis of Gaussian Beam Coupling to Multi-Layer ARROW

6.1 Introduction

Optical power coupling is an important design problem in Optical fiber communication [69] and Integrated Optics [24]. There has been a considerable interest during the last two decades in the development of new means of increasing the efficiency of this process. A substantial portion of power can be lost in the region between the light source and the waveguide, making the analysis of the factors that influence the coupling efficiency of great importance. In conjunction with the rapid development
of integrated optics and optical waveguides in general, several numerical methods have been developed for the analysis of longitudinally-dependent effects in these waveguide structures. Among these methods are the Beam propagation Method (BPM) [14, 15], the Finite Difference Method [16] and the Method of lines (MOL) [11, 12].

In this work we will use the MOL for the analysis of the problem under consideration because of its simplicity, high accuracy, and its ability to account for back-scattered waves. In contrast to other numerical methods mentioned, this technique is very efficient with respect to computational time due to its semianalytical nature.

As will be explained in a subsequent section, light beams can be coupled to multi-layer ARROW planar waveguide structures using different techniques. These techniques include prism coupling [70], grating coupling [71], and endfire or butt coupling [72]. Of these different methods, end-fire or butt-coupling techniques are of particular interest because of their several advantages such as ease of handling of in-line input and output beams [21]. It is therefore the purpose of this thesis to consider the analysis of endfire coupling of a normally incident Gaussian beam into a multi-layer ARROW using the MOL.
6.2 Coupling Techniques

As stated in the introductory section, light can be coupled from the laser source into a waveguide by either evanescent [73] or endfire coupling techniques [74]. Evanescent coupling methods include prism and grating coupling and utilize the interaction between the evanescent filed of the incident beam with the desired guided mode of the waveguide. Endfire or edge coupling involves shining the light beam directly or through a lens at the facet of the waveguide. Examples of the edge coupling are the endfire and butt coupling. In the following section we will only discuss endfire coupling. Other coupling techniques are well documented in [71, 21, 73].

6.2.1 Endfire/Butt coupling

Edge coupling which is excitation of a thin film waveguide directly from a laser source was first proposed by Marcuse and Marcatili [75] in 1971. Since then it has been investigated by several researchers [21, 76, 72, 73].

Examples of this coupling are endfire and butt coupling. In endfire coupling [77], light is focused using a lens into the facet of a waveguide (see figure 6.1). Whereas in butt coupling light coupling, is achieved by attaching the source directly to the waveguide. This is illustrated in figure 6.2. In both techniques it is required that the incident field pattern matches that of the waveguide mode to be excited.
Figure 6.1: End-fire coupling

There are two main types of losses associated with edge coupling. One is power loss due to the miss-match between the incident field pattern and that of the guided modes. This is called radiation loss. The other is associated with the reflections from the coupled waveguide or Fresnel loss. The later can be reduced very dramatically by using antireflection coatings or an index-matching fluid. Other losses might arise if the film face is not perfectly flat.

Butt coupling has the advantage of design simplicity and structural compactness. The spacing between the light source and the waveguide must be reduced to the smallest possible value. Lateral, axial, and angular alignment must also be observed.

6.2.2 Statement of the Problem

Consider a gaussian beam having a spot size of \(w_0 \), incident normally on a multilayer ARROW planar waveguide positioned at \(z = 0 \). The lateral position of the beam axis
Figure 6.2: Butt-coupling

Figure 6.3: Coupling of Gaussian beam into a Multi-layer ARROW

is located at distance \(x_0 \) from the waveguide axis. The MOL requires knowledge of
the gaussian beam distribution at \(z = 0 \) only. This is given by the simple expression:

\[
\psi = E_0 \exp \left[-\frac{(x - x_0)^2}{w_o^2}\right]
\]

(6.1)
Where E_0 is the beam amplitude at $x = x_0$. It is required to calculate the percentage of the beam power that will be coupled into the multi-layer planar waveguide, and the percentage of this power that will be guided and radiated. The launching conditions such as the values of w_0, and $x = x_0$ will be varied to realize the optimum conditions that will result in the highest coupling efficiency.

6.2.3 Calculation of Power Coupling Efficiency in Edge Coupling

Any general two-dimensional field $\psi(x, z)$ can be represented as a linear combination of a complete set of orthonormal modes, that is [21]:

$$
\psi(x, z) = \alpha_0 f_0(x)e^{j\beta_0 z} + \alpha_1 f_1(x)e^{j\beta_1 z} + \alpha_2 f_2(x)e^{j\beta_2 z} + \cdots + \alpha_m f_m(x)e^{j\beta_m z} + \cdots
$$

$$
+ \alpha_M f_M(x)e^{j\beta_M z} + \int_v \alpha_v f_v(x)e^{j\beta_v z} dv
$$

(6.2)

where α_m = mth-mode expansion coefficient, β_m = mth-mode propagation constant and $\int_v \alpha_v f_v(x)e^{j\beta_v z} dv$ represents an integration over the continuum of all radiation modes. The integer M represents the highest possible order of the guided modes. The modal transverse profiles $\{f_m(x)\}$ describe a set of orthonormal functions over the transverse coordinate. For a single-mode waveguide ($M = 0$):

$$
\psi(x, z) = \alpha_0 f_0(x)e^{j\beta_0 z} + \int_v \alpha_v f_v(x)e^{j\beta_v z} dv
$$

(6.3)
At the input end of the waveguide \((z = 0)\) the field \(\psi\) becomes:

\[
\psi(x, 0) = \alpha_0 f_0(x) + \int_v \alpha_v f_v(x) dv
\] \hspace{1cm} (6.4)

By using the orthogonality relation between the modal fields, which is expressed as [78]:

\[
\int_{-\infty}^{+\infty} \frac{f_m(x)}{K} f_n(x) dx = \begin{cases}
0 & \text{for } m \neq n \\
\int_{-\infty}^{+\infty} \frac{f_m^2(x)}{K} dx & \text{for } m = n
\end{cases}
\] \hspace{1cm} (6.5)

where \(K\) is defined as:

\[
K = \begin{cases}
n^2(x) & \text{for } TM \text{ modes} \\
1 & \text{for } TE \text{ modes}
\end{cases}
\] \hspace{1cm} (6.6)

and \(n(x)\) represents the refractive index distribution.

The modal coefficient \(\alpha_m\) is given by [21]:

\[
\alpha_m = \frac{\int_{-\infty}^{+\infty} \psi(x, 0) \frac{f_m(x)}{K} dx}{\int_{-\infty}^{+\infty} \frac{f_m(x)}{K} f_m(x) dx}
\] \hspace{1cm} (6.7)
Hence the coefficient of the fundamental mode α_0 is given by:

$$
\alpha_0 = \frac{\int_{-\infty}^{+\infty} \psi(z,0) f_0(x) \frac{dx}{k}}{\int_{-\infty}^{+\infty} f_0^2(x) \frac{dx}{k}}
$$

(6.8)

The power flowing in the z direction per unit length of the y direction is given by [79]:

$$
P_z = \frac{1}{2} \int_{-\infty}^{\infty} \text{Re}(E \times H^*) \frac{dx}{k} = -\frac{1}{2} \int_{-\infty}^{\infty} E_y H_z^* \frac{dx}{k}
$$

(6.9)

Our main objective here is to calculate the efficiency of power coupling from a laser source into a multi-layer ARROW. Coupling efficiency is defined as the ratio of the guided power to the incident power. or

$$
\eta = \frac{P_g}{P_i}
$$

(6.10)

For detailed derivation of the calculation of the coupling efficiency see reference [21]. Here we will only state the final form and apply the results. The coupling efficiency for the mth guided mode in endfire coupling can be described by the following
overlap integral

\[
\eta = \frac{\left|\int_{-\infty}^{\infty} \psi_i(x) \cdot f_m^*(x) dx\right|^2}{\int_{-\infty}^{\infty} f_m(x) \cdot f_m^*(x) dx \int_{-\infty}^{\infty} \psi_i(x) \cdot \psi_i^*(x) dx}
\]

(6.11)

It has been assumed in equation 6.11 that the end surface of the waveguide has an effective anti-reflection coating and the reflection losses are negligible. For the purpose of our treated waveguide, we cannot neglect the reflected power since the difference between the refractive indices of the waveguide and media incidence is considerable.

6.2.4 The application of the MOL to the Coupling Problem

The MOL main principles introduced and the mathematical relations developed in the previous chapters (refer chapter and section number) will be applied in this section to analyze the coupling of an incident field into the multi-layer ARROW.

Figure 6.4 depicts a field incident from glass; region (0), into a multi-layer ARROW: region (1). The field in region (0) is described by two terms: \(e^{iQ_{1/2}z}A_o\) which represents that part of the field propagating in the positive z-direction, and \(e^{-iQ_{1/2}z}B_o\) which represents the reflected field propagating in the negative z-direction. In region (1) there is only a transmitted field described by the term \(e^{iQ_{1/2}z}A_1\).

A fraction of the incident field power will be transmitted to region (1) and the rest
Figure 6.4: The incident, reflected and transmitted fields using the MOL will be reflected backwards to region (0). Part of the transmitted power will be coupled to the guided modes of the multi-layer ARROW waveguide. The other part of the transmitted power will be coupled to radiation modes and thus will be radiated. Based on the above and following equation (mention), the fields in region (0); Ψ_0 and in region (1); Ψ_1 can be expressed as:

\[
\Psi_0 = e^{+jQ_0 z}A_0 + e^{-jQ_0 z}B_0 \quad (6.12)
\]

\[
\Psi_1 = e^{+jQ_1 z}A_1 \quad (6.13)
\]
where \(\Psi \) is a column vector containing the sampled fields. \(A_0, B_0 \) and \(A_1 \) are constant vectors. For TE polarization, \(\Psi \) is continuous at the interface at \(z = 0 \), that is \(\Psi_0|_{z=0} = \Psi_1|_{z=0} \). From equations 6.12 and 6.13, we have:

\[
A_0 + B_0 = A_1 \tag{6.14}
\]

continuity of \(\frac{d}{dz} \Psi_0 \) at \(z = 0 \), yields:

\[
\frac{d}{dz} \Psi_0 = \frac{d}{dz} \Psi_1 \tag{6.15}
\]

equation 6.15 is valid only for TE waves.

Differentiating equations 6.12 and 6.13 with respect to \(z \) leads to:

\[
\Psi_0' = jQ_0^{1/2} e^{jQ_0^{1/2}z} A_0 - jQ_0^{1/2} e^{-jQ_0^{1/2}z} B_0 \tag{6.16}
\]

and

\[
\Psi_1' = jQ_1^{1/2} e^{jQ_1^{1/2}z} A_1 \tag{6.17}
\]
results in:

\[jQ_0^{1/2} e^{jQ_0^{1/2} z} A_0 - jQ_0^{1/2} e^{-jQ_0^{1/2} z} B_0 = jQ_1^{1/2} e^{jQ_1^{1/2} z} A_1 \]

(6.18)

substituting \(z = 0 \); in the previous equation, we have

\[Q_0^{1/2} A_0 - jQ_0^{1/2} B_0 = Q_1^{1/2} A_1 \]

(6.19)

\(B_0 \) can be eliminated by adding equations 6.14 and 6.19, we have:

\[2A_0 = (I + Q_0^{-1/2} Q_1^{1/2}) A_1 \]

(6.20)

\[A_1 = 2(I + Q_0^{-1/2} Q_1^{1/2})^{-1} A_0 \]

(6.21)

and

\[B_0 = (I - Q_0^{-1/2} Q_1^{1/2})(I + Q_0^{-1/2} Q_1^{1/2})^{-1} A_0 \]

(6.22)
Where \(I \) is the identity matrix. The incident field at \(z = 0; A_0 \) is known from 6.20 and the reflected field can be obtained using equation 6.22. Therefore, the transmitted field at \(z = 0; A_1 \) can be calculated from equation 6.21.

6.2.5 Calculation of Power coupling efficiency using the MOL

Consider the illustration of the coupling problem depicted in figure 6.4. The electric field continuity at \(z = 0 \) implies that

\[
\psi_t + \psi_r = \psi_i
\] \hspace{1cm} (6.23)

where \(\psi_t \) is the transmitted field (region (1)), and \(\psi_i \) and \(\psi_r \) are the incident and reflected field (region (0)) respectively. Our aim here is to find the percentage of power coupled to the fundamental mode of the waveguide. Endfire coupling efficiency to the fundamental mode depends mostly on the spatial overlap between the incident beam and the mode. As in section 6.2.3, the power coupling efficiency is defined as:

\[
\eta = \frac{P_g}{P_i} = \frac{\text{Re}\int_{-\infty}^{\infty} E_{y'} \cdot H_{z'}^* \, dx}{\text{Re}\int_{-\infty}^{\infty} E_{y} \cdot H_{z}^* \, dx}
\] \hspace{1cm} (6.24)
In the MOL, the incident electric field is given by

\[E_y = e^{jQ_0^{1/2}z}A_0 \] \hspace{1cm} (6.25)

where the \(M \times 1 \) column matrix, \(A_0 \), represents the incident field at \(z = 0 \) and the \(M \times M \) matrix where \(Q_0 \) is defined in chapter 3. Using Maxwell’s equations, the incident magnetic field is given by:

\[H_x = \frac{j}{\omega \mu} \frac{\partial}{\partial z}(e^{+jQ_0^{1/2}z}A_0) \] \hspace{1cm} (6.26)

\[= -\frac{Q_0^{1/2}}{\omega \mu} e^{-jQ_0^{1/2}z}A_0 \] \hspace{1cm} (6.27)

and

\[H_x|_{z=0} = -\frac{1}{\omega \mu} Q_0^{1/2} A_0 \] \hspace{1cm} (6.28)

The incident average power flow is given by:

\[P_i = \frac{1}{2} Re \int_{-\infty}^{\infty} E_y H_x^* dx \] \hspace{1cm} (6.29)

For discrete samples, integration is replaced by summation over the index of the
\[P_i = -\frac{1}{2} \text{Re}\left\{ \sum_{m=1}^{M} E_{y_i}(m) H_{x_i}(m) \cdot \Delta x_m \right\} \quad (6.30) \]

\[P_i \big|_{z=0} = \frac{1}{2 \omega \mu} \text{Re}\left\{ (Q_0^{1/2} A_0)' A_0 \cdot \Delta x_m \right\} \quad (6.31) \]

For uniform mesh, \(\Delta x_m \) is constant for all layers but for non-uniform mesh, \(\Delta x_m \) is different for each layer.

