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Abstract 
 

Using the Stochastic Finite Element Method (SFEM) to perform reliability 
analysis of the free vibration of composite plates with material and fabrication 
uncertainties has received much attention lately. In this work the stochastic analysis is 
performed using the First Order Reliability Method (FORM-method 2) and the Second 
Order Reliability Method (SORM). The basic random variables include laminae stiffness 
properties and material density, as well as the randomness in ply orientation angles. 
Modeling of the composite behavior utilizes a nine-noded isoparametric Lagrangian 
element based on the third order shear deformation theory. The developed code utilizes 
MATLAB capabilities to derive the derivatives of the reduced stiffness and mass 
matrices symbolically with a considerable reduction in calculation time. Calculating the 
eigenvectors at the mean values of the variables proves to be a reasonable simplification 
which significantly increases solution speed. The stochastic finite element code is 
validated using available data in the literature, in addition to comparisons with results of 
the well-established Monte Carlo simulation technique with importance sampling. 
Results show that SORM is an excellent rapid tool in the stochastic analysis of free 
vibration of composite plates, when compared to the slower Monte Carlo simulation 
techniques.  
 
Introduction  
 

Dynamic behavior of composite laminates is a function of the geometrical and 
material properties of these laminates. Mechanical properties, density, stacking sequence, 
as well as the laminate dimensions determine the values of the natural frequencies. These 
quantities are not deterministic in nature. Rather, uncertainties in their values due to 
manufacturing and fabrication result in variations in the behavior characteristics of the 
laminate such as the values of the natural frequencies. Computer simulations of 
composite laminates used in aerospace applications often show closely packed or 
overlapping natural frequencies. In such cases even the slightest shift in characteristics of 
the laminate can have a pronounced effect on the response of the structure. For proper 



quality control of the dynamic characteristics of laminates, their sensitivities to the 
laminate properties need to be investigated. 

Analysis of structures with deterministic characteristics to random excitations has 
been reported extensively in the literature; see [1] for example. This is not the case, 
however, for the analysis of composite structures with a comprehensive implementation 
of uncertainties. Sources of uncertainties range from the statistical nature of the material 
properties of the constituents, to the inevitable fabrication randomness in layup and 
curing. To implement the effects of material and manufacturing uncertainties, a set of 
random variables is chosen and the randomness in these variables is quantified 
experimentally or using simulation codes. These random variables are usually chosen as 
the composite laminate mechanical properties, density, and orientation angles. Ibrahim 
[2] and Manohar and Ibrahim [3] has presented a review of structural dynamics problems 
with such stochastic parameter variations. Oh and Librescu [4] developed a mean-
centered second-moment method to study the free vibration and reliability of composite 
cantilevers.  

Composite plates were also analyzed using these techniques. In their work, Salim 
et al. [5-7] have employed a First Order Perturbation Technique FOPT to perform static 
analysis of composite plates using classical laminated plate theory with random material 
properties. The static response of uncertain FEM discretised structures was evaluated by 
Falsone and Impollonia [8], while Chamis et al. [9,10] combined optimization techniques 
with probabilistic structural analysis to reduce the maximum deflection of a composite 
simulated fuselage by a factor of 4.5.  

Several higher order finite elements have been employed to model plate dynamic 
response in most of such analyses. Elseifi [11] used a four noded element based on a 
higher order shear deformation theory to perform reliability analysis of thick composite 
plates subject to first-ply failure with parameter uncertainties. Shankara and Iyengar [12] 
used a higher order shear deformation theory to formulate elements with 5 DOFs and 7 
DOFs per node to study the free vibration of plates. Later, Singh et al. [13] added the 
complexity of random material properties to the free vibration analysis of composite 
plates. 
 The aim of the present work is to study and develop a Stochastic FEM code to 
investigate the fundamental frequency of rectangular composite plates made up of 
laminae with uncertain parameters. The generalized analysis allows the random variables 
representing material properties to be normal or nonnormal, correlated or uncorrelated. 
Laminate mechanical behavior is modeled using a higher order shear deformable 
element. Considerable reduction in calculation time is achieved by deriving the 
derivatives of the reduced stiffness and mass matrices symbolically. The code is built 
using the MATLAB 7.1 compiler and all runs are made on a P4 2.8 GHz machine with 
512 MB RAM. 
 
