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Computer graphics plays a very vital role in modeling and simulation of real life objects, yet there are shapes that are difficult to represent. For example; modeling of hand drawn shapes is quite a cumbersome task. Also it is a requirement to have memory efficient object representation system. Splines are the answer to these requirements; as an accurate way of representing and manipulating the hand drawn curves and also a memory efficient solution.

In this report we will discuss a kind of spline known as ‘Rational Spline’. The parametric form of such curves is gaining much consideration and attention in the area of geometric modeling. Major properties that are discussed in this paper are the point and interval tension behavior, which are used in the manipulation of curve shapes with the same set of data points. The spline is represented in the form of interpolatory and local support basis.
1. Introduction

Everyone that has ever tried to apply simple linear interpolation to find a value between pairs of data points will be only too aware that such attempts are extremely unlikely to provide reliable results if the data being used is anything other than broadly linear. In an attempt to deal with inherent non-linearity, the next step usually involves some sort of polynomial interpolation. This generally leads to far more stable and robust interpolation and fitting, but is also potentially a difficult area as the end points, monotonicity, convexity and continuity of derivatives all make their influences felt in often-contradictory ways. One of the most popular ways of dealing with these issues is to use splines. In their most general form, splines can be considered as a mathematical model that associate a continuous representation of a curve or surface with a discrete set of points in a given space. Spline fitting is an extremely popular form of piecewise approximation using various forms of polynomials of degree n, or more general functions, on an interval in which they are fitted to the function at specified points, known as control points, nodes or knots. The polynomial used can change, but the derivatives of the polynomials are required to match up to degree n -1 at each side of the knots, or to meet related interpolatory conditions. Boundary conditions are also imposed on the end points of the intervals. The heart of spline construction revolves around how the selected control points are effectively “blended” together using the polynomial function of choice.

Given the various alternative forms of spline, the question of which type of spline is most applicable in any given situation naturally arises and is inevitably a difficult one to answer without clear criteria. Arguably the most important deciding question is whether the spline is required to approximate or interpolate the control points. In other words, does the user require the curve to pass through the control points with absolute precision, or is the overall shape of the curve more important. The following are the desirable properties that any spline model should possess. The list of properties can be regarded as a convenient set of features against which the usefulness of various spline types can be measured: 

· Convex hull: the spline should be entirely contained in the convex hull of its control lattice. 
· Variance diminishing: the number of intersections between the spline and a plane should be 
at most equal to the number of intersections between the plane and the control lattice, which means that the spline should have less oscillations than its control lattice.

· Local control: each control point should only exert influence on the shape of the spline in a neighborhood. A given spline fitting method may offer varying degrees of local control depending on the influence of any given control point.

· Smooth and sharp shapes: the spline should permit the mixing of sharp and smooth sections within the same curve. Parametric continuity does not provide any information on the shape of the curve, so that geometric continuity can be imposed, with the requirement that sharp shapes are G0 and smooth shapes are G2 geometrically continuous. Parametric continuity is also required to ensure C2 continuity.

· Intuitive shape parameters: in addition to the control parameters, the spline should also provide additional degrees of freedom (such as weights, tension, bias and curvature, generally referred to as shape parameters), which should allow the user to pull the spline locally toward one or more control points in an intuitive fashion.

· Conic representation: the spline model should permit the representation of conic sections and therefore support a wide range of curves and surfaces such as circles, ellipses, spheres and cylinders etc.

· Approximation/Interpolation: spline models should provide both approximation and interpolation splines in a unified formulation (In the presence of noise, use approximating spline, not interpolating spline).

Some common types of splines are: Bezier splines, Hermite splines, Catmull – Rom and Overhauser spline, 

Basis splines (B splines), β spline, NURBS, G – spline, Quintic splines, Uniform tension splines, X – splines, etc.

2. Background

In this section we will discuss the issues that are basis in the building of the theory.

2.1 Curve & Surface representations

2.1.1 Curve

Curves can be expressed in many different ways:
· Function

y= f(x)

· Implicit     

f(x, y) = 0

· Parametric

x = f(u)
y = f(u)

· Subdivision
(x,y,z) defined by limit of recursive 
process
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2.1.2 Surface

· Function

z= f(x, y)

Boundary defined by explicit function:
z = f(x, y)             
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· Implicit

f(x, y, z) = 0

linear (plane):
ax + by +cz + d = 0
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Common quadric surfaces:  Ellipsoid

[image: image1.wmf]0

1

r

z

r

y

r

x

2

z

2

y

2

x

=

-

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ


· Parametric

x = f(u, v)
y = f(u,v )
z = f(u, v)

[image: image33.jpg]vee e




Sphere:
x = cos(q)cos(f)


y = sin(q)cos(f)

z = sin(f)
· Subdivision
(x,y,z) defined by limit of recursive process
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Define smooth surface as limit of sequence of refinements
In practice a parametric form is chosen for geometric modeling.

2.2 Parametric Splines

Passing a single polynomial through many data points can sometimes lead to oscillations in the interpolant. Instead, we could use (linear) interpolation between successive points, and in this way build a piecewise linear interpolant of the data points (xk, yk). A parametric spline function is a piecewise function where each of the pieces is a parametric function. 

2.2.1 Types of Parameterization

The two most commonly used parameterizations are the unit or uniform parameterization where ti = i and the cord-length or arc length parameterization where ti = 0 and ti+1 = ti + hi, where hi is the distance from the point (xi, yi) to (xi+1, yi+l). The cord-length parameterization is generally more reliable for cubic spline curves than the unit parameterization as the unit parameterization usually yields a poorly shaped curve. 

