KFUPM ePrints

Global existence and uniform stability of solutions for a quasilinear viscoelastic problem

Messaoudi, Salim A. and Tatar, Nasser-eddine Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. MATHEMATICAL METHODS IN THE APPLIED SCIENCES 30 (6).

[img]
Preview
PDF
219Kb

Abstract

Abstract In this paper the nonlinear viscoelastic wave equation in canonical form |ut|ρutt − ∆u − ∆utt + � t 0 g(t − τ)∆u(τ )dτ = b|u|p−2u with Dirichlet boundary condition is considered. By introducing a new functional and using the potential well method, we show that the damping induced by the viscoelastic term is enough to ensure global existence and uniformly decay of solutions provided that the initial data are in some stable set. Keywords and phrases: Global existence, Exponential decay, Nonlinear source, Relaxation function, Polynomial decay, Viscoelasticity.



Item Type:Article
Subjects:Math
Divisions:College Of Sciences > Mathematical Science Dept
Creators:Messaoudi, Salim A. and Tatar, Nasser-eddine
ID Code:520
Deposited By:AbdulRahman
Deposited On:19 Mar 2008 11:19
Last Modified:12 Apr 2011 13:07

Repository Staff Only: item control page