Reliability Models of the Composite Laminate 
 

The commonly used deterministic safety factors do not provide adequate 
information to achieve optimal use or resources, while probabilistic analysis does. The 
first step in studying the variation of the fundamental frequency of the composite plate, 
ωp, due to uncertainties in its material properties and ply angles is to define a suitable and 



specific performance criterion. The plate axbxh composite laminate, shown in Fig. 1, is 
assumed to be subjected to a periodic load with frequency ωL, which can take any value 
up to ωp. In probabilistic design, ωp is not a unique value, but has a certain distribution. 
This distribution can be quantified by its mean value and standard deviation. At the 
design point, the plate fundamental frequency ωp, is equal to a certain specified value ωr, 
which can be taken as that of the periodic load. Accordingly, a suitable performance 
function is defined as: 

 
( ) ( / ) 1p rg X λ λ= −         (1) 

 
where  2, ,p r p rλ ω=  are the eigenvalues, and X is a vector of basic random variables, given 
by: 
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Fig. 1. Geometry of the composite plate. 
 

Here, E11, E22, G12, G13, G23 and ν12 are the mechanical properties of each lamina in its 
principal directions, ρ is the material density, and θi are the ply orientation angles. A 
failure surface or a limit state of interest can then be defined as g(X)=0, with the 
probability of failure calculated from: 
 

1 2 1 2
0

= .... ( , ,..., ) ...f X n n
g

p f X X X dX dX dX
<

∫ ∫      (3) 

 
where fX(X1,X2,…,Xn), is the joint probability density function for the n basic random 
variables, where n=7+m. The integration is performed over the failure region g( ) <0.  
There are several methods to calculate pf. Here we shall use two types of analytical 
approximations that lead to two methods; the First-Order Reliability Method (FORM-
Method 2), and the Second-Order Reliability Method (SORM). Both methods will be 
investigated in their ability to correctly predict the probability of failure and the Most 
Probable Point (MPP) of the system. A detailed account of both methods can be found in 
[17] and will be summarized here. 
 
 

a x

y 
h

b



First-Order Reliability Method (FORM Method-2): 
 

In this method a Newton-type recursive formula is used to find the design point 
when the performance unction is implicit, as in the case when using finite element 
formulation to describe the behavior of the system. First the vector X is transformed into 
a reduced X ′  with normal random variables of zero mean and unit standard deviation. 
The starting point of the procedure in the space of X ′  is usually taken as the point of 
mean values. This point does not, in general, lie on the limit surface 0( ) 0g X ′ = , as shown 
in Fig.2 for a two dimensional space. The equation of the limit state is now linearized 
around 0X ′ : 

 
0 0( ) ( )Tg X c g X X′ ′= + ∇        (4) 

 

 
    

Fig. 2. FORM Method-2 for the nonlinear limit state. 
 

Since the performance function is nonlinear, then its gradient is not constant. In this case, 
the new design point is obtained recursively by: 
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The distance from the origin to this new design point in the X ′ -space is: 
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The procedure is terminated when reaching the Most Probable Point (MPP). MPP is 



assumed to be reached when both of the following conditions are satisfied 
 

1k kβ β ε+ − ≤ ,        (7.a) 
*

1( )kg X δ+′ ≤ ,         (7.b) 
 

with ε and δ being reasonably small numbers. The probability of failure in this case is: 
 

1 ( )fp β= − Φ         (8) 
 

where Φ  is the cumulative distribution function of a standard normal distribution with 
zero mean and unit standard deviation. 
 