Similarly, the transmitted field is given by

\[E_{y_i} = e^{iQ_1^{1/2} z} A_1 \quad (6.32) \]

Where the vector \(A_1 \) represents the transmitted field at \(z = 0 \). Following equation 6.8, the fundamental mode excitation coefficient expressed as:

\[\alpha_0 = \frac{A_1^t F_0}{F_0^t F_0} \quad (6.33) \]

where the \(M \times 1 \) vector \(F_0 \) represents the discretized modal field distribution in region (1), \(A_1^t \) and \(F_0^t \) are the transposed forms of the matrices \(A_1 \) and \(F_0 \) respectively. The guided electric field of the fundamental mode is therefore equal to
\[E_{y_0} = \alpha_0 F_0 \] (6.34)

from which the corresponding magnetic field can be written as

\[H_{z_0} = \frac{-1}{2\omega \mu} (Q_1^{1/2} \cdot \alpha_0 F_0) \] (6.35)

The average guided power is given by:

\[P_g|_{z=0} = \frac{1}{2\omega \mu} \text{Re}\{(Q_1^{1/2} \cdot \alpha_0 F_0)^* \cdot \alpha_0 F_0 \cdot \Delta x_m\} \] (6.36)

As a result, the power coupling efficiency for TE polarized waves at \(z = 0 \), can be written in the following discretized form:

\[\eta = \frac{\text{Re}\{(Q_1^{1/2} \cdot \alpha_0 F_0)^* \cdot \alpha_0 F_0 \cdot \Delta x_m\}}{\text{Re}\{(Q_0^{1/2} A_0)^* A_0 \cdot \Delta x_m\}} \] (6.37)

6.2.6 Convergence of the MOL

The validity of the MOL result can be checked by monitoring power conservation at the coupling boundary. The ratio of the reflected power to the incident power, \(R \), is defined as:

\[R = \frac{P_r}{P_i} \] (6.38)
Similarly, the ratio of the transmitted power to the incident power, T is defined as:

$$T = \frac{P_t}{P_i}$$ \hspace{1cm} (6.39)

In order to have conservation of power, R and T must sum to unity i.e.,

$$R + T = 1$$ \hspace{1cm} (6.40)

6.2.7 Results

In order to have maximum coupling efficiency using a gaussian beam as input one needs to take care of many parameters. One of which is power conservation at the coupling boundary which is discussed in the previous section. Coupling a gaussian beam to a leaky waveguide is not an easy task, specially to multi-layer ARROW waveguide. Before coupling we have to make sure that the multi-layer ARROW is synchronized with respect to PML tunning, power loss (db/cm), superstrate thickness, Mesh size and number of discretization lines for a particular core width. And it should be noted that all these parameters will change as we change the core width.

The next step after this is to align the gaussian beam for maximum coupling and for this we have chosen a wide core width (0.81 μm) and by trial and error procedure we started by keeping $x_0 = 0$ and varied the spot size (w_0) and checked for power balance at the boundary that is $R + T = \frac{P_r + P_t}{P_i} = 1$, and we have noted
that to get good power balance we have to vary both the parameters simultaneously
and we have maintained a good power balance, that is the difference term \(\epsilon \) (where
\(\epsilon = \frac{P_{out}}{P_{in}} - 1 \) has values between \(2.3 \times 10^{-04} \) and \(8.5 \times 10^{-05} \). This process is very
tedious and one never knows when and what parameters will provide good power
balance, as we match the input beam to the fundamental mode of the waveguide.
Not only power balance should be monitored but we have to make sure that the
peak of the beam should be inside the core to make sure that MOL is stable for
particular spot size and lateral position.

<table>
<thead>
<tr>
<th>Label</th>
<th>Spot size (w_0 (\mu m))</th>
<th>Lateral Position (x_0 (\mu m))</th>
<th>Coupling Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.19</td>
<td>0.22</td>
<td>70</td>
</tr>
<tr>
<td>B</td>
<td>0.2</td>
<td>0.22</td>
<td>73.4</td>
</tr>
<tr>
<td>C</td>
<td>0.21</td>
<td>0.22</td>
<td>74.7</td>
</tr>
<tr>
<td>D</td>
<td>0.22</td>
<td>0.22</td>
<td>75.87</td>
</tr>
<tr>
<td>E</td>
<td>0.23</td>
<td>0.22</td>
<td>76.84</td>
</tr>
<tr>
<td>F</td>
<td>0.24</td>
<td>0.22</td>
<td>77.68</td>
</tr>
<tr>
<td>G</td>
<td>0.25</td>
<td>0.22</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 6.1: Coupling Efficiency Versus Spot Size for \(t_c = 0.40 \mu m \)

In order to provide insight of coupling problem, we have plotted the maximum
coupling efficiency versus spot size for a core size \(t_c = 0.4 \mu m \), and one can infer
from figure 6.5 that for a particular spot size (0.24 \(\mu m \)) one gets the maximum cou-
pling efficiency. Points A,B,C,D,E and F in figure 6.5 shows the maximum coupling
efficiency for a particular spot size and they are tabulated in table 6.1. Figure 6.6
Figure 6.5: Coupling Efficiency Versus Spot Size (w_0)

Figure 6.6: Coupling Efficiency Versus Lateral Position (x_0)
<table>
<thead>
<tr>
<th>Label</th>
<th>Spot size $w_0(\mu m)$</th>
<th>Lateral Position $x_0(\mu m)$</th>
<th>Coupling Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.24</td>
<td>0.1</td>
<td>72.3</td>
</tr>
<tr>
<td>B</td>
<td>0.24</td>
<td>0.15</td>
<td>74.45</td>
</tr>
<tr>
<td>C</td>
<td>0.24</td>
<td>0.18</td>
<td>75.74</td>
</tr>
<tr>
<td>D</td>
<td>0.24</td>
<td>0.2</td>
<td>76.63</td>
</tr>
<tr>
<td>E</td>
<td>0.24</td>
<td>0.21</td>
<td>77.21</td>
</tr>
<tr>
<td>F</td>
<td>0.24</td>
<td>0.22</td>
<td>77.68</td>
</tr>
<tr>
<td>G</td>
<td>0.24</td>
<td>0.24</td>
<td>77.17</td>
</tr>
</tbody>
</table>

Table 6.2: Coupling Efficiency Versus Lateral Position for $t_c = 0.40 \mu m$

<table>
<thead>
<tr>
<th>Label</th>
<th>Core Thickness (μm)</th>
<th>Lateral Position $x_0(\mu m)$</th>
<th>Spot size $w_0(\mu m)$</th>
<th>Coupling Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.21</td>
<td>0.06</td>
<td>0.095</td>
<td>42.31</td>
</tr>
<tr>
<td>B</td>
<td>0.3</td>
<td>0.11</td>
<td>0.13</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>0.4</td>
<td>0.22</td>
<td>0.24</td>
<td>77.68</td>
</tr>
<tr>
<td>D</td>
<td>0.5</td>
<td>0.23</td>
<td>0.19</td>
<td>85</td>
</tr>
<tr>
<td>E</td>
<td>0.81</td>
<td>0.3</td>
<td>0.34</td>
<td>98.64</td>
</tr>
</tbody>
</table>

Table 6.3: Maximum Coupling Efficiency Versus Core Thickness with Optimum Lateral Position and Optimum Spot Size

show the variation of the coupling efficiency versus lateral position, it is clear that at $x_0 = 0.22 \mu m$ we get maximum coupling efficiency and the points A,B,C,D,E and F are tabulated in table 6.2. So, for a core size of $0.40 \mu m$, $w_0 = 0.24 \mu m$ and $x_0 = 0.22 \mu m$, we get the maximum coupling efficiency. This procedure is repeated for all core widths shown in table 6.3.

We got a coupling efficiency of 98.64% for a wide core ($t_c = 0.81$) and 42.31% for narrow core width ($t_c = 0.21$). The plot for maximum coupling efficiency versus core width is shown in figure 6.7. From the figure one can infer that as the core
Figure 6.7: Maximum Coupling Efficiency Versus Core Thickness (t_c)

Size increases from $t_c = 0.21$ to $t_c = 0.81$ the maximum coupling efficiency is approximately doubled. The points A,B,C,D,E on the figure shows the efficiency for a particular core width and they are tabulated in table 6.3. One interested observation that can be noted from the table is the values of x_0, which gave maximum efficiency. The values of x_0 is very close to the center of the core, and which is not obvious if one sees the highly unsymmetric nature of the waveguide.
Chapter 7

Application of Evanescent Field Enhancement in Low-Index Superstrate

7.1 Introduction

The main purpose of this chapter is to study the applications of the evanescent field enhancement in low-index superstrate. All applications can be broadly classified under three headings.

- Chemical Sensing

- Biochemical Sensing
Biosensing

Optical sensors detect changes in the properties of light in the ultraviolet, visible, and infrared range, which are caused by an interaction between electromagnetic waves and matter. The different measuring optical parameters are: absorbance, fluorescence (intensity, decay, polarization, energy transfer), bio- and chemiluminescence, phosphorescence, thermoluminescence, light scattering, evanescence, surface plasmon resonance (SPR), refractive index, total internal reflection (TIR), and interferometry. For detailed discussion refer to reference [57].

Optical sensors may be subdivided as

- Sensors that measure direct optical quality: absorbance, fluorescence, luminescence etc.

- Indicator-sensors, where an optically active indicator (pH−, O2−, H2O2-sensitive dye) is immobilized at the tip. For example oxygen is known as a quencher of the fluorescence of aromatic compounds. These sensors are used to quantify nonoptically active analytes such as oxygen, carbon dioxide and protons.

- Bio-sensors, sensors where biorecognition elements is co-immobilized to an indicator-sensor. The biorecognition element mediates between the analytes and the transducer/detector.

Conventional high-index waveguides usually rely on the presence of an evanescent field in the low-index superstrate to sense the surface refractive index, optical absorp-
tion or fluorescence associated with the sensing reaction. To maximise sensitivity, the high index waveguide is normally made as thin as possible while maintaining the low-loss guidance of at least one guided mode, thus maximising the intensity of the evanescent field. ARROWs can be used to confine the light in a low index layer, such as water, providing much higher sensitivity than a conventional waveguide, as virtually all light propagates in the low index layer.

Chemical sensing and biosensing can take place within low-index layers compatible with ARROW operation. Chemical sensing was performed using low-index polymer layers to detect low molecular weight hydrocarbons in air and water, while biosensing can be done using antibodies covalently coupled to dextran gels.

There is great demand for sensors that can translate the concentration of various chemical compounds to the electrical domain. These sensors are for example required in process control, environmental monitoring, health care, biotechnology and the automotive industry. In some applications it is advantageous to use optical domain as an intermediate between the chemical and electrical domain. The reasons for this can be

- the absence of electromagnetic interference

- no danger for explosions due to the passage of electrical currents.

- high sensitivity to many measurands

- specific optical sensing mechanisms, such as chemical analysis by means of
material specific absorption wavelengths

Many characteristics of light are available to carry the sensor information. For example the phase, the intensity (distribution), the direction of propagation, the polarization or the wavelength can be used. In many situations it is preferred to incorporate optical sensors in a waveguide system, either fiber or integrated optics based. Compared to the use of free space beams this guided wave approach offers the potential advantages of:

- a better control of the light path, with no alignment of the experimental setup required

- use of thin chemo-optical interface is possible because of the evanescent field, which permits large interaction length.

- remote sensing is possible by the use of a fiber.

- a higher mechanical stability

- reduced weight, size and price

Fiber based sensors compared to integrated optics are very cheap and have the strong advantage that they can be easily applied for distributed sensing. The sensor can be incorporated in the fiber that transports the light from the source to the detector and the different sensors can be read out in, for example, the time domain
(OTDR) or wavelength domain (in case Bragg-reflectors are used). Nevertheless, fiber sensors cannot compete with integrated optics with respect to:

- robustness

- compact optical circuitry, enabling a higher complexity (e.g. multiple sensors on one chip)

- design flexibility with respect to the geometry as well as the choice and combination of materials (for example active and passive materials)

- ease of access to the optical path in evanescent-field sensing

- potential of integration with micro-electronics, micro-mechanics and micro total analysis systems (μ TAS)

- potential of cheap batch-wise mass production

- benefits from the developments in guided wave devices and microsystems in optical telecommunication

The degree of integration of a sensing scheme depends entirely on the intended application. Selection criteria will for example arise from the required sensitivity, selectivity, sensing environment, size or cost price. From literature, on one hand very sensitive sensing systems are known where only the sensing element is a planar waveguide and where the light from a bulk laser is coupled into and out of the
waveguide by means of prism, grating or end-fire coupling. This type of devices will be very suitable for applications in e.g. medical laboratories. On the other hand, channel waveguide based sensors where the source, a phase modulator and a detector are monolithically integrated on the chip have been reported. Due to their small size and weight these sensors might be especially suitable for applications in e.g. space or micro TAS. These two examples illustrate that there is no ultimate choice for using end-fire, butt-end, grating, prism, hybrid or monolithically-coupled light sources or detectors, for the use of channel or slab waveguides, or for on or off-chip modulation, referencing and signal processing. Every sensing problem requires for a different solution.

