ICS-534

Advanced Database Systems

A Review Report

on

Access Control Policies

for

XML Documents

Aiman Rasheed (220306)

Syed Akhtar Ghazi(210205)

Information and Computer Science Department

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Table of Contents

31. Introduction

2. Structure of XML
4
3. Access Control Building Blocks
6
3.1 Subjects
7
3.2 Objects
7
3.3 Authorization rules
7
3.4 Access Permission
9
4. Access Policy
10
5. Conflict Resolution Policy
11
6. Generating Views for users
13
7. Updating XML
15
8. Write Access to XML
17
9. Conclusion and Future directions
19
References
20

1. Introduction

The current trend is of sharing the data globally through network, both on Intranet and Internet, making data availability and information retrieval easy. This data is put in unstructured and semi-structured manner, which in most of the cases is, without specific security control, however the web based applications need security control mechanism in order to protect sensitive data from unauthorized access. Some companies and academia institute have come up with making the data secure using the certificate servers, digital signatures and encryption/decryption techniques. However a standardized authorization and access control mechanism of data is still an open problem.

The semi-structured data includes collection of textual files and HTML pages that are managed by web sites. HTML pages are designed according to the needs of particular browsers; moreover these pages have no semantics. Further due to HTML’s inherent limitations it is very difficult to integrate current techniques of web information processing. To overcome these problems, a great effort was put in place to provide semantics-aware markup techniques without losing the formatting and rendering capabilities of HTML. A standard, adopted by W3C, naming eXtensible Markup Language (XML) emerged as the one to represent such semantics-based documents. Along with enriching HTML, XML focuses on the description of information structure and content as opposed to its presentation. There are separate languages that handle presentation issues; like, XSL (XML Style Language), Xlink (XML Linking Language), OFX (Open Financial Exchange), CDF (Channel Data Format) and OSD (Open Software Distribution).

XML is a language for semi-structured information. XML documents are represented by tree. Nodes of tree are of different type (element, attribute, text, comment…etc). User defined tags are allowed in it. XML documents can be classified in two categories; ‘well-formed’ and ‘valid’. An access control development system requires subjects and objects against which access control is enforced. Document type declaration can be attached to XML documents, specifying the rules that XML documents may follow. These rules are collectively known as the document type definition (DTD).

In this report we will discuss different security model for regulating access to XML documents. The development of an access control model and mechanism for XML poses new requirements. A first requirement arises from the fact that XML documents can contain information at different degrees of sensitivity and thus varying protection granularity levels should be supported. A second requirement arises from the fact that a generated view of XML documents does not always conform to a predefined document type.

2. Structure of XML

XML is based on the concept of documents, composed of a series of entities. Each entity can contain one or more logical elements. Elements are the most basic part of the XML document. XML files always clearly mark the beginning of element using a start tag of the form <tag-name> and the end of the element by using an end tag of the form </tag-name>. User defined tags can be created in XML. Elements can be nested.

Each of the elements can have certain attributes that describe the way in which it is to be processed. Attribute declarations specify the properties of each element, indicating their name, type and possibly a default value. They can be marked as required (an explicit value is needed in this case), implied (such attributes are optional) or fixed (having constant value).

XML provides a formal syntax for describing the relationships between the entities, elements and attributes that make up an XML document, which can be used to tell the computer how it can recognize the component parts of each document. This is modeled as a labeled graph, where the nodes represent elements and attributes, and edges represent the relationship between them. This relationship can be of element-attribute and element-sub element form.

XML differs from other markup languages in that it does not simply indicate where a change of appearance occurs, or where a new element starts. XML sets out to clearly identify the boundaries of every part of a document, whether it’s a new chapter, a piece of boilerplate text, or a reference to another publication.

To allow the computer to check the structure of document users must provide it with a Document Type Declaration, that declares each of the permitted entities, elements and attributes, and the relationships between them. These rules are collectively known as the Document Type Definition, DTD. In other words DTD is a specification that enforces rules of structure on an XML file. A DTD is composed of two parts: the element declarations and the attribute list declarations.

By defining the role of each element of text in DTD, users of XML can check that each component of document occurs in a valid place within the interchanged data stream. An XML DTD allows computers to check, for example, that users do not accidentally enter a third-level heading without first having entered a second-level heading. This is what that cannot be checked using the HyperText Markup Language (HTML). However XML documents do not require the presence of DTD. If DTD is not present, the XML system can assign a default definition for undeclared components. Further such files don’t have enforced structure associated with them and hence data may not follow any particular structure. This is the reason why an XML file is generally associated with a DTD.