Second-Order Reliability Method (SORM): 
 

This method uses a second order Taylor approximation of the nonlinear limit state 
function in order to better model its curvature. This expansion at a given point *X  in the 
standard normal variable space is: 
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A simple closed-form solution for the probability of failure using this second-order 

approximation is derived using the theory of asymptotic approximations in [18] as: 
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where β is the reliability index using FORM, and κi are the principal curvatures of the 
limit state at the minimum distance point. These curvatures are obtained as follows. First 
the X ′  standard normal variables are rotated to another set of coordinates, denoted as Y, 
such that the last component of the new set, Yn, coincides with α, the unit gradient vector 
of the limit state at the design point. This transformation is shown in Fig. 3 for the case of 
n=2. This orthogonal transformation is given by: 
 

Y RX ′=          (11) 
 

where R is the rotation matrix. For the case n>2, the rows ri of this matrix are calculated 
using Gram-Schmidt orthogonalization procedure, see [17], as: 
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where 0ir  are the rows of the matrix 0R , given by: 
 

0

1 2

1 0 0
0 1 0

 
0

n

R

α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

" " "
"

,       (13) 

 
with αι being the components of the unit gradient vector α at the design point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. SORM rotation of coordinates. 

 
Defining a matrix A whose elements are denoted by aij is computed as: 
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where D the nxn second-derivative matrix of the limit state surface in the standard 

normal space evaluated at the design point. Since Yn coincides with the β-vector 
computed in FORM, the last column and last rows in the A matrix and the last row in the 
Y vector are dropped out to take this factor into account. The limit state can then be 
rewritten in terms of a second-order approximation in the rotated Y space as: 

1 
2

T
nY Y AYβ= + ,        (15) 

where A is now of size (n-1)x(n-1). The required curvatures κi are computed as the 
eigenvalues of the matrix A. The probability of failure can now be calculated from Eq. 
(10). 
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Finite Element Model 
 

To include transverse shear stresses and rotatory inertia effects, several shear 
deformation theories are developed. Here, an element based on the Higher-Order Shear 
Deformation Theory (HSDT) is utilized. Development of the element, detailed in [13] 
and briefly summarized here, employs the parabolic shear deformation theory. 

 
Displacement Field 

In the parabolic shear deformation theory, the displacement field is described in 
terms of midsurface displacements u, v and w, the perpendicular to the midplane, ζ, and 
the rotations of the normal to the midsurface at ζ = 0,  φ1 and φ2. Considering the 
derivatives of the out-of-plane displacement as separate independent degrees of freedom 
transforms this system, with 5 degrees of freedom per node and C1 continuity, into one 
with 7 degrees of freedom per node and mathematically easier C0 continuity. The 
displacement field may be modified to accommodate C0 continuity, see [12]. The 
resulting displacement field is:  

 
( )1 2 1 1 2 1, , , ( ) ( )u x x t u f fζ ζ φ ζ θ= + +                     

( )1 2 1 2 2 2, , , ( ) ( )v x x t v f fζ ζ φ ζ θ= + +                                    (16) 

( )1 2, , ,w x x t wζ = ,      
where: 

1 1/w xθ = ∂ ∂ , 2 2/w xθ = ∂ ∂ , 3 2
1( ) 4 / 3f hζ ζ ζ= − , and 3 2

2 ( ) 4 / 3f hζ ζ= − ,  (17) 
 
which satisfies the conditions of stress-free upper and lower plate surfaces. 
 
Strain Energy 

The elastic strain energy of the laminated composite plate as it undergoes 
deformation is: 
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where i and j take the values 1,2,6 in (21.a) and take the values 4,5 in (21.b). In these 
equations, the orthotropic lamina stiffnesses are given by: 
 
 11 22 12 22

11 22 12 44 23 55 13 66 12 ,  ,   ,   ,   ,  E E EQ Q Q Q G Q G Q G
d d d

ν
= = = = = =   (22) 

 
where 12 211-d ν ν= . 