In our thesis we focus on evanescent field sensing application in many areas. There are many types of sensors which can utilize evanescent field. Our aim here is to enhance the evanescent field in the low-index superstrate and study the effect of the enhancement on the sensitivity of the optical devices used. Many types of chemical and biochemical sensors are reported in the literature which are based on absorbimetry or refractimetry of evanescent waves in the integrated optics waveguide. Chemical and biochemical sensors are key elements for the following applications, including (1) Medical engineering, (2) Biochemical engineering, (3) Environmental engineering, (4) Factory auto-processing (5) gas, petroleum and ground water monitoring, (6) Alarm system, (7) Sensors in automobiles, (8) consumer products. With micro-electro-mechanical techniques developed recently, optical sensors can be
miniaturized and integrated with fiber optics communication WDM systems to form a multi-processing sensing systems.

7.2 Chemical and biochemical sensors

Waveguide chemical sensors find use in a wide range of applications such as detection of harmful gases (Methane, Co2, So2). [52, 58, 51] monitoring pollutants and other compounds in water, pH (hydrogen ion concentration) detection, and in the broad field of immunological assays (Laboratory tests are carried out by hospitals to determine the concentration of particular chemicals and biochemicals in blood samples, in order to diagnose disease states and to monitor therapy. A significant, and fast growing, part of this market is immunological assay often shortened to immunoassay), detecting the concentration of certain chemicals in blood, monitoring glucose concentration.

The sensing of chemical parameters is usually performed by monitoring changes in a suitably selected optical property. Depending on the particular device, the optical property measured may be absorbance, reflectance, scattering (due to turbidity), or luminescence (fluorescence or phosphorescence).

In chemical sensing, an analyte (the material to be measured) is placed in the evanescent field of the wave-guide. Change is observed in the absorption or phase shift of the light propagating through the waveguide, giving an indication of the concentra-
tion or refractive index of the analyte. In the case of sensors based on phase shift, the measured difference in phase between the analyte and a reference material can be used to determine the change in effective index, \(n_{eff} = \beta/k_0 \), of a particular optical waveguide mode. The change in phase caused by the analyte can be precisely monitored with a Mach-Zehnder interferometer [51].

Luminescence is a very important optical property used for chemical sensing. Measurement of luminescence (usually called either fluorescence or phosphorescence depending on the fluorescent lifetime) is an extremely sensitive technique, capable of measuring low analyte concentration. It is particularly well suited as both exciting light (evanescent field) and the fluorescent light have wavelength significantly different. There is often several tens of nm difference in optical wavelength between source and fluorescent light.

The technique used for fluorescence is to prepare a coating of fluorophore (fluorescent indicator dye or fluoro reactand) on the upper surface of the waveguide core [59, 58]. Fluorophore is sensitive to the target analyte which means a change in fluorophore produces a change in the target analyte depending on the concentration of the target analyte. As the evanescent field propagates, it stimulates fluorescence from the fluorophor. The intensity of fluorescence is dependent on concentration of the analyte. A portion of the fluorescence is then captured and travel down in the opposite direction of the initial pulse. The fluorescence can be measured (fluorimeter or spectrofluorimeter) and analyte concentration can then be determined. By monitoring
the time delay between the outgoing pulse and incoming fluorescence one can spatially map the analyte concentration along the sensor length.

Fluorescence technique finds a wide range of application such as oxygen detection by quenching of fluorescence (A fluorescent dye is absorbed on a polymeric substrate membrane, which is oxygen-preamble. Absorption of oxygen through the membrane reduces the fluorescent efficiency of the dye, which is termed fluorescent quenching) in an oxygen sensor for medical applications [59] measurement of physiological oxygen concentration is very important, particularly for patients with acute medical conditions undergoing major surgical procedures such as heart artery bypass and grafts. Two distinct measurement have to be made. In the first, the oxygen-carrying state of the blood is monitored by assessing the colour, and hence the oxygenation, of the hemoglobin. The second measurement yields a value for the concentration (partial pressure: pO2, or oxygen tension) of oxygen gas dissolved in the blood stream. Research has been done to measure amines using fluoro reactands [58] and technique to measure molecular recognition of neutral analyte concentration is discussed. Numerous chemical species can be monitor such as sulphates, actinides, inorganic chloride, hydrogen sulphide.

As sensors based on fluorescence mostly use changes in intensity as the analytical information, many fluororeactands performs reversible chemical reaction with the analyte, causing changes in luminescence intensity, this property can be used for analytes having different concentrations or multiple number of analytes concen-
tration can be determined simultaneously. Other chemical sensing applications of optic fluorimetry include such widespread aspects as detection of stomach cancer, the detection of coal tar contamination on the skin, mapping the distribution of algae (plankton) in lakes and detecting herbicide residue in plant leaves. Many of fluorescence applications are in the medical field which will be discussed in next section.

Another optical property used in chemical sensors is absorption which is used to detect explosive gases such as methane [58] using a technique called gas spectroscopy. Light scattering is also an important measurement in many applications. Examples include the determination of impurities in liquids [58] and the measurement of particle size. One of the most commercially developed sensor yet developed is an oil-in-water monitor for measuring the oil pollution in effluent (sewage) water. Measurement of the extent of surface scattering from opaque surfaces has been done, for the determination of the degree of demineralization of tooth enamel, fat content in milk, and the whiteness of the eyeball.

7.3 Biosensors

7.3.1 Introduction

Human kind has been performing bioanalysis since the early times, sensory nerve cells of the nose is used to detect scents, the enzymatic reactions in the tongue
to taste food. As the time is passed and also the level of understanding of the
function of living organism in detecting traces of biochemicals in complex systems
because biological organisms are some of the most efficient machines ever created
and the recognition abilities of biological organisms for foreign substances is unpar-
alleled, researchers have sought to apply and copy their efficiency for use in man
made creations. Using bioreceptors from biological organisms or receptors that have
been patterned after biological systems, scientists have developed a new means of
chemical analysis that often has the selectivity of biological recognition systems.
These biorecognition elements in combination with various transduction methods
(ex: Optical transduction) have helped to create the rapidly expanding field of bio-
analysis and related technologies known as bioreceptors and biochips.
For the last decade, biosensors had been revolutionised almost all fields of medici-
ral technology- significantly improving patient care and reducing overall operating
costs, providing potentially billion-dollar markets for sensor manufacturers. Optical
biosensors represent the second major family of biosensors (after electrochemical
biosensors) to have been exploited commercially. This was possible by progress in
fibre-optic technology, laser miniaturisation and the reproducible manufacture of
prisms and waveguides. Some optical biosensors are best seen as miniaturised ver-
sions of "traditional" spectrophotometers, while others are based on new, integrated-
optic methods such as evanescent waves [60] and light-addressable potentiometric
semiconductors. However, due to persisting cost and size issues, mass markets are
not presently feasible-optical biosensors seem set to remain powerful research tools for the foreseeable future.

7.3.2 Biosensing Principle

A biosensor [61] can be generally defined as a device that consists of a biological recognition system, often called a bioreceptor, a transducer and an amplification/processing unit see figure 7.2. Conventional techniques for transducer include: 1) optical measurements (i.e. luminescence, absorption, surface plasmon resonance, etc.) 2) electrochemical and 3) mass-sensitive measurements (i.e. surface acoustic wave, microbalance, etc.). The interaction of the analyte with the bioreceptor is designed to produce an effect (optical change) measured by the transducer, which converts the information into a measurable effect (through signal processing the interaction is converted into digital values that relates to the build-up of concentration or activity of the analyte in the vicinity of the device, which in turn relates to the ambient level in the bulk sample under investigation). Biosensor can also be defined as an analytical device incorporating a deliberate and intimate combination of a specific biological element (that creates a recognition event) and a physical element (that transduces the recognition event. A biosensor is not only a stand alone entity, but should be considered as a part of a general development in instrumentation, designed to address generic medical and non-medical measurement science problems.
Conceptual principle of the biosensing is illustrated in figure 7.1 and 7.2. In figure 7.2 a permselective membrane is shown which is used with some devices to control transport of analyte to the biological recognition layer (enzyme, antibody, DNA) that generates a response on interaction with the analyte, leading to an electrical signal generated by the transducer [62]. Many optical biosensors represent miniaturised versions of classic spectrophotometers; a means of generating light of a particular wavelength (or wavelength band), a means of channelling that light into the sample, and a means of measuring the intensity of light that passes through (or is scattered by) the sample. The most amenable element to miniaturisation is the light-guide.
the part in contact with the sample. The most exploited system of this type is a Planar waveguide, or fibre-optic cable, coated with a biological element. Light is introduced into the sample via the fibre or core of waveguide. Certain wavelength of incoming light is absorbed or alternatively scattered depending on the number and type of molecules present on the surface of the core.

The light that traverses (or alternatively that which is scattered back by) the biological layer is measured. The outgoing spectrum will be different from the incoming spectrum. This difference is measured, and when compared to a calibration or reference, allows determination of the level of analyte.

Of course, optical biosensors are just optical sensors where the recognition element is of biological origin. This gives greater specificity for the analyte, for example that given by binding of antigens (A foreign substance which, when introduced into body, stimulates the production of an antibody) to a layer of immobilised antibodies (These are proteins, produced by the immune system of higher animals in response to the entry of "foreign" (antigen) materials into the body—for example, viruses, bacteria
and implanted medical devices).

7.3.3 Bioreceptors (Bioelement)

A bioreceptor [61] is a biological molecular species (e.g., an antibody, an enzyme, a protein, or a nucleic acid) or a living biological system (e.g., cells, tissue, or whole organisms) that utilizes a biochemical mechanism for recognition. Bioreceptors are the key to specificity for biosensor technologies. They bind the analyte of interest to the sensor for measurement. They can take many forms and different bioreceptors have been used are as numerous as the different analytes.

The sampling component of a biosensor contains a bio-sensitive layer. The layer can either contain bioreceptors or be made of bioreceptors covalently attached to the transducer. The most common forms of bioreceptors used in biosensing are based on 1) antibody/antigen interactions, 2) nucleic acid interactions, 3) enzymatic interactions, 4) cellular interactions (i.e., microorganisms, proteins) and 5) interactions using biomimetic materials (i.e., synthetic bioreceptors). To understand the concept of sensing we will briefly discuss the five common bioreceptors.

Antibody/Antigen

An antibody is a complex biomolecule, made up of hundreds of individual amino acids arranged in a highly ordered sequence. They are biological molecules that exhibit very specific binding capabilities for specific structures. This is very important
due to the complex nature of most biological systems. For an immune response to be produced against a particular molecule, a certain molecular size and complexity are necessary: proteins with molecular weights greater than 5000 Da are generally immunogenic. The way in which an antigen and its antigen-specific antibody interact may be understood as analogous to a lock and key fit, by which specific geometrical configurations of a unique key enables it to open a lock. In the same way, an antigen-specific antibody fits its unique antigen in a highly specific manner. This unique property of antibodies is the key to their usefulness in immunosensors where only the specific analyte of interest, the antigen, fits into the antibody binding site.

Enzymes

Enzymes are large protein molecules that catalyse chemical reactions. In a simplified scheme, the enzyme participates actively in the transformation of a chemical A to chemical B but remains unchanged at the end of the reaction. In biosensors enzymes being used are very specific tools as enzymes are very specific in their action any given enzyme will always turn A into B and never C (if you want C from A, then there will be different enzyme dedicated for the purpose). So the specificity of enzymic action is the basis for the enzyme-based biosensors.
Nucleic acids

Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), constitutes another biorecognition mechanism which are the building blocks of genetics. In the last decade, nucleic acids have received increasing interest as bioreceptors for biosensor and biochip technologies [61]. The complementarity of adenine : thymine (A : T) and cytosine : guanosine (C : G) pairing in DNA, forms the basis for the specificity of bioreognition in DNA biosensors, often referred to as genosensors. If the sequence of bases composing a certain part of the DNA molecule is known, then the complementary sequence, often called a probe, can be synthesized and labeled with an optically detectable compound (e.g., a fluorescent label). By unwinding the double-stranded DNA into single strands, adding the probe, and then annealing the strands, the labeled probe will hybridize to its complementary sequence on the target molecule.

Cellular Structures/cells

Cellular structures and cells comprise a broad category of bioreceptors that have been used in the development of biosensors and biochips. These bioreceptors are either based on biorecognition by an entire cell/microorganism (Fungus, bacteria etc) or a specific cellular component that is capable of specific binding to certain species. There are presently three major subclasses of this category: 1) cellular systems, 2) enzymes and 3) non-enzymatic proteins.
Biomimetic receptors

A receptor that is fabricated and designed to mimic a bioreceptor is often termed a biomimetic receptor. To construct these receptors several different methods have been developed. These methods include: genetically engineered molecules, artificial membrane fabrication and molecular imprinting. The molecular imprinting technique, which has recently received great interest, consists of mixing analyte molecules with monomers and a large amount of crosslinkers. Following polymerization, the hard polymer is ground into a powder and the analyte molecules are extracted with organic solvents to remove them from the polymer network. As a result, the polymer has molecular holes or binding sites that are complementary to the selected analyte.