Compare the parameterization on the two surfaces below.     
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Although the mapping is not really too bad on the surface constructed with Uniform Parameterized curves, you can see how the Chord Length parameterization has less stretching when the two maps are compared in this manner. 

2.3 Continuity

The pieces of a curve are known as segments, while those of a surface are called patches. The locations where the pieces of the function join are called joints in the case of curves, and borders in the case of surfaces. The equations that govern this joining are called continuity constraints. 

In computer-aided geometric design, the continuity constraints are typically chosen to impart a given order of smoothness to the spline. The order of smoothness chosen will naturally depend on the application. For some applications, such as architectural drawing, it is sufficient for the curves to be continuous only in position. There are two types of continuities: Geometric and Parametric.

G0, C0 continuity: joining points across segment boundaries.

G1, C1 continuity: continuous slope (tangents) across segment boundaries.

G2, C2 continuity:  continuous curvature across segment boundaries.

Geometric equivalence is not the same as parametric equivalence. Two curves can have very different parametric representations yet be very close geometrically. We shouldn’t use parametric representations for recognizing shape.

Geometric vs. Parametric continuity:

· Two curves are geometrically equivalent if they trace the same set of points.

· Two curves are parametrically equivalent if they are defined by the same equation.

To build a better interpolant, we allow curvature between the points and require that the first and second derivatives are continuous throughout the interval [x0, xn].

3. Rational splines

A rational spline is any function of the form r(x) = s(x)/w(x), with both s and w splines and, in particular, w a scalar-valued spline, while s often is vector-valued. In this toolbox, there is the additional requirement that both s and w be of the same form and even of the same order, and with the same knot or break sequence. This makes it possible to store the rational spline r as the ordinary spline R whose value at x is the vector [s(x);w(x)]. It is easy to obtain r from R. For example, if v is the value of R at x, then v(1:end-1)/v(end) is the value of  r at  x.

Some functions are not well approximated by polynomials, but are well approximated by rational functions, that is quotients of polynomials.
Let Fi є Rm , i є z, be values at distinct knots ti є R, with interval spacing hi = ti+1 – ti > 0. Also let Di є Rm , i є z, denote first derivative values defined at the knots. Then a parametric C1 piecewise rational cubic Hermit function p:R( Rm is defined by,
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For practical implementation we will take
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This leads to a consistent behavior with respect to increasing weights and avoids numerical problems associated with evaluation at θ = 0,1 in the (removable) singular cases αi = 0, βi = 0. We now have,
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· Point Tension

The change of shape parameter such that it affects only on the neighborhood of a specific point is known as point tension.

· Interval Tension

The change of the shape parameters such that it affects the curve in the specified interval is known as interval tension. The increase in shape parameter tightens the curve towards a line segment joint by the control points.

4. Rational cubic spline interpolant

We are now interested in constructing the C2 parametric rational cubic spline interpolant in the interval [to, tn] to get smoothness at greater extent. We achieve our task by using the rational cubic hermit form. For two curve pieces that we want to be smooth at point say ti, which is basically the last point for the first piece ti + and first point for the second piece ti - of the curve, we take second derivative at ti + and ti – and equate them. This can be represented as
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,  i = 0, …..n-1

· Point Tension:

The effect of point tension is that the system for Di,…….,Dn-1 in the limit is dependent only on the data on [ti, tn].

5. Local Support Basis

If we want to have control over the curve in such a way that if we apply the shape parameters to it, the shape is changed only in the neighborhood and it do not disturb the shape of the curve on the whole.

In this case we represent the curve in the rational Bernstein-Bezier form. We can introduce the local support in it by transforming it from the control points to piece wise Bernstein-Bezier representation.

· Point Tension:

Here the effect of point tension is on the neighborhood of the point only. 

· Interval Tension:

The effect of shape parameter is that the curve is pulled towards a straight line.

6. Initial Results

6.1 Example 1,
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Shape ‘C’ with out any kind of tension
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Shape ‘C’ with global point tension



 Shape ‘C’ with global interval tension
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Shape ‘C’ with local point tension



Shape ‘C’ with local interval tension

6.2 Example 2,

Shape       with out any kind of tension
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 Shape       with with global point tension


Shape       with global interval tension
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Shape        with local point tension



Shape        with local interval tension
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6.3 Example 3,

Sine function with out any kind of tension
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Sine function with global point tension


Sine function with global interval tension
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Sine function with local point tension


Sine function with local interval tension
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7. Future extensions


We will extend this work for smooth and well-behaved three-dimensional grid data where a bi-cubic spline is generally an effective C2 interpolant, provided that appropriate end conditions are used. However, if the data vary rapidly, then the bi-cubic spline interpolant using natural end conditions can have undesirable oscillations, as seen in Figure 1. The boxes represent the given three-dimensional grid data, and the z coordinates are 1 at the nine interior points and 0 at the other points of the equally spaced 7-by-7 grid. Figure 2 shows the weighted C1 bi-cubic spline interpolant to the same data, which is presented in this paper. Throughout this paper, we call Figure 2 tighter than Figure 1. The weighted spline is the solution of the minimal variation problem discussed in Section 2, where weights control the variation of the surface on each rectangular patch determined by the given data. 

8. Conclusion
In this report we have described the basic elements like parameterization, continuity etc that are required in the formation of the theory. Also we discussed the rational spline with their point and interval tension property. Then we discussed about the representation of splines in C2 form. These are the interpolatory and local support basis. All of this work is done for the curves. We have also presented the initial experimental results showing the global and local tension effect on point and interval form. We will try to extend this work towards the surfaces.[image: image28.png]
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