The strain energy functional is computed for each element and then summed over 
all the elements in the domain to get the total functional for the domain. Following this 
procedure, Eq. (18) can be written as: 
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where, NE is the number of elements. Upon substituting for the strain vector, the 
mechanical strain energy becomes: 
 

   TU q Kq=              (24)  
 

where K is the global stiffness matrix and q is the global displacement vector. 
 

Kinetic Energy 
The kinetic energy of the vibrating plate, within the domain of small 

displacements, is: 
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where û  is the displacement vector given by { }û u v w=  and  ( )kρ is the density of layer 
k. Similar to the strain energy, this expression can be rewritten as: 
 

TT q Mq= � � ,         (26) 
 

where M is the global mass matrix. 
 

FEM Formulation 
Using variational principles, the governing equations for free vibration for the 

system can be derived as: 
 

0Kq Mq+ =��          (27)    
                                                                                

For positive definite M, Eq. (27) can be transformed into a standard eigenvalue problem: 
 



0Aq qλ− = ,         (28) 
 

where 1A M K−= and 2
P pλ ω= , with ωp being the natural frequency of the plate. This 

FEM formulation, augmented with suitable boundary conditions, is used next to represent 
the system response when calculating the implicit objective function at each iteration of 
the stochastic analysis.  
 
Stochastic Finite Element Analysis 
 

In reliability analysis, the partial derivatives of the performance function g(X) 
with respect to all random variables Xi are required. These can be expressed, using the 
chain rule and Eq. (1) as: 
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The partial derivatives of the jth eigenvalue with respect to the random variables have 
been derived in by Hasselman and Hart [14] as:  
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where φj is the eigenvector corresponding to λj.  
Noting that K is independent of ρ, while ρ is a common factor of all elements of M, 
substitution of  Eq. (30) into Eq. (29) yields: 
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 Standard finite difference routines can be used to evaluate the derivatives of the 
stiffness matrix K in Eq. (31.a) with respect to the random variables. This, however, 
becomes time consuming, especially when the set of random variables include ply 
orientation angles, because the process is repeated at each iteration point. Moreover, 
since the prediction of the new point depends on the derivatives, which are approximate 
in this case, the optimization method takes a larger number of iterations to converge. 
Finally, using SORM in computing the probability of failure requires calculating the 
second derivatives as well, which deems the finite difference choice impractical. Use is 
made of MATLAB symbolic capabilities in evaluating the derivatives of the reduced 
stiffness and mass matrices. In evaluating the derivative in the numerator of Eq. (31), the 



eigenvectors at the mean value of X are used, and are not updated at each iteration. This 
greatly simplifies calculations and is justifiable for large frequency ratios. As the 
frequency ratio increases, MPP tends to be closer to the mean value of X, which is used in 
calculating the eigenvectors. Validity of this simplification, and confidence in the whole 
modeling, is further established with comparisons with available published results and 
with results obtained when this simplification is not used.  
 For the case when all the variables are treated as uncorrelated random variables, 
the eigenvalue can be assumed to have a statistical distribution with mean and variance 
calculated at the mean of the random variables, given by: 
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Numerical illustrations 
 
1. Second Order Statistics of a square laminate: 
 

The first illustration is a square symmetric [0o/90o]s laminate with a/h=10. Only 
natural frequencies and second order statistics are investigated for this laminate in [13] 
for SSSS boundary conditions. The mean values of the material properties are: 
E11/E22=25, G13/E22=G12/E22=0.5, G23/E22=0.2, E22=10.3 GPa, ν12=0.25, ρ=1.  

 Table 1 shows a comparison of the first five calculated nondimensional natural 
frequencies of the laminate using two values for the mesh size and those reported in [13]. 
It is clear from the table that a good agreement is obtained for the 2x2 mesh and excellent 
agreement is obtained using the fine 5x5 mesh, with a difference of only 1.35% in the 
fifth nondimensional natural frequency. This small difference is believed to be due to the 
use of the full 3x3 integration rule in [13]. 
 