7.3.4 Labelled and non-Labelled Optical sensor

One can essentially distinguish two general types of optical sensor labelled and non-labelled optical methods. Any given chemical will have a unique "finger-print" spectrum when examined by most spectroscopic methods. The molecule of interest (i.e. the analyte) is not present alone in the sample but is part of a "soup". All these different molecules contribute their spectral features (in proportion to their concentrations) to the overall, measured spectrum of the sample. In some cases, the spectrum of the desired analyte will be so different from those of its partners in
soup that it can be easily and directly identified and quantified. But in cases where this is not true, an artificial, optical labels must be added to the system.

![Figure 7.3: Labelled optical sensor1](image1)

![Figure 7.4: Labelled optical sensor2](image2)

We will discuss labelled and non-labelled sensing methods so we can be clear in our understand as we proceed further.

This is best explained by reference to the biosensors for glucose shown in figure 7.3 and 7.4. The reaction of glucose and oxygen with create some intrinsic optical effects, the change is not great and methods which produces greater change is developed. In figure 7.3, the device is composed of the transducer, a fibre optic cable,
and a sensing layer composed of a synthetic dye (the optical properties of which depend on its immediate environment) and the bioelement (which in this case is familiar glucose oxidase (GOD)) [63]. The breakdown of each molecule of glucose (catalysed by GOD) consumes oxygen (O2) and produces a proton (H+). The dye chosen would be one sensitive to the surrounding pH, or to the surrounding oxygen concentration. Thus, when the sensor is immersed in the sample, the spectrum of the dye recorded depends on, and thus gives, the glucose concentration (assuming that the pH and oxygen concentration have not changed non-specifically for any other reason.

In figure 7.3 an elegant but more sophisticated and complicated optical affinity biosensor for glucose is shown [64]. The bioelement/recognition layer is a lectin, a type of protein that specifically binds sugars. The mere binding of glucose to lectin does not significantly change the optical characteristics of the respective molecules, and so cannot be detected directly; so the solution is an indirect estimation of glucose binding by following the behaviour of a artificial "label" molecule which competes with native glucose for the available lectin sites. Thus the sensing principle is based on measuring how much label is bound to lectin, and how much is unbound the more glucose is present, the more label will be displaced. The label itself is a sugar molecule with an attached fluorescein group (fluorescein is a fluorescent molecule it absorbs light energy of a particular wavelength and then rapidly emits that energy, but as light of a longer wavelength, i.e. of a different colour). This in turn means
that one needs to distinguish bound from free labels. This is cleverly achieved by additionally attaching a dye molecule (rhodamine) to the lectin. When the label is free in solution, i.e. after being displaced from lectin by glucose, it fluoresces normally. However, when bound to the lectin, the fluorescein-labelled glucose still adsorbs light energy, but instead of emitting, transfers it to the rhodamine the fluorescence is "quenched".

It must be borne in mind that the labelled sugar may not bind to lectin with the same affinity as does native glucose; the binding may be stronger or weaker. This may or may not be a problem: if the binding of the label is stronger, proportionally more glucose will be needed to displace the label the sensor has a higher detection limit, but in other words, the sensor's working range is increased. If the binding is weaker, even low concentrations of glucose will displace all the bound labels, the detection limit decreases. These are considerations that enter all competitive assays.

The main non-labelled optical technique that has come to recent commercial exploitation is evanescent field sensing in various forms surface plasma resonance (BIAcore and BIAlite from Pharmacia Biosensor[65]), resonating mirrors (IAsys from Fisons Applied Sensor Technology [66]) and grating couplers (BIOS-1 from Artificial Sensing Instruments [67]). When light is channelled along a surface or reflected multiply within a thin layer, the associated electromagnetic field penetrates some distance away from that surface, i.e. into the contacting medium, before decay-
ing completely 7.5. This means that matter at the medium/surface interface can interact with the evanescent field. Sensors based on this effect are sensitive to a parameter that combines mass and refractive index. Usually, one assumes that the refractive index of the medium at the sensor surface is more or less constant, and that changes in the signal are due to mass changes the devices essentially become mass sensors. The transition from sensor to biosensor comes about by immobilising a recognition layer of biological origin (for example, a layer of antibodies directed against the analyte of interest) at the optical surface, i.e. within the evanescent field. The binding of analyte changes the mass within the sensitive region and give a change in signal.

The strength and weakness of the system is its generality. Advantageously, just
by changing one biological recognition layer for another, the same basic instrument can be used to detect a wide range of analytes. However, on the down side, because the system is a mass sensor, and the recognition layer is often already quite "heavy", the analyte has to be sufficiently large to induce a further, significant change. As a result, this type of system is best suited to detection of large analytes such as antibodies, viruses and bacteria, although smaller molecules can be detected by resorting to labelling techniques. Furthermore, if the sample to be analysed is very heterogeneous (like most samples of medical interest), non-specific adsorption of proteins to the optical surface is a real problem, necessitating sample filtration and dilution. Much work is being devoted to the development of sensing surfaces that decrease non-specific binding this work has much in common with the study of biocompatibility in order to favour specific over non-specific binding. Due to their sensitivity, their real-time response and overall versatility, biosensors based on evanescent waves have found favour with most of the world's leading pharmaceutical as research tools in a wide number of applications. In practical terms, their size (that of a small television set) makes them ideal laboratory items but despite progress in miniaturisation of lasers, the high cost (dozens of thousands of dollars) excludes any mass market use for the foreseeable future.

In summary, due to progress in fabrication techniques for fibre-optics and integrated optics, optical biosensors have become commercial products with wide applicability in the pharmaceutical and diagnostics research. Partly due to lessons
learned from enzyme-based immunoassay techniques, optical biosensors can also perform immunoassays tests that have not yet been satisfactorily achieved by electrochemical biosensors. However, penetration of mass markets such as point-of-care testing, home-testing and continuous monitoring remains some way off due to the still-prohibitive costs and complexity of such devices.

7.3.5 Array Biosensor

The Array Biosensors was developed for simultaneous analysis of multiple samples for multiple analytes. A patterend array of capture antibodies is immobilized on the surface of a planar waveguide (ARROW waveguide) and a sandwich immunoassay conducted using a cocktail of fluorescent tracer antibodies. upon excitation of the fluorescent label by evanescent field, a CCD camera detects the pattern of fluorescent antigen-antibody complexes on the sensor surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte.

7.3.6 Immunosensors

The bioelement of a sensor (which create recognition event) is almost always an enzyme or an antibody. When the later is the case, the device can be called an immunosensor [60] because the antibodies (also known as immunoglobulins) are an essential part of the body's immune system, and the device (waveguide) mimics that system by recognizing a specific antigen and generating a response to it, thus
permitting measurement of the amount of antigen present.

7.3.7 Biochip

The biochip (a miniature, hand-held biosensor which uses evanescent wave and planar technology with combination of other technologies) is a self-contained device which allows simultaneous detection of various types of Biotargets using different bioreceptors (antibodies, nucleic acids, enzymes, etc.) on a single system (chip).

Biochip technologies could offer a unique combination of performance capabilities and analytical features of merit not available in any other bioanalytical system currently available. Biosensors and Biochips can be classified either by their bioreceptors or their transducer type see figure 7.6. These integrated biosensor arrays that use the same excitation source for all of the elements and the same measurement process have been termed many things: gene chips, DNA-chips, etc. Most of the different array chips have been based on the use of nucleic acids (i.e., DNA) as the bioreceptors. Other types of bioreceptors such as anti-bodies, enzymes, and cellular components can also be used. It is noteworthy that substrates having microarrays of bioreceptors are often referred to as biochips although most of these systems do not have integrated microsensor detection systems. A few of the recent applications and advances will be briefly discussed.

An optical microarray system using a charge-coupled device (CCD) detector and
DNA probes has been developed by Vo-Dinh and coworkers [61]. The evaluation of various system components developed for the DNA multi-array biosensor were discussed. DNA probes labeled with visible and near infrared (NIR) dyes are evaluated. Examples of applications of gene probes in DNA hybridization experiments and in biomedical diagnosis (detection of the p53 cancer suppressor gene) illustrated the usefulness and potential of the DNA multiarray device. An optical microarray for the detection of toxic agents using a planar array of antibody probes was described by Ligler and coworkers [61]. Their system was composed of a CCD for detection, an excitation source and a microscope slide with a photoactivated optical adhesive. See figure 7.7 Antibodies against three different toxins, staphylococcal enterotoxin B (SEB), ricin and Yersinia pestis, were covalently attached to small wells in the slide formed by the optical adhesive. The microscope slide was then
mounted over the CCD with a gradient refractive index (GRIN) lens array used to focus the wells onto the CCD. Toxins were then introduced to the slide followed by Cy5-labeled antibodies. The bound antibodies were then excited and the resulting fluorescence from all of the sensor locations were monitored simultaneously. This technology is so sophisticated that today's integrated Biochip is produced using the capability of fabricating multiple optical sensing elements and microelectronics for up to 100 sensing elements on a single chip [68]. Some integrating state of the art technologies such as Biochip, cell based assays and Bioinformatics. in combination with traditional Chinese medicine (TCM). are used for disease gene identification and drug discovery. The combination of these technologies will greatly accelerates the identification of disease related genes. This technology is so sophisticated that it provided the rapid, simple cost effective, selective and sensitive detection of bio-
chemical substances (proteins, metabolics, nucleic acids), biological species or living system (bacteria, virus or related components) at ultra trace levels in biological samples (tissues, blood, and other body fluids), which is very essential for handy diagnosis. Researches tested performance of biochip using fluorescence detection of both DNA probes specific to gene fragments of the mycobacterium Tuberculosis (TB) and the Human immuno deficiency virus (HIV) system and improved performance detected compared to previous techniques. For medical applications, this cost advantage will allow the development of extremely low cost, disposable biochips that can be used for in-home medical diagnostics of diseases without the need of sending samples to a laboratory for analysis. This technology is so fast developing that each and every research cannot be mentioned. It is reported that nearly 1500 papers have been published in biosensors and biochip from January 1998 to August 1999. [61].
Chapter 8

Summary, Conclusions and Future Work

In this thesis, the Method of lines with higher-order approximation has been applied to find modal profile and propagation constants of the eigen-modes of different multi-layer optical waveguide structures (high contrast symmetric waveguide, basic ARROW waveguide, multi-layer ARROW). The MOL is applied successfully to analyze a multi-layer ARROW waveguide used for evanescent field enhancement. This includes power loss for TE and TM modes, sensitivity analysis and coupling efficiency using endfire excitation. A brief description of the work done, followed by conclusion and some future extensions of this work is given below.
8.1 Summary

- The MOL with higher-order approximations, five-point and seven-point approximations, is implemented for different structures and the results are verified against both published and analytical results.

- Perfectly Matched Layer (PML) absorbing boundary scheme has been used extensively in this thesis. In chapter 4, 5, 7, a double layer PML is applied to absorb the radiative field.

- The MOL is used to find the modal fields and effective indices of the TE, TM ARROW waveguide modes. The use of appropriately tuned PML gives correct open-space approximation for leaky modes of the ARROW, thus giving accurate estimation of the effective indices (real and imaginary part) of different modes. These MOL results are verified against analytical results.

- The multi-layer ARROW waveguide is used with N=5 layer which gave us TE0 power loss below 0.1db/cm for small core thickness. The evanescent field enhancement in low-index superstrate increases as we decreases the core thickness, which also increases the sensitivity but decreases the maximum coupling efficiency. Hence there must be a compromise between evanescent field enhancement in the low-index superstrate and coupling efficiency. This compromise depends on the particular application used and will not be addressed
8.2 Conclusions

- The three-point, five-point and seven-point approximations are used in the MOL to model a waveguide structure and it is found that the higher-order approximation requires relatively few discretization lines to sample the problem space. As shown in chapter 3, the higher-order approximation gives more accurate estimation of the modal field and the effective index.

- The excellent performance of PML in simulating infinite space at the mesh boundary is evident from the ARROW waveguide modeling exercise in chapter 4 and chapter 5. The power loss factor (imaginary part of the effective index) is accurately predicted by MOL for different ARROW modes. This shows the excellent absorption of the leaky waves by the PML in the substrate region of ARROW. As shown in chapter 4, the performance of the PML can be improved by decreasing the mesh size in the first PML layer and using coarser mesh in the second PML layer to simulate a relatively thicker absorber.

- The MOL is applied in conjunction with PML to analyze the multi-layer ARROW, the excellent performance of PML is evident from the study of polarization properties and sensitivity analysis. It is evident that the sensitivity and power enhancement of the evanescent field in the low-index superstrate of the
multilayer ARROW waveguide is sufficiently increased as the core thickness is
decreased.

- The gaussian beam coupling problem which involves a single discontinuity has
been solved using the MOL. The maximum coupling efficiency increases with
the core thickness of the multi-layer ARROW waveguide.

8.3 Future Prospects

The following is a brief list of suggestions for possible future work in this area.

- Spectral response of the multi-layer ARROW can be studied using water or
 any other substance as low-index superstrate.

- In this thesis we have analyzed the multi-layer ARROW waveguide for $N=5$
 pairs since this choice results in reducing the loss of the TE_0 mode to below
 0.1dB/cm for small core thicknesses. We also have shown that the structure
 behaves as TE pass polarizer. This structure can be studied by increasing the
 number of pairs and we expect that, as N increases the waveguide will pass
 both TE and TM polarizations.