An XML source can contain several documents and DTDs. In particular XML documents can be classified into two categories: well-formed and valid. A well-formed document follows the syntax of XML (e.g non-empty tags must be properly nested, each non-empty start tag must correspond to an end tag). If it conforms to a valid document type definition then it is valid document. Therefore, valid document can be considered instance of a corresponding DTD in the source.

Example:

A simple example, showing an XML document and its DTD.

A simple XML memo looks like this;

<memo>

<to>All staff</to>

<from>ICS RAs</from>

<date>15th December</date>

<subject>Presentation topic</subject>

<text>Access Control Policy in XML.</text>

</memo>

The corresponding DTD is;

<!DOCTYPE memo [

<!ELEMENT memo (to, from, date, subject?, para+) >

 <!ELEMENT para (#PCDATA) >

<!ELEMENT to (#PCDATA) >

<!ELEMENT from (#PCDATA) >

<!ELEMENT date (#PCDATA) >

<!ELEMENT subject (#PCDATA) >

]>

3. Access Control Building Blocks

The development of an access control system requires definition of subjects and objects for which authorization rules must be specified and access controls must be enforced. Priority is also an important factor in access authorization [1]. It plays a very important role in conflict resolution that could be produced due to the fallacious access rules definition. [1, 3] has defined these control blocks with reference of XPath language.

XPath is a language for addressing the specific parts of an XML document. It represents XML document as a tree of nodes. The nodes could be element, attribute or function; for example, text retrieval function, preceded by “/”, “@” and “text()” respectively. The addressing could be absolute or relative. The statement used for addressing is known as ‘path expression’. If the path expression starts with a ‘/’ then it is known as absolute addressing where as if the path expression begins with element name then in that case it is called as relative addressing. XPath patterns also permits to associate conditions with the nodes of a path.

3.1 Subjects

The subjects are users that can be referred to, using their identities or request originating locations. Each user is a member of one or many groups. These groups can be disjoint and nested. Subjects are characterized by triple (identity, IP, system-address) [3]. Subject hierarchy is stored in separate XML Subject Sheet (XSS) [1].

3.2 Objects

Objects are defined as the resources that are to be protected from unauthorized access. The level of authorization defines the granularity of access. This supports a wide range of objects, from a complete XML document to a part of it; for example, it could be element level or attribute level. Applying access control to the objects requires three steps [2]. Firstly identification of document/DTD is needed. Second step is to identify the selected element. Finally, identify the portion of specific portion of the selected element. This way an object can be any node in the XPath tree.
3.3 Authorization Rules

Authorization rules specify the allowed actions of subjects that could apply on the objects.

Authorization rules are defined as a 4-tuple set [1], which is of the form

<set-of-subjects, set-of-objects, access, priority>.

Subjects and objects are already defined. The value of ‘access’ is either grant or deny. Priority plays a very vital role in resolving the conflicts between the rules. The authorization model suggested in this case is that; if access to node n is granted to user u then u is permitted to see the sub-tree of which n is root otherwise he is forbidden to see the sub-tree. Further the security manager defines these rules in XML Authorization Sheet (XAS).

The model explained by [3] suggests that each server has set of access authorizations. These authorizations could be positive (approval) or negative (denial). The benefit of such authorizations is that these are applicable on sets of subjects and objects. Authorizations applied on elements could be local authorizations or recursive authorizations. Local authorization means that rules that can only be applied to elements attributes and recursive authorization means those rules that are applicable on sub-elements and their attributes, and this way traversing each node is possible. A user can specify the authorization either local or recursive as weak. Weak authorizations follow the most specific principle. The access authorization is defined as 5-tuple-rule of the form

<subject, object, action, sign, type>

where action is only ‘read’ here, on which authorization is defined. Type could be local, recursive, local weak or recursive weak.

The granularity levels of authorization identified are DTD or schema level; where each XML document is an instance; XML documents separately, elements, sub-elements, attributes and links [2].

The graph like structure of XML document can be exploited to limit the number of authorization propagations, as there are great number of documents containing many authorization rules in the hierarchy. Following relationships are identified as exploitable for this purpose.[2]

Element to sub-element: According to this relationship, an authorization specified for an element can propagate to its sub-element. Because of nesting it is desirable to control the depth.

Element to attribute/link: In this case, the authorization defined for an element propagates to its attributes.

DTD to instance: An authorization specified on a protection object at the DTD level propagates on the same protection object in all documents that are recognized as valid instances of the DTD.

The element to sub-element and element to attribute relationships can be considered as document level authorization propagation and DTD to instance relationship is considered as schema level authorization propagation.