Table 1. Non-dimensional natural frequencies ω  for a SSSS [0o/90o]s square plate. 

2x2 5x5 Ref. [13] %∆ 5x5 
11.9187 11.7364 11.77252 -0.31 
22.2978 21.8645 21.83344 0.14 
28.0998 27.3512 27.37726 -0.1 
34.466 33.2477 33.23205 0.05 

44.7714 37.9417 37.43603 1.35 
 

The sensitivity of the fundamental eigenvalue to random changes in mechanical 
properties is illustrated in Fig. 4. The analysis in [13] is taken up to a COV value of 0.2 
for the mechanical properties, while the material density and ply orientation angles are 
assumed deterministic. The calculated curve of the present work under these conditions is 
almost identical to that reported in [13]. Two other curves are presented on the figure; 
one with the density taken as a random variable, and the other with both the density and 
ply angles as random variables. It is clear from the figure that the randomness in material 



density can not be ignored, whereas randomness in ply angles has almost no effect on the 
randomness of the fundamental natural frequency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.Variation of COV(λ) with simultaneous changes of the  

random variables for a SSSS [0o/90o]s square laminate. 
 

The relative importance of randomness in each material property is illustrated in 
Fig. 5. Here COV(λ) is plotted against the COV of each random variable assuming all 
remaining variables to be deterministic at their mean values. It is clear from the figure 
that the natural frequency is sensitive to the following material properties, in decreasing 
order of importance: ρ, E11, G23, G13, E22, G12 and ν12. 
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Fig. 5. Variation of COV(λ) with individual changes of the  

random variables for a SSSS [0o/90o]s square laminate. 

COV of the random variables
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.05

0.1

0.15

0.2

0.25
C

O
V

 (λ
)

 

Ref. [13]
Present (ρ,θi deterministic)
Present (ρ random variable)
Present (ρ, θi random variables)



To validate the calculated results of the present work in cases involving 
asymmetric laminates and different boundary conditions, a square [0o/45o/-45o/90o] 
laminate made of the same material is considered. The laminate was studied in [15] for 
two values a/h=5 and a/h=10, and for two sets of boundary condition, SSSS and CFCF. 
Table 2 shows a very good agreement between the calculated nondimensional natural 
frequency of the present FEM scheme and the published results. Fig. 6 shows a 
comparison of the calculated COV(λ) for the SSSS case, based on deterministic density 
and ply angles, to that reported in [15]. The excellent agreement of Figs. 5 and 6 proves 
the validity of the present work for asymmetric, as well as, for symmetric laminates. The 
upper curve in Fig. 6 suggests that, unlike the symmetric case, the error in calculating 
COV(λ) by assuming ply angles to be deterministic in asymmetric laminates is 
considerably large. 

 
Table 2. Non-dimensional fundamental frequency ω  for SSSS and CFCF [0o/45 o/-
45 o/90 o] square laminates. 

SSSS CFCF a/h 
Present Ref[15] ∆% Present Ref[15] ∆% 

5 7.3021 7.17 1.8 7.5926 7.38 2.9 
10 8.92 8.89 0.34 11.3582 11.1 2.3 

 
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

COV of ranom variables

CO
V

 o
f t

he
 sq

ua
re

 o
f n

at
ur

al
 fr

eq
ue

nc
y

Code with ro constant
Ref. with ro constant
Code with ro r.v.
Code with ro & ply angles r.v.

 
 

Fig. 6.Variation of COV(λ) with simultaneous changes of the  
random variables for a SSSS  [0o/45 o/-45 o/90 o] square laminate. 

 



2. Full Stochastic Analysis of a square asymmetric Laminate: 
 

Full stochastic analysis of laminates involves determining the MPP and 
probability of failure. To the best of our knowledge, there are no published results for this 
detailed stochastic finite element analysis of the free vibration of laminated composites. 
Most publications deal with static problems only, [8, 10, 11], or calculate only second 
order statistics (COV), [12, 15]. Accordingly, results of the present work are compared to 
those of the well-established Monte Carlo simulation technique. To reduce number of 
sufficient sample simulation, a technique that utilizes importance sampling is used. The 
procedure of applying this technique is detailed in [16].  