- Periodic corrugation can be introduced on the top surface of multi-layer AR-
 ROW resulting in multi-layer ARROW grating. And this structure can be used
 as wavelength selective filter due to multiple reflections from each discontinu-
ity and their interaction with each other to cause resonance or anti-resonance in the propagation direction. We can also analyze this structure for modal spectral response for different groove depths, different number of periods and different loss of the ARROW.

- As it has been shown that the multi-layer ARROW waveguide provides large enhancement of the evanescent field. If a movable lossy element, let us say made of Si ($n_c = 3.85 + j0.019$). Moving the element closer to the core layer will result in leakage of light from the waveguide to the element which will then be absorbed. This device can offer high attenuation if the evanescent field is enhanced. When the element is moved away the attenuation can be made very small as the evanescent field does not encounter the element. Therefore, this device can be improved to work as mechno-optical waveguide on/off switch. where the absorbing element is moved into and out of the evanescent field of the guided mode in order to achieve switching. This device can be used for channel selection purposes in integrated optical sensor arrays.

- In this thesis we have analyzed the power coupling efficiency for different core sizes to the multi-layer planar ARROW waveguide. In future, output coupling loss can be analyzed using the MOL.

- In this thesis gaussian beam coupling to multi-layer ARROW is obtained by using water as the low-index superstrate and glass is used in region 0 of figure
6.3. The same structure can be analyzed with air as low-index superstrate as well in region 0.
Appendix A

STF1 Program : Zero Finding Routine, Eigenvalue Finding Routine

% Written By : Dr. H. A. Al-Jamid
% Associate Professor, Electrical Engineering Department,
% King Fahd University, Dhahran 31261, Saudi Arabia.
% %
% % zero.m is a zero-finding program based on Muller’s method.
% % to use it, define the function who’s zero is to be found as an M-file
% % (i.e ftest.m), then run zero.m with the initial guess.
% % the ftest.m file may for example be:
% %
% function y=ftest(x);
% y=x^2-2.001*x+1.001;
% %
% zero(’ftest’,1.9);
% where ftest is the function name (must be the same as the M-file name)
% 1.9 is the initial guess.

function b=zero(FunFcnn,x2)

nm=30; %input('number of iterations required = ');

low=10^-(-8);
h1=-1*10^-(-6);
h2=.5*10^-(-6);
x1=x2-h2;
x0=x1-h1;
f0=feval(FunFcnn,x0);
f1=feval(FunFcnn,x1);
f2=feval(FunFcnn,x2);
fu=(f2-f1)/h2;
fd=(f1-f0)/h1;

% start loop
% for m=1:nm;
f3=(fu-fd)/(h1+h2);
c=fu+h2*f3;
h1=h2;

pa=c-sqrt(c*c-4*f2*f3);
ma=c+sqrt(c*c-4*f2*f3);
paa=abs(pa);
maa=abs(ma);
if paa>maa
 h2=-2*f2/pa;
else
 h2=-2*f2/ma;
end

x1=x2;
x2=x2+h2;

f1=f2;
f2=feval(FunFcnn,x2);
fd=fu;

fu=(f2-f1)/h2;
if abs(f2)<low
zr=x2;
end

low=min(low,abs(f2));
end

format long e
[zer feval(FunFnc,zr)]

% STF1

% This program computes the eigenvalues of guided
% TE and TM modes of a slab waveguide with an arbitrary number of
% layers.
% nps=superstrate refractive index squared. The superstrate is assumed
% to occupy the region x<0.
% nbs=substrate refractive index squared.
% ns=array containing the refractive index squared distribution of the
% layers between the superstrate and the substrate. The first entry
% corresponds to a layer next to the superstrate.
% d is similar to ns, but it contains the width distribution of the
% layers.
% Let TE=1 or any other non-zero number if TE modes are desired
% otherwise let TE=0 for TM modes.

function f=stf1(ne);
global co;
global lo;
global d;

TE = 1;
lambda = 1.55;
nps = [(0.1804+j*10.2)^2];
nbs = [1.5^-2];
ns = [2.4^2 1.52^2];
d = [0.18 4];

% Start calculation.

nes=ne*ne;
ko=2*pi/lambda;
asp=ko*sqrt(nes-nps);
l1=ko*sqrt(ns(1)-nes);
rho=1;
if TE==0;rhol=ns(1)/nps;end;
a=1;
b=rho*asp/l1;
co=[a b];
m=length(ns);

for s=2:m;
 l=k0*sqrt(ns(s-1)-nes);
 lp=k0*sqrt(ns(s)-nes);
 t=d(s-1);
 lt=l*t;
 rho=1;
 if TE==0;rhol=ns(s)/ns(s-1);end;
 at=a*cos(lt)+b*sin(lt);
 b=rho*(-a*sin(lt)+b*cos(lt))*(l/lp);
 a=at;
 co=[co a b];
 lo=[lo lp];
end;

l=k0*sqrt(ns(m)-nes);
asb=k0*sqrt(nes-nbs);
t=d(m);
lt=l*t;
rho=1;
if TE==0;rhol=ns(m);end;

at=a*cos(lt)+b*sin(lt);
a=-rho*(-a*sin(lt)+b*cos(lt))*(l/asb);
f=at-a;

c=co=[1 0 co a 0];
lo=[asp lo asb];
Appendix B

MOL 3-Point Approximation

function c = threept(TE, EQ, lambda, n, h, tndp)

%%%% Written by: Mohammed Abdul Majid
%%%% This function calculates the Second Derivative Matrix c
%%%% by using the Method of Lines (MOL), 3-Point.
%%%%
%%%% Implements the correct B.Cs. at the Adjacent Points of Interface.
%%%% using Non-uniform Mesh
%%%% using Sparse Matrices
%%%% General Purpose for TE and TM mode.
%%%%
%%%% c = threept(TE, EQ, lambda, n, h, tndp)
%%%%
%%%% TE Mode Selection,
%%%% TE=1 for TE mode, TE=0 for TM mode.
%%%%
%%%% EQ Selection for Mesh,
%%%% EQ=1 for Uniform Mesh, EQ=0 for Non-Uniform Mesh.
%%%%
%%%% lambda Wavelength (in micron).
\% n Vector for Refractive Indices.
\% n(1) Refractive Index of Superstrate
\% n(2) Refractive Index of Core
\% n(3) Refractive Index of Substrate.
\%
\% h Vector array containing Mesh Size distribution in each layer.
\%
\% tndp Vector array containing No. of Discretization points in each layer.

lyr = length(n); \% No. of Layers.
tnp = sum(tndp); \% Total number of discretization points

cdp = cumsum(tndp); \% Cumulative Sum of tndp.
ko = 2*pi/lambda; kos = ko*ko;

\% ***** Matrix C *****
e = ones(tnp,1);

c = [] ; a = [] ; \quad b = [] ;

ctmp = spdiags([+1*e -2*e +1*e], -1:1, tnp,tnp);

\% ***** Dividing c by Mesh Size h^2 *****
c = ctmp(1:tndp(1),:)/h(1)^2;

for j = 2:lyr
 c = [c; ctmp(cdp(j-1)+1:cdp(j),:)/h(j)^2];
end

\% ***** Modification in the c Matrix. (Implementing B.Cs.) *****

for i=1:lyr-1
 T21=h(i+1)/h(i);

 if TE==1
 ro21=1;
 else
\[\text{ro21} = \frac{n(i+1)^2}{n(i)^2} \]

\text{end}

\[\text{DEN} = 0.5 \times h(i+1) \times (h(i) \times \text{ro21} + h(i+1)) \]

\[c(cdp(i), cdp(i)-1) = \frac{1}{\text{DEN}} \times T21 \times \text{ro21} \]
\[c(cdp(i), cdp(i)) = \left(-\frac{1}{\text{DEN}} \right) \times (T21 \times \text{ro21} + 1 + 0.5 \times h(i+1) - 0.5 \times h(i+1) - 2) \times \text{cos} \left(n(i)^2 - n(i+1)^2 \right) \]
\[c(cdp(i), cdp(i)+1) = \frac{1}{\text{DEN}} \]

\text{end}

\% ***** End of Function Program *****
Appendix C

MOL 5-Point Approximation

function c = fivept(TE, EQ, lambda, n, h, tndp)

% ***** Written by: Mohammed Abdul Majid *****
% ***** This function calculates the Second Derivative Matrix c *****
% ***** by using the Method of Lines (MoL), 5-Point.*****
%
% Implements the correct B.C.s. at the Adjacent Points of Interface.
% using Non-uniform Mesh
% using Sparse Matrices
% General Purpose for TE and TM mode.
%
% c = fivept(TE, EQ, lambda, n, h, tndp)
%
% TE Mode Selection,
% TE=1 for TE mode, TE=0 for TM mode.
%
% EQ Selection for Mesh,
% EQ=1 for Uniform Mesh, EQ=0 for Non-Uniform Mesh.
%
% lambda Wavelength (in micron).

121
Vector for Refractive Indices.

n(1) Refractive Index of Superstrate
n(2) Refractive Index of Core
n(3) Refractive Index of Substrate.

h Vector array containing Mesh Size distribution in each layer.

tndp Vector array containing No. of Discretization points in each layer.

lyr = length(n); % No. of Layers.
tnp = sum(tndp); % Total number of discretization points

cdp = cumsum(tndp); % Cumulative Sum of tndp.
ko = 2*pi/lambda; kos = ko*ko;

% ***** Matrix c *****
e = ones(tnp,1);

% a = 0; b = 0;
div = 12;

ctmp = spdiags([-1/div*e 16/div*e -30/div*e 16/div*e -1/div*e],
 -2:2, tnp,tnp);

% ***** Dividing c by Mesh Size h^-2 *****

c = ctmp(1:ndp(1),:)/h(1)^2;

for j = 2:length(tndp)
 c = [c; ctmp(cdp(j-1)+1:cdp(j),:)/h(j)^2];
end

** c matrix modification at the interface (Implementing I.C.)**

for i=1:lyr-1
 h1 = h(i);
 h2 = h(i+1);
 zet = kos*(n(i)^2-n(i+1)^2);

if EQ == 0
 t21=h(i+1)/h(i); % For Non-uniform Mesh.
else
 t21=1; % For Uniform Mesh.
end

if TE == 1
 ro21=1; % for TE mode.
else
 ro21=(n(i+1)^2)/(n(i)^2); % For TM Mode.
end

Ia = 1+h2^2/2*zet/2+h2^4/4*zet^2/24;
Ib = 1+2*h2^2/2*zet+2*h2^4/4*zet^2/3;

Ie(1,1) = ro21*(h2+h2^3/3*zet/6);
Ie(1,2) = 1/2*h2^2/2+h2^4/4*zet/12;
Ie(1,3) = ro21*h2^3/6;
Ie(1,4) = h2^4/24;

Ie(2,1) = ro21*(2*h2+4*h2^3/3*zet/3);
Ie(2,2) = 2*h2^2/2+4*h2^4/4*zet/3;
Ie(2,3) = ro21*4*h2^3/3;
Ie(2,4) = 2*h2^4/3;

Ie(3,1) = -h1;
Ie(3,2) = h1^2/2;
Ie(3,3) = -h1^3/6;
Ie(3,4) = h1^4/24;

Ie(4,1) = -2*h1;
Ie(4,2) = 2*h1^2;
Ie(4,3) = -4/3*h1^3;
Ie(4,4) = 2/3*h1^4;

IIe = inv(Ie);

% ***** On the Interface. *****
c(cdp(i),cdp(i)+2) = IIe(2,2);
c(cdp(i),cdp(i)+1) = IIe(2,1);
\[c(cdp(i), cdp(i)+0) = -(1a Ie(2, 1)+Ib Ie(2, 2)+Ie(2, 3)+Ie(2, 4)); \]
\[c(cdp(i), cdp(i)-1) = Ie(2, 3); \]
\[c(cdp(i), cdp(i)-2) = Ie(2, 4); \]

%%% ONE Sample Point Ahead of the Interface. %%%

\[Ia = 1-1/2*h1^-2*zet+1/24*h1^-4*zet^-2; \]

\[Ie(1, 1) = h2; \]
\[Ie(1, 2) = h2^-2/2; \]
\[Ie(1, 3) = h2^-3/6; \]
\[Ie(1, 4) = h2^-4/24; \]

\[Ie(2, 1) = 2*h2; \]
\[Ie(2, 2) = 2*h2^-2; \]
\[Ie(2, 3) = 4*h2^-3/3; \]
\[Ie(2, 4) = 2*h2^-4/3; \]

\[Ie(3, 1) = 3*h2; \]
\[Ie(3, 2) = 9*h2^-2/2; \]
\[Ie(3, 3) = 9*h2^-3/2; \]
\[Ie(3, 4) = 27*h2^-4/8; \]

\[Ie(4, 1) = (1/ro21)*(-h1+1/6*h1^-3*zet); \]
\[Ie(4, 2) = h1^-2/2-1/12*h1^-4*zet; \]
\[Ie(4, 3) = -h1^-3/(6*ro21); \]
\[Ie(4, 4) = h1^-4/24; \]

\[IIe = inv(Ie); \]

\[p1 = IIe(2, 1)+IIe(2, 2)+IIe(2, 3)+Ia*IIe(2, 4); \]
\[p2 = IIe(3, 1)+IIe(3, 2)+IIe(3, 3)+Ia*IIe(3, 4); \]
\[p3 = IIe(4, 1)+IIe(4, 2)+IIe(4, 3)+Ia*IIe(4, 4); \]

\[c(cdp(i)+1, cdp(i)+3) = IIe(2, 3)+h2*IIe(3, 3)+0.5*h2^-2*IIe(4, 3); \]
\[c(cdp(i)+1, cdp(i)+2) = IIe(2, 2)+h2*IIe(3, 2)+0.5*h2^-2*IIe(4, 2); \]
\[c(cdp(i)+1, cdp(i)+1) = IIe(2, 1)+h2*IIe(3, 1)+0.5*h2^-2*IIe(4, 1); \]
\[c(cdp(i)+1, cdp(i)+0) = -(p1+h2*p2+0.5*h2^-2*p3); \]
\[c(cdp(i)+1, cdp(i)-1) = IIe(2, 4)+h2*IIe(3, 4)+0.5*h2^-2*IIe(4, 4); \]
\footnotesize
% ***** ONE Sample Point Before the Interface. *****