Instead of access and priority, in a 4-tuple authorization rule defined by [1], [2] defines authorization rule with 5-tuple. It is of the form

<subject, object-spec, priv, prop-opt, sign>,

where first two parameters are same as that of the rule defined by [1]. priv is the privilege for which the authorization is granted. This could be read/navigate or modify. prop-opt is the propagation option associated with the authorization. This could be cascade; the authorization propagates to all direct and indirect elements, first_lev; authorization propagates to all direct sub-elements, and no_prop; for no authorization propagation.

3.4 Access Permission

[1, 3] has only defined reading in their paper. Model described by [2] takes two kinds of privileges: browsing privileges and authoring privileges. Further two browsing privileges are supported, read and navigate. The read privilege allows the user to view an element and some of its components. Navigate privilege authorizes a subject to see the existence of the specific link or links in a given element and to navigate through them. The main thing in distinguishing between read and navigate is that, this way its possible to grant subject access to an element without disclosing its link with other elements.

Authoring privileges allow subjects to modify/delete the content of an element or to append new information in it. The two privileges supported are write and append. The write privilege allows a user to modify the content of an element where as append does not alter the current information state but it allows writing information in the element.

4. Access Policy

XML documents can be protected using different policies. DTD-based policies and Document-based policies [2].

DTD-based policy: Like DTD-to-instance propagation relationship, in this policy, authorization is associated with DTDs of the documents and is propagated to instance level. Different level of protection is applied using a variable number of authorizations in the DTD. If the document is homogenous then one authorization can be defined for the whole DTD and if it is heterogeneous authorization without propagation can be defined.

Document-based policy: In this scheme all documents are taken as independent. Their authorizations are defined separately, which are at protection granularity level on document.

The DTD-based authorization policy is well suited for valid document protection, in that valid documents are always instances of some DTD in the source. Authorization propagation can be limited by using positive and negative authorizations. For example if there is small part of the document that needs to be protected then we can assign positive authorization propagation to the whole document except the part to be protected. We can mark this part as negative authorization propagation.

5. Conflict Resolution Policy

In specifying the rules there may occur some conflicts. For example we grant a user to access certain node and all its descendants but in another rule we deny the same user access to a specific descendant node. For this purpose a conflict resolution policy needs to be enforced. Different Conflict resolution policies presented in [1],[2] and [3]. For example, CRP of [1] is as follows:

1. If, for a node n and a user u, there is a conflict between a set of rules then the rules with the highest priority are selected.

2. If the selected rules are more than one then the last rule in the XAS sheet is elected.

If a user requests to see the XML source document then he has to be provided with the view of the document which is compatible with his rights. For this purpose ComputeView algorithms are proposed in [1] and [2]. There are some preprocessing over the XAS policy, e.g rights propagation etc, after which ComputeView Algorithm is applied to design individual views for the specific user.

Consider the following XML document, Access rules and Subject descriptions:

<!----------- XML Document -------- >

<files>

 <record id=9203>

<member id="daan"/>

<name>Jeff Daan</name>

<diagnosis>

<item>Pneumonia</item>

</diagnosis>

 </record>

<record id=8394>

< member id="khawaja"/>

<name> Khawaja</name>

<diagnosis>

<item>Throat Infection</item>

</diagnosis>

 </record>

</files>
<!— O U R D E F A U L T P O L I C Y -->

<!-- Rule 1 -->

<xas DefaultPolicy="closed" DefaultSubjectsFile="subjects.xss">

<!-- Rule 2 -->

<rule>

<subject>users/member[@id=$user<subject/>

<object> record[@id=$user]<object/>

<accessmethod>read<accessmethod/>

<access>grant<access/>

<priority>10<priority/>

<rule>

</xas>

<!---------- Subject descriptions --------->

<subjects>

<users>

<member id="ghazi">

<name>Akhtar Ghazi</name>

</member>

<member id="Jameel">

 <name>Mohammad Jameel</name>

</member>

<member id="khawaja">

<name>Mohammad Khawaja</name>

</member>

<member id="daan">

<name>Jeff Daan</name>

</member>

</users>

<groups>

<Staff>

<member idref="ghazi"/>

<member idref="daan"/>

</Staff>

</groups>
</subjects>

A view of above-mentioned XML document, Access rules and Subject descriptions yields following for user daan.

<files>

 <record id=9203>

<member id="daan"/>

<name>Jeff Daan</name>

<diagnosis>

<item>Pneumonia</item>

</diagnosis>

 </record>

</files>

Notice that although we had more than one records in the document but since daan is not authorized to view other information, he can only view his own information.

6. Generating Views for Users

The most important consideration for the access control of a shared XML