The illustration is of a [0o/45o/-45o/90o] square laminate with a/h=10. The 
uncorrelated random material properties and ply angles have the normal distributions 
shown in Table 3. The mean and SD of stiffnesses are in GPa, and those of the density 
are in kg/m3. It should be noted that the developed MATLAB code facilitates the choice 
of other types of distributions, thus providing more flexibility in quantifying the 
randomness of the basic variables.   

     
Table 3. Statistical distribution of the basic random variables. 
Property E11 E22 G12 G23 G13 ν12 ρ ∆θ 

Mean 16.48 1.4 0.87 0.45 0.87 0.334 1,000 0.0o 
SD 0.61 0.05 0.052 0.014 0.052 0.01 36 1.8o 

 
Since the probability of failure using Monte Carlo simulation technique depends 

on the number of simulations, then pf can be taken as a dependent random variable, for 
which one can calculates a mean, a standard deviation and a skewness coefficient. Table 
4 shows the variation of pf with the number of simulations for three values of the 
frequency ratio, / 0.97, 0.93, 0.87r pω ω = , respectively. It should be noted that for 
relatively low frequency ratios, the last two rows of Table 4, pf is so small that 
convergence is not clearly visible due to round-off error. This problem does not exist in 
the present work because convergence is based on the value of β, which for all practical 
purposes, a very large number compared to any round-off error. The values of the mean, 
SD, and skewness coefficient for the three pf distributions are listed in Table 5. The small 
values of SD suggest that the value of pf does not change much around the mean. 
Negative skewness coefficients mean that dispersion is more below the mean than above 
it. Therefore, taking the mean of Monte Carlo calculated pf as a reference for comparison 
is justified and reasonable. 

 
Table 4. Variation of pf of Monte Carlo for SSSS [0o/45o/-45o/90o] square laminate 
with a/h =10 for three values of the frequency ratio. 
No. of Simulations 50 100 150 200 250 300 350 400 450 500 

 (x102) 8.88 7.34 6.72 7.85 7.74 7.43 7.42 7.85 7.85 7.59 
pf (x104) 5.10 3.87 4.52 4.85 5.09 4.75 4.88 5.11 5.34 5.23 
 (x1010) 1.99 1.27 1.19 1.48 1.60 1.44 1.57 1.68 1.823 1.826

 



 
Table 5. Statistical Parameters of the pf distributions of Table 4. 

/r pω ω  Mean SD Skewness 
Coefficient 

0.97 0.0765 1.964E-3 -9.614E-2 
0.93 4.86E-4 4.21E-5 -1.06 
0.87 1.58E-10 2.35E-11 -276 

 
Table 6 shows a comparison of the safety index and the probability of failure 

calculated using FORM and SORM optimization methods to the mean values of Monte 
Carlo simulation results at the three values of the frequency ratio. For both optimization 
methods, solution is performed once by updating the eigenvectors at each iteration, 
ver(1), and another time with the eigenvectors calculated only at the mean values of the 
random variables and updated once at the MPP, ver(2). The last row of the table provides 
a comparison of the CPU time of both versions of SORM and Monte Carlo for the case of 

/ 0.97r pω ω = . 
 

Table 6. Comparison of the safety index and probability of failure of SSSS [0o/45o/-
45o/90o] square laminate for three values of the frequency ratio. 