\texttt{Ia = 1+1/2*h2^2*zet+1/24*h2^4*zet^2;}
\texttt{zet = \cos(n(i+1)^2-n(i)^2);}

\texttt{Ie(1,1) = -h1;}
\texttt{Ie(1,2) = 1/2*h1^2;}
\texttt{Ie(1,3) = -h1^3/6;}
\texttt{Ie(1,4) = h1^4/24;}

\texttt{Ie(2,1) = -2*h1;}
\texttt{Ie(2,2) = 2*h1^2;}
\texttt{Ie(2,3) = -4*h1^3/3;}
\texttt{Ie(2,4) = 2*h1^4/3;}

\texttt{Ie(3,1) = -3*h1;}
\texttt{Ie(3,2) = 9*h1^2/2;}
\texttt{Ie(3,3) = -9*h1^3/2;}
\texttt{Ie(3,4) = 27*h1^4/8;}

\texttt{Ie(4,1) = ro21*(h2-1/6*h2^3*zet);}
\texttt{Ie(4,2) = h2^2/2-1/12*h2^4*zet;}
\texttt{Ie(4,3) = 1/6*h2^3*ro21;}
\texttt{Ie(4,4) = h2^4/24;}

\texttt{IIe = inv(Ie);}

\texttt{p1 = IIe(2,1)+IIe(2,2)+IIe(2,3)+Ia*IIe(2,4);}
\texttt{p2 = IIe(3,1)+IIe(3,2)+IIe(3,3)+Ia*IIe(3,4);}
\texttt{p3 = IIe(4,1)+IIe(4,2)+IIe(4,3)+Ia*IIe(4,4);}

\texttt{c(cdp(i)-1,cdp(i)-3) = IIe(2,3)-h1*IIe(3,3)+0.5*h1^2*IIe(4,3);}
\texttt{c(cdp(i)-1,cdp(i)-2) = IIe(2,2)-h1*IIe(3,2)+0.5*h1^2*IIe(4,2);}
\texttt{c(cdp(i)-1,cdp(i)-1) = IIe(2,1)-h1*IIe(3,1)+0.5*h1^2*IIe(4,1);}
\texttt{c(cdp(i)-1,cdp(i)+0) = -p1+h1*p2-0.5*h1^2*p3;}
\texttt{c(cdp(i)-1,cdp(i)+1) = IIe(2,4)-h1*IIe(3,4)+0.5*h1^2*IIe(4,4);}

\texttt{end}

% ***** End of Function Program *****
Appendix D

MOL 7-Point Approximation

function c = sevenpt(TE,EQ,lambda,n,h,tndp)

% ***** Written by: Mohammed Abdul Majid *****
% ***** This function calculates the Second Derivative Matrix c *****
% ***** by using the Method of Lines (MoL), 7-Point.*****
%
% Implements the correct B.Cs. at the Adjacent Points of Interface.
% using Non-uniform Mesh
% using Sparse Matrices
% General Purpose for TE and TM mode.
%
% c = sevenpt(TE,EQ,lambda,n,h,tndp)
%
% TE Mode Selection,
% TE=1 for TE mode, TE=0 for TM mode.
%
% EQ Selection for Mesh,
% EQ=1 for Uniform Mesh, EQ=0 for Non-Uniform Mesh.
%
% lambda Wavelength (in micron).

% n Vector for Refractive Indices.
% n(1) Refractive Index of Superstrate
% n(2) Refractive Index of Core
% n(3) Refractive Index of Substrate.
%
% h Vector array containing Mesh Size distribution in each layer.
%
% tndp Vector array containing No. of Discretization points in each layer.

lyr = length(n); % No. of Layers.
tmp = sum(tndp); % Total number of discretization points
cdp = cumsum(tndp); % Cumulative Sum of tndp.
ko = 2*pi/lambda; kos = ko^2;

% ***** Matrix c *****
e = ones(tmp,1);

c = []; a = []; b = [];

div = 180;

ctmp = spdiags([2/div*e -27/div*e 270/div*e -490/div*e,...
 270/div*e -27/div*e 2/div*e], -3:3, tmp,tmp);

% ***** Dividing c by Mesh Size h^-2 =====

c = ctmp(1:tndp(1),:)/h(1)^2;

for j = 2:length(tndp)
 c = [c; ctmp(cdp(j-1)+1:cdp(j),:)/h(j)^2];
end

% *** c matrix modification at the interface ***

for i=1:lyr-1
h1 = h(i);
h2 = h(i+1);
zet = k * (n(i)^2 - n(i+1)^2);
if EQ == 0
 t21 = h(i+1)/h(i); % For Non-uniform Mesh.
else
 t21 = 1; % For Uniform Mesh.
end

if TE == 1
 ro21 = 1; % for TE mode.
else
 ro21 = (n(i+1)^2)/(n(i)^2); % For TM Mode.
end

Ia = 1 + zet*h2^2/factorial(2) + zet^2*h2^4/factorial(4) + zet^3*h2^6/factorial(6);

Ib = 1 + zet*(2*h2)^2/factorial(2) + zet^2*(2*h2)^4/factorial(4) + ... zet^3*(2*h2)^6/factorial(6);

Ic = 1 + zet*(3*h2)^2/factorial(2) + zet^2*(3*h2)^4/factorial(4) + ... zet^3*(3*h2)^6/factorial(6);

Ie(1,1) = ro21*(h2 + zet*h2^3/factorial(3) + zet^2*h2^5/factorial(5));
Ie(1,2) = h2^2/factorial(2) + 2*zet*h2^4/factorial(4) + ... 3*zet^2*h2^6/factorial(6);
Ie(1,3) = ro21*(h2^2/factorial(2) + 2*zet*h2^4/factorial(4) + ... 3*zet^2*h2^6/factorial(6));
Ie(1,4) = h2^4/factorial(4) + 3*zet*h2^6/factorial(6);
Ie(1,5) = ro21*(h2^4/factorial(4) + 3*zet*h2^6/factorial(6));
Ie(1,6) = h2^6/factorial(6);

Ie(2,1) = ro21*(2*h2 + zet*(2*h2)^3/factorial(3) + zet^2*(2*h2)^5/factorial(5));
Ie(2,2) = (2*h2)^2/factorial(2) + 2*zet*(2*h2)^4/factorial(4) + ... 3*zet^2*(2*h2)^6/factorial(6);
Ie(2,3) = ro21*((2*h2)^3/factorial(3) + 2*zet*(2*h2)^5/factorial(5));
Ie(2,4) = (2*h2)^4/factorial(4) + 3*zet*(2*h2)^6/factorial(6);
Ie(2,5) = ro21*((2*h2)^5/factorial(5));
Ie(2,6) = (2*h2)^6/factorial(6);
\begin{verbatim}
Ie(3,1)=ro21*(3*h2+zeta*3*h2)^3/factorial(3)+zeta^2*(3*h2)^5/factorial(5);
Ie(3,2)=(3*h2)^2/factorial(2)+2*zeta*(3*h2)^4/factorial(4)+ ...
3*zeta^2*(3*h2)^6/factorial(6);
Ie(3,3)=ro21*((3*h2)^3/factorial(3)+2*zeta*(3*h2)^5/factorial(5));
Ie(3,4)=(3*h2)^4/factorial(4)+3*zeta*(3*h2)^6/factorial(6);
Ie(3,5)=ro21*((3*h2)^5/factorial(5));
Ie(3,6)=(3*h2)^6/factorial(6);

Ie(4,1)=-h1; Ie(4,2)=(h1)^2/factorial(2);
Ie(4,3)=-(h1)^3/factorial(3); Ie(4,4)=(h1)^4/factorial(4);
Ie(4,5)=-(h1)^5/factorial(5); Ie(4,6)=h1^6/factorial(6);

Ie(5,1)=-2*h1; Ie(5,2)=(2*h1)^2/factorial(2);
Ie(5,3)=-(2*h1)^3/factorial(3); Ie(5,4)=(2*h1)^4/factorial(4);
Ie(5,5)=-(2*h1)^5/factorial(5); Ie(5,6)=(2*h1)^6/factorial(6);

Ie(6,1)=-3*h1; Ie(6,2)=(3*h1)^2/factorial(2);
Ie(6,3)=-(3*h1)^3/factorial(3); Ie(6,4)=(3*h1)^4/factorial(4);
Ie(6,5)=-(3*h1)^5/factorial(5); Ie(6,6)=(3*h1)^6/factorial(6);

IIe=inv(Ie);

\text{c(cdp}(i), cdp(i)+3)=IIe(2,3); \text{c(cdp}(i), cdp(i)+2)=IIe(2,2);
\text{c(cdp}(i), cdp(i)+1)=IIe(2,1); \text{c(cdp}(i), cdp(i))
-=(\text{Ia}+\text{IIe}(2,1)+\text{Ib}+\text{IIe}(2,2)+\text{Ic}+\text{IIe}(2,3)+\text{IIe}(2,4)+\text{IIe}(2,5)+\text{IIe}(2,6));
\text{c(cdp}(i), cdp(i)-1)=IIe(2,4); \text{c(cdp}(i), cdp(i)-2)=IIe(2,5);
\text{c(cdp}(i), cdp(i)-3)=IIe(2,6);

%%% One sampling point before the interface ====

Ia=1+zeta*h2^2/factorial(2)+zeta^2*h2^4/factorial(4)+ ...
zeta^3*h2^6/factorial(6);
Ib=1+zeta*(2*h2)^2/factorial(2)+zeta^2*(2*h2)^4/factorial(4)+ ...
zeta^3*(2*h2)^6/factorial(6);

Ie(3,:)=Ie(4,:); Ie(4,:)=Ie(5,:); Ie(5,:)=Ie(6,:);
\end{verbatim}
Ie(6,1)=4*h1; Ie(6,2)=(4*h1)^2/factorial(2);
Ie(6,3)=-(4*h1)^3/factorial(3); Ie(6,4)=(4*h1)^4/factorial(4);
Ie(6,5)=-(4*h1)^5/factorial(5); Ie(6,6)=(4*h1)^6/factorial(6);

IIe=inv(Ie);

p1=Ia*Ie(2,1)+Ib*Ie(2,2)+IIe(2,3)+Ile(2,4)+Ile(2,5)+Ile(2,6);
p2=Ia*Ie(3,1)+Ib*Ie(3,2)+IIe(3,3)+Ile(3,4)+Ile(3,5)+Ile(3,6);
p3=Ia*Ie(4,1)+Ib*Ie(4,2)+IIe(4,3)+Ile(4,4)+Ile(4,5)+Ile(4,6);
p4=Ia*Ie(5,1)+Ib*Ie(5,2)+IIe(5,3)+Ile(5,4)+Ile(5,5)+Ile(5,6);
p5=Ia*Ie(6,1)+Ib*Ie(6,2)+IIe(6,3)+Ile(6,4)+Ile(6,5)+Ile(6,6);

c(cdp(i)-1,cdp(i)-4)=IIe(2,6)-h1*Ie(3,6)+h1^2/factorial(2)*...
IIe(4,6)-h1^3/factorial(3)*Ile(5,6)+h1^4/factorial(4)*Ile(6,6);

c(cdp(i)-1,cdp(i)-3)=IIe(2,5)-h1*Ie(3,5)+h1^2/factorial(2)*...
IIe(4,5)-h1^3/factorial(3)*Ile(5,5)+h1^4/factorial(4)*Ile(6,5);

c(cdp(i)-1,cdp(i)-2)=IIe(2,4)-h1*Ie(3,4)+h1^2/factorial(2)*...
IIe(4,4)-h1^3/factorial(3)*Ile(5,4)+h1^4/factorial(4)*Ile(6,4);

c(cdp(i)-1,cdp(i)-1)=IIe(2,3)-h1*Ie(3,3)+h1^2/factorial(2)*...
IIe(4,3)-h1^3/factorial(3)*Ile(5,3)+h1^4/factorial(4)*Ile(6,3);

c(cdp(i)-1,cdp(i))=-(p1-h1*p2+h1^2/factorial(2)*p3-h1^3/factorial(3)*...
(p4)+h1^4/factorial(4)*p5);

c(cdp(i)-1,cdp(i)+1)=IIe(2,1)-h1*Ie(3,1)+h1^2/factorial(2)*...
IIe(4,1)-h1^3/factorial(3)*Ile(5,1)+h1^4/factorial(4)*Ile(6,1);

c(cdp(i)-1,cdp(i)+2)=IIe(2,2)-h1*Ie(3,2)+h1^2/factorial(2)*...
IIe(4,2)-h1^3/factorial(3)*Ile(5,2)+h1^4/factorial(4)*Ile(6,2);

%%% two sampling point before the interface =====
\[I_e(2,:) = I_e(3,:) \; ; \; I_e(3,:) = I_e(4,:) \; ; \; I_e(4,:) = I_e(5,:) \; ; \; I_e(5,:) = I_e(6,:) \; ; \]
\[I_e(6,1) = (5\cdot h_1)^{-2}/\text{factorial}(2) \; ; \]
\[I_e(6,2) = (5\cdot h_1)^{-3}/\text{factorial}(3) \; ; \]
\[I_e(6,3) = (5\cdot h_1)^{-4}/\text{factorial}(4) \; ; \]
\[I_e(6,4) = (5\cdot h_1)^{-5}/\text{factorial}(5) \; ; \]
\[I_e(6,5) = (5\cdot h_1)^{-6}/\text{factorial}(6) \; ; \]

\[II_e = \text{inv}(I_e) \; ; \]
\[p_1 = I_a + I_e(2,1) + I_e(2,2) + I_e(2,3) + I_e(2,4) + I_e(2,5) + I_e(2,6) \; ; \]
\[p_2 = I_a + I_e(3,1) + I_e(3,2) + I_e(3,3) + I_e(3,4) + I_e(3,5) + I_e(3,6) \; ; \]
\[p_3 = I_a + I_e(4,1) + I_e(4,2) + I_e(4,3) + I_e(4,4) + I_e(4,5) + I_e(4,6) \; ; \]
\[p_4 = I_a + I_e(5,1) + I_e(5,2) + I_e(5,3) + I_e(5,4) + I_e(5,5) + I_e(5,6) \; ; \]
\[p_5 = I_a + I_e(6,1) + I_e(6,2) + I_e(6,3) + I_e(6,4) + I_e(6,5) + I_e(6,6) \; ; \]

\[c(cdp(i)-2, cdp(i)-5) = I_e(2,6) - 2\cdot h_1 \cdot I_e(3,6) + (2\cdot h_1)^{-2} \cdot I_e(4,6) / \text{factorial}(2) \ldots \]
\[(2\cdot h_1)^{-3} \cdot I_e(5,6) / \text{factorial}(3) + (2\cdot h_1)^{-4} \cdot I_e(6,6) / \text{factorial}(4) \; ; \]

\[c(cdp(i)-2, cdp(i)-4) = I_e(2,5) - 2\cdot h_1 \cdot I_e(3,5) + (2\cdot h_1)^{-2} / \text{factorial}(2) \cdot I_e(4,5) \ldots \]
\[(2\cdot h_1)^{-3} / \text{factorial}(3) \cdot I_e(5,5) + (2\cdot h_1)^{-4} / \text{factorial}(4) \cdot I_e(6,5) \; ; \]

\[c(cdp(i)-2, cdp(i)-3) = I_e(2,4) - 2\cdot h_1 \cdot I_e(3,4) + (2\cdot h_1)^{-2} / \text{factorial}(2) \cdot I_e(4,4) \ldots \]
\[(2\cdot h_1)^{-3} / \text{factorial}(3) \cdot I_e(5,4) + (2\cdot h_1)^{-4} / \text{factorial}(4) \cdot I_e(6,4) \; ; \]

\[c(cdp(i)-2, cdp(i)-2) = I_e(2,3) - 2\cdot h_1 \cdot I_e(3,3) + (2\cdot h_1)^{-2} / \text{factorial}(2) \cdot I_e(4,3) \ldots \]
\[(2\cdot h_1)^{-3} / \text{factorial}(3) \cdot I_e(5,3) + (2\cdot h_1)^{-4} / \text{factorial}(4) \cdot I_e(6,3) \; ; \]

\[c(cdp(i)-2, cdp(i)-1) = I_e(2,2) - 2\cdot h_1 \cdot I_e(3,2) + (2\cdot h_1)^{-2} / \text{factorial}(2) \cdot I_e(4,2) \ldots \]
\[(2\cdot h_1)^{-3} / \text{factorial}(3) \cdot I_e(5,2) + (2\cdot h_1)^{-4} / \text{factorial}(4) \cdot I_e(6,2) \; ; \]

\[c(cdp(i)-2, cdp(i)+0) = -(p_1 - 2\cdot h_1 \cdot p_2 + (2\cdot h_1)^{-2} / \text{factorial}(2) \cdot p_3 \ldots \]
\[(2\cdot h_1)^{-3} / \text{factorial}(3) \cdot (p_4) + (2\cdot h_1)^{-4} / \text{factorial}(4) \cdot p_5) \; ; \]

\[c(cdp(i)-2, cdp(i)+1) = I_e(2,1) - 2\cdot h_1 \cdot I_e(3,1) + (2\cdot h_1)^{-2} / \text{factorial}(2) \cdot I_e(4,1) \ldots \]
\[(2\cdot h_1)^{-3} / \text{factorial}(3) \cdot I_e(5,1) + (2\cdot h_1)^{-4} / \text{factorial}(4) \cdot I_e(6,1) \; ; \]
%****one sampling point ahead****

\[h_2 = h(i); \ h_1 = h(i+1); \ n_1 = n(i+1); \ n_2 = n(i); \ \text{ro21} = 1/\text{ro21}; \]
\[\text{zet} = k_0 \cdot 2 \cdot (n_1^2 - n_2^2); \]
\[I_a = 1 + \text{zet} \cdot h_2^2 / \text{factorial}(2) + \text{zet} \cdot h_2^4 / \text{factorial}(4) + \ldots \]
\[\text{zet} \cdot h_2^6 / \text{factorial}(6); \]
\[I_b = 1 + \text{zet} \cdot (2 \cdot h_2)^2 / \text{factorial}(2) + \text{zet} \cdot (2 \cdot h_2)^4 / \text{factorial}(4) + \ldots \]
\[\text{zet} \cdot (2 \cdot h_2)^6 / \text{factorial}(6); \]
\[I_e(1, 1) = \text{ro21} \cdot (h_2 + \text{zet} \cdot h_2^3 / \text{factorial}(3) + \text{zet} \cdot h_2^5 / \text{factorial}(5)); \]
\[I_e(1, 2) = h_2^2 / \text{factorial}(2) + \text{zet} \cdot h_2^4 / \text{factorial}(4) + \ldots \]
\[3 \cdot \text{zet} \cdot h_2^6 / \text{factorial}(6); \]
\[I_e(1, 3) = \text{ro21} \cdot (h_2^3 / \text{factorial}(3) + 2 \cdot \text{zet} \cdot h_2^5 / \text{factorial}(5)); \]
\[I_e(1, 4) = h_2^4 / \text{factorial}(4) + 3 \cdot \text{zet} \cdot h_2^6 / \text{factorial}(6); \]
\[I_e(1, 5) = \text{ro21} \cdot h_2^5 / \text{factorial}(5); \ I_e(1, 6) = h_2^6 / \text{factorial}(6); \]
\[I_e(2, 1) = \text{ro21} \cdot (2 \cdot h_2 + \text{zet} \cdot (2 \cdot h_2)^3 / \text{factorial}(3) + \ldots \]
\[\text{zet} \cdot (2 \cdot h_2)^5 / \text{factorial}(5); \]
\[I_e(2, 2) = (2 \cdot h_2)^2 / \text{factorial}(2) + \text{zet} \cdot (2 \cdot h_2)^4 / \text{factorial}(4) + \ldots \]
\[3 \cdot \text{zet} \cdot (2 \cdot h_2)^6 / \text{factorial}(6); \]
\[I_e(2, 3) = \text{ro21} \cdot ((2 \cdot h_2)^3 / \text{factorial}(3) + 2 \cdot \text{zet} \cdot (2 \cdot h_2)^5 / \text{factorial}(5)); \]
\[I_e(2, 4) = (2 \cdot h_2)^4 / \text{factorial}(4) + 3 \cdot \text{zet} \cdot (2 \cdot h_2)^6 / \text{factorial}(6); \]
\[I_e(2, 5) = \text{ro21} \cdot ((2 \cdot h_2)^5 / \text{factorial}(5)); \]
\[I_e(2, 6) = (2 \cdot h_2)^6 / \text{factorial}(6); \]
\[I_e(3, 1) = -h_1; \ I_e(3, 2) = 1/2 \cdot h_1^2; \ I_e(3, 3) = -1/6 \cdot h_1^3; \ I_e(3, 4) = 1/24 \cdot h_1^4; \ I_e(3, 5) = -1/120 \cdot h_1^5; \ I_e(3, 6) = 1/720 \cdot h_1^6; \]
\[I_e(4, 1) = -2 \cdot h_1; \ I_e(4, 2) = (2 \cdot h_1)^2 / \text{factorial}(2); \]
\[I_e(4, 3) = - (2 \cdot h_1)^3 / \text{factorial}(3); \ I_e(4, 4) = (2 \cdot h_1)^4 / \text{factorial}(4); \]
\[I_e(4, 5) = - (2 \cdot h_1)^5 / \text{factorial}(5); \ I_e(4, 6) = (2 \cdot h_1)^6 / \text{factorial}(6); \]
\[Ie(5,1) = -3h1; \quad Ie(5,2) = (3h1)^2 / \text{factorial}(2); \]
\[Ie(5,3) = -(3h1)^3 / \text{factorial}(3); \quad Ie(5,4) = (3h1)^4 / \text{factorial}(4); \]
\[Ie(5,5) = -(3h1)^5 / \text{factorial}(5); \quad Ie(5,6) = (3h1)^6 / \text{factorial}(6); \]
\[Ie(6,1) = -4h1; \quad Ie(6,2) = (4h1)^2 / \text{factorial}(2); \]
\[Ie(6,3) = -(4h1)^3 / \text{factorial}(3); \quad Ie(6,4) = (4h1)^4 / \text{factorial}(4); \]
\[Ie(6,5) = -(4h1)^5 / \text{factorial}(5); \quad Ie(6,6) = (4h1)^6 / \text{factorial}(6); \]
\[\text{IIe} = \text{inv}(Ie); \]

\[p1 = Ia \times Ie(2,1) + Ib \times Ie(2,2) + Ie(2,3) + Ie(2,4) + Ie(2,5) + Ie(2,6); \]
\[p2 = Ia \times Ie(3,1) + Ib \times Ie(3,2) + Ie(3,3) + Ie(3,4) + Ie(3,5) + Ie(3,6); \]
\[p3 = Ia \times Ie(4,1) + Ib \times Ie(4,2) + Ie(4,3) + Ie(4,4) + Ie(4,5) + Ie(4,6); \]
\[p4 = Ia \times Ie(5,1) + Ib \times Ie(5,2) + Ie(5,3) + Ie(5,4) + Ie(5,5) + Ie(5,6); \]
\[p5 = Ia \times Ie(6,1) + Ib \times Ie(6,2) + Ie(6,3) + Ie(6,4) + Ie(6,5) + Ie(6,6); \]

\[
c(dp(i)+1,cdp(i)+1-3) = Ie(2,2) - h1 \times Ie(3,2) + h1^2 / \text{factorial}(2) \times Ie(4,2) - \ldots \\
h1^3 / \text{factorial}(3) \times Ie(5,2) + h1^4 / \text{factorial}(4) \times Ie(6,2);
\]

\[
c(dp(i)+1,cdp(i)+1-2) = Ie(2,1) - h1 \times Ie(3,1) + h1^2 / \text{factorial}(2) \times Ie(4,1) - \ldots \\
h1^3 / \text{factorial}(3) \times Ie(5,1) + h1^4 / \text{factorial}(4) \times Ie(6,1);
\]

\[
c(dp(i)+1,cdp(i)+1-1) = -(p1 - h1 \times p2 + h1^2 / \text{factorial}(2) - p3 - h1^3 / \text{factorial}(3) - \ldots \\
(p4) + h1^4 / \text{factorial}(4) = p5);
\]

\[
c(dp(i)+1,cdp(i)+1) = Ie(2,3) - h1 \times Ie(3,3) + h1^2 / \text{factorial}(2) \times Ie(4,3) - \ldots \\
h1^3 / \text{factorial}(3) \times Ie(5,3) + h1^4 / \text{factorial}(4) \times Ie(6,3);
\]

\[
c(dp(i)+1,cdp(i)+1+1) = Ie(2,4) - h1 \times Ie(3,4) + h1^2 / \text{factorial}(2) \times Ie(4,4) - \ldots \\
h1^3 / \text{factorial}(3) \times Ie(5,4) + h1^4 / \text{factorial}(4) \times Ie(6,4);
\]

\[
c(dp(i)+1,cdp(i)+1+2) = Ie(2,5) - h1 \times Ie(3,5) + h1^2 / \text{factorial}(2) \times Ie(4,5) - \ldots \\
h1^3 / \text{factorial}(3) \times Ie(5,5) + h1^4 / \text{factorial}(4) \times Ie(6,5);
\]

\[
c(dp(i)+1,cdp(i)+1+3) = Ie(2,6) - h1 \times Ie(3,6) + h1^2 / \text{factorial}(2) \times Ie(4,6) - \ldots \\
h1^3 / \text{factorial}(3) \times Ie(5,6) + h1^4 / \text{factorial}(4) \times Ie(6,6);
\]

\%

\%\%\% two point ahead of interface \%\%\%
Ie(2,:) = Ie(3,:); Ie(3,:) = Ie(4,:); Ie(4,:) = Ie(5,:);
Ie(5,:) = Ie(6,:);

Ie(6,1) = -5*h1; Ie(6,2) = (5*h1)^2 / factorial(2);
Ie(6,3) = -(5*h1)^3 / factorial(3); Ie(6,4) = (5*h1)^4 / factorial(4);
Ie(6,5) = -(5*h1)^5 / factorial(5); Ie(6,6) = (5*h1)^6 / factorial(6);

IIe = inv(Ie);

p1 = Ia*IIe(2,1) + IIe(2,2) + IIe(2,3) + IIe(2,4) + IIe(2,5) + IIe(2,6);
p2 = Ia*IIe(3,1) + IIe(3,2) + IIe(3,3) + IIe(3,4) + IIe(3,5) + IIe(3,6);
p3 = Ia*IIe(4,1) + IIe(4,2) + IIe(4,3) + IIe(4,4) + IIe(4,5) + IIe(4,6);
p4 = Ia*IIe(5,1) + IIe(5,2) + IIe(5,3) + IIe(5,4) + IIe(5,5) + IIe(5,6);
p5 = Ia*IIe(6,1) + IIe(6,2) + IIe(6,3) + IIe(6,4) + IIe(6,5) + IIe(6,6);

c(cdp(i)+2, cdp(i)-1) = IIe(2,1)*2*h1 + IIe(3,1)*(2*h1)^2 / factorial(2) * IIe(4,1) - ...
(2*h1)^3 / factorial(3) * IIe(5,1)*(2*h1)^4 / factorial(4) * IIe(6,1);

c(cdp(i)+2, cdp(i)) = (p1-2*h1*p2+(2*h1)^2 / factorial(2) * p3-(2*...
2*h1)^3 / factorial(3) * (p4+(2*h1)^4 / factorial(4) * p5);

c(cdp(i)+2, cdp(i)+1) = IIe(2,2)*2*h1 + IIe(3,2)*(2*h1)^2 / factorial(2) * IIe(4,2) - ...
(2*h1)^3 / factorial(3) * IIe(5,2)*(2*h1)^4 / factorial(4) * IIe(6,2);

c(cdp(i)+2, cdp(i)+2) = IIe(2,3)*2*h1 + IIe(3,3)*(2*h1)^2 / factorial(2) * IIe(4,3) - ...
(2*h1)^3 / factorial(3) * IIe(5,3)*(2*h1)^4 / factorial(4) * IIe(6,3);

c(cdp(i)+2, cdp(i)+3) = IIe(2,4)*2*h1 + IIe(3,4)*(2*h1)^2 / factorial(2) * IIe(4,4) - ...
(2*h1)^3 / factorial(3) * IIe(5,4)*(2*h1)^4 / factorial(4) * IIe(6,4);

c(cdp(i)+2, cdp(i)+4) = IIe(2,5)*2*h1 + IIe(3,5)*(2*h1)^2 / factorial(2) * IIe(4,5) - ...
(2*h1)^3 / factorial(3) * IIe(5,5)*(2*h1)^4 / factorial(4) * IIe(6,5);

c(cdp(i)+2, cdp(i)+5) = IIe(2,6)*2*h1 + IIe(3,6)*(2*h1)^2 / factorial(2) * IIe(4,6) - ...
(2*h1)^3 / factorial(3) * IIe(5,6)*(2*h1)^4 / factorial(4) * IIe(6,6);

end

% ***** End of Function Program *****
Appendix E

Multi-layer ARROW

% ***** Written by: Mohammed Abdul Majid *****

% ***** This Program calculates Power Loss, Fraction
% of Power in Evanescent Field and Sensitivity
% for fundamental Mode only *****
% ***** using Method of Lines and STF1 *****
% ***** General Purpose for 3-pt, 5-pt and 7-pt Approximation *****
% ***** Double layer PML is used.
% ***** Water is used as superstrate

clear all
close all

lambda = 0.45;
ox = 2; % Origin of X-axis.

% ***** PML/water/Core/Multilayers/Substrate/PML/PML *****

n = [1.333 1.333 1.45 2.3 1.45 2.3 1.45... 2.3 1.45 2.3 1.45 2.3 1.45 3.5 3.5 3.5]; % Refractive Indices of the layers.
wid = [0.5 1.5 0.81 0.06 0.1872 0.06 0.1872 0.06 0.1872 0.06 0.1872 ... 0.06 0.1872 0.18 0.1 0.1]; % core width taken as 0.81um

ndp = [10 30 30 10 10 10 10 10 10 5 5 5 5];

hh = wid./ndp; nsq = n.^2;
ndp = length(wid); % No of Layers in Waveguide.
ko = 2*pi/lambda;
kos = ko*ko;
tnp = sum(ndp);
cdp = cumsum(ndp); %Cumulative Sum of ndp Matrix.

% ***** Introducing Imaginary Distance *****
clear j;
f1 = 1+0.5*j;
f2 = 1+1.5*j;
hh(1) = hh(1)*f1;
hh(nlyr)=hh(nlyr)*f2;
hh(nlyr-1) = hh(nlyr)*f1;

% ***** Matrix for Refrective Indices. *****
N = [];
M = [];
e = ones(tnp,1);
for k = 1:nlyr
 N = [N nsq(k)*ones(1,ndp(k))];
 M = [M hh(k)*ones(1,ndp(k))];
end
asp = 1:tnp;
N = sparse(asp,asp,N);

% ***** Matrix C *****
C = fivept(TE,EQ,lambda,n,hh,ndp);

% ***** Calculationg Q Matrix. *****
Q = C + kos*N;
req = cos\^2 1.45 - 2;
[U,V] = eigs(Q,1,req);

Neffr = real(sqrt(diag(V))/ko)
Neffi = imag(sqrt(diag(V))/ko)
Bmole = abs(imag(sqrt(diag(V))));
mx = max(abs(U));
FS1(:,1)=abs(U)/mx;

% *** Power Loss calculation ***
PL = Neffi*20*2*pi/lambda*log10(exp(1))/100/1e-6

% *** Fraction of Power in evanescent Field ***

% *** Field in Superstrate ***
FS2 = FS1(cdp(1):cdp(2),1);
M1 = M(1,cdp(1):cdp(2));
U=full(U);
%M *** Power in evanescent Field***

Modeev=real(FS1(cdp(1):cdp(2),1)'*(FS1(cdp(1):cdp(2),1).*M(1,cdp(1):cdp(2)).'))

% *** Total power in TE0 mode ***

Pinc= real(FS1(:,1)' *(FS1(:,1).*M.'))

% *** Fraction of Power in evanescent field

frac=Modeev/Pinc

% ***** Setting X-axis. *****

ax = [] ; ox = cdp(2);
for y = 1:nlyr
 ax = [ax real(hh(y))*ones(1,ndp(y))];
end
ox = sum(ax(1:ox));
x = cumsum(ax);
\[x = x'; \]
\[x = x - ox; \]

% ***** To calculate sensitivity introduce loss in superstrate
% and calculate Power loss by using the this program ***

% ***** To calculate the Phase difference acquired
% when there is change in refractive index of superstrate
% use the same program and use the formula to calculate P.D
% given in chapter 5

% *** plot the fundamental mode ***

figure
plot(x, abs(FS1(:, 1)))
grid on
ylabel('Field Strength');
xlabel('X-axis (um)');
Appendix F

Gaussian Beam Coupling

% ***** Written by: Mohammed Abdul Majid *****
% ***** Using Overlap Integral.
% ***** Using Method of Lines *****
% ***** General Purpose for 3-pt, 5-pt or 7-pt Approximation. *****

format long e

clear all
close all

TE = 1; % TE=0 for TM Mode, TE=1 for TE Mode.
EQ = 0; % EQ=0 for Non-Uniform Mesh, EQ=1 for Uniform Mesh.
lambda = 0.45;
nb1=1.45; nf1=1.333; nf2=2.3; nf3=3.5;

n = [nb1 nb1 nb1 nb1 nb1 nb1 nb1 nb1 nb1 nb1
 nb1 nb1 nb1 nb1 nb1nb1 nf1 nf1 nb1 nf2 nb1 nb1 nb2 nb1

139
nf2 nb1 nf2 nb1 nf2 nb1 nf3 nb3 nb3; % Refractive Indices of the layers.

\[
\text{wid} = [0.5 1.5 0.81 0.06 0.1872 0.06 0.1872 0.06 0.1872 0.06 0.1872 0.06 0.1872 0.06 0.1872 0.06 \ldots \\
0.1872 0.06 0.1872 0.18 0.1 0.1]; % Width of Each Layer.
\]

\[
\text{ndp} = [10 30 30 10 10 10 10 10 10 10 5 5 5 5]; % No. of Discretizations in all Layers for Non-Uniform Mesh.
\]

\[
\text{nsq} = \text{n}^2; \\
\text{hh} = \text{wid}./\text{ndp}; \\
\text{nlyr} = \text{length} (\text{wid}); % No of Layers in Waveguide. \\
\text{ko} = 2*\pi/\lambda; \text{kos} = \text{ko}^2; \\
\text{tmp} = \text{sum} (\text{ndp}); \\
\text{cdp} = \text{cumsum} (\text{ndp}); % Cumulative Sum of ndp Matrix.
\]

% ***** Introducing Imaginary Distance *****

\[
\text{f1} = 1+0.5*j; \\
\text{f2} = 1+1.5*j; \\
\text{hh}(1) = \text{hh}(1)*f1; \\
\text{hh(nlyr)} = \text{hh(nlyr)}*f2; \\
\text{hh(nlyr-1)} = \text{hh(nlyr)}*f1;
\]

% ***** Matrix for Refractive Indices. *****

\[
\text{N1} = \begin{bmatrix} \square \end{bmatrix}; \text{dx} = \begin{bmatrix} \square \end{bmatrix};
\]

\[
\text{for k = 1:nlyr}
\]

\[
\text{N1} = [\text{N1} \text{nsq}(1,k) \cdot \text{ones}(1,\text{ndp}(k))]; \\
\text{dx} = [\text{dx} \text{hh}(k) \cdot \text{ones}(1,\text{ndp}(k))];
\]

\[\text{end}\]

\[
\text{asp} = 1:\text{tmp};
\]

\[
\text{N1} = \text{sparse} (\text{asp}, \text{asp}, \text{N1});
\]
% ***** Matrix C *****

C1 = fivept(TE, EQ, lambda, n(1,:), hh, ndp);

% ***** Calculation of Q Matrix. *****
Q1 = C1 + kos*W1;

% ***** 2nd waveguide *****

N2=[];

for k = 1:nlyr

 N2 = [N2 nsq(2,k)=ones(1,ndp(k))];
end

N2 = sparse(asp, asp, N2);

C2 = fivept(TE, EQ, lambda, n(2,:), hh, ndp);

Q2 = C2 + kos*N2;
req = kos*1.45^2;

[Um, Vm] = eigs(Q2, 1, req);

Am2 = abs(Um)/max(abs(Um)); % Normalized fundamental mode of region 2

% ***** Setting X-axis. *****

ax = [];
ox = cdp(2); % Origin of the x-axis
for y = 1:nlyr
 ax = [ax real(hh(y))*ones(1, ndp(y))];
end
ox = sum(ax(1:ox)); x = cumsum(ax);
 x = x-ox;

% ***** Gaussian Field *****
wo = 0.3; % can be kept at any value depending on requirement
cx = +0.3; % can be kept at any value depending on requirement
Eg = exp(-(x-cx).^-2/wo^-2);
Eg = Eg.';

% ***** Reflection and Transmission Matrices *****
[U1,V1] = eig(full(Q1));
[U2,V2] = eig(full(Q2));

% ***** Making Imaginary Part of V to Positive *****
for i=1:tnp; if imag(V1(i,i)) < 0; V1(i,i) = V1(i,i)' ; end; end
for i=1:tnp; if imag(V2(i,i)) < 0; V2(i,i) = V2(i,i)' ; end; end

% ***Transmitted and reflected Matrices********
S0po = U1*diag(diag(V1).^(-0.5))*inv(U1);
S0ne = U1*diag(diag(V1).^(-0.5))*inv(U1);
S1po = U2*diag(diag(V2).^(-0.5))*inv(U2);
S1ne = U2*diag(diag(V2).^(-0.5))*inv(U2);
T0=S0ne*S1po;
I=eye(tnp);

% Transmitted and reflected field
Te=2*inv(I+T0);
\[R = (I - T_0) \cdot \text{inv}(I + T_0); \]
\[A_2 = T_2 \cdot E_{g.'}; \]
\[B_1 = R \cdot E_{g.'}; \]

% ***** Applying OVERLAP INTEGRAL METHOD *****

\[Q_1 = \text{full}(Q_1)^{-0.5}; \]
\[Q_2 = \text{full}(Q_2)^{-0.5}; \]
\[rdx = \text{real}(dx); \]
\[\text{OverLap} = A_2' \cdot (A_2 \cdot rdx'); \]
\[\alpha = A_2' \cdot (A_2 \cdot rdx') / \text{OverLap} \]
\[P_g = \text{real}(\alpha \cdot A_2' \cdot (rdx' \cdot \text{conj}(Q_2' \cdot \alpha \cdot A_2''))); \quad \% \text{guided power} \]
\[P_i = \text{real}(E_g \cdot (rdx' \cdot \text{conj}(Q_1' \cdot E_{g.'}))); \quad \% \text{Incident power} \]
\[\text{Eff} = \text{abs}(P_g / P_i) \% \text{Coupling Efficiency to the} \]
% field of the forward fundamental mode
\[P_t = \text{real}(A_2' \cdot (rdx' \cdot \text{conj}(Q_2' \cdot A_2'')); \% \text{transmitted power} \]
\[P_r = \text{real}(B_1' \cdot (rdx' \cdot \text{conj}(Q_1' \cdot B_1'))); \% \text{reflected Power} \]
\[R = P_r / P_i \]
\[T = P_t / P_i \]
\[\text{Unity} = R + T, \% \text{Power Balance Parameter} \]
Bibliography