 FORM SORM MonteCarlo 
 ver(1) ver(2) ver(1) ver(2)  
 1.3267 1.3268 1.4103 1.4102 1.4293 

β 3.1918 3.1920 3.2952 3.2951 3.2985 
 6.1858 6.1859 6.2937 6.2945 6.2905 
 0.0923 0.0923 0.0792 0.0792 0.0765 

Pf 7.07E-4 7.06E-4 4.92E-4 4.91E-4 4.86E-4 
 3.09E-10 3.09E-10 1.55E-10 1.54E-10 1.58E-10 

CPU time (s)   4,674 2,484 59,616 
 
Taking the probability of failure obtained Using Monte Carlo simulation as a 

reference, it is concluded that using FORM overestimates pf by an unacceptably high 
percentage that increases as the frequency ratio decreases. Using SORM, on the other 
hand, overestimates pf by a maximum value of only 3.5%. This indicates that the problem 
is highly nonlinear, and ignoring its nonlinearity in FORM introduces large errors. Table 
6 also shows that results of ver(1) and ver(2) for any given optimization method are 
virtually the same. This confirms the validity of the assumption that the values of the 
eigenvectors do not change much around the mean value. Finally, the table shows the 
considerable save in CPU time when using the present SORM analysis. Although the 
importance sampling method converges to pf using relatively small number of 
simulations, its CPU time is about 13 times that of ver(1), and 24 times that of ver(2) of 
the almost equally accurate SORM method. 

 
Results of the MPP for this plate are presented in Table 7. Results corresponding 

to / 0.97r pω ω =  are obtained using ver(1) and ver(2) solutions. Again, it is clear that the 
simplifying assumption of constant eigenvectors close to MPP is justified, even for 



relatively low reliability problems. Therefore only ver(1) results are listed for the 
remaining frequency ratios. 

 
Table 7. MPP for SSSS [0o/45o/-45o/90o] square laminate with a/h =10 for three 
values of the frequency ratio. 
/r pω ω  E11 E22 G12 G23 G13 ν12 ρ θ1 θ2 θ3 θ4 

0.97 16.307 1.3825 0.8398 0.4496 0.8644 0.3337 1036.4 0.263 44.519 -45.481 90.270
 16.305 1.3826 0.8399 0.4496 0.8641 0.3337 1036.6 0.258 44.525 -45.480 90.258

0.93 16.057 1.3549 0.7927 0.4490 0.8567 0.3332 1085.1 0.596 43.837 -46.163 90.596
0.87 15.647 1.3031 0.7051 0.4482 0.8453 0.3326 1156.1 1.003 42.777 -47.223 91.003

 
Neglecting randomness in the stacking sequence is 

widely used. To study the effects of this assumption 
(Combine tables 4.18, 4.18 and table 7 and table 4.22) 

 
 

Discussion and Conclusions 
In the present study, a procedure and a MATLAB code for performing reliability 

analysis of the free vibration of laminated composite plates has been developed. The 
suggested stochastic analysis is performed using both the First Order Reliability Method 
(FORM-Method 2) and the Second Order Reliability Method (SORM), while the system 
response used FEM formulation with a nine-node isoparametric Lagrangian element. The 
code used MATLAB’s symbolic capabilities to obtain the derivatives of the performance 
function symbolically, thus greatly reducing calculation time. Validity of the obtained 
results was established by comparisons with available published work, and algorithm 
effectiveness was established by comparisons with results of Monte Carlo simulation 
with importance sampling. 

Upon investigating the sensitivity of the used performance function to random 
changes in material properties, it was concluded that the randomness in material density 
can not be neglected in any accurate analysis of the scatter in the natural frequencies of 
rectangular laminates. The randomness in ply angles, however, can be neglected for the 
cases of symmetric rectangular laminates.  

Results showed that calculating the probability of failure using SORM is an 
excellent rapid tool in the stochastic analysis of free vibration of composite plates, when 
compared to the slower Monte Carlo simulation techniques, which require solving a large 
FEM problem so many times. Assuming the eigenvectors to be constant at the mean 
value of the random variables during the computation of the derivatives of the 
eigenvalues proved to be a reasonable simplifying assumption, which gives excellent 
results with much less computational time. One limitation on the probability of failure 
computed using FORM was emphasized; namely its large error in non-linear problems.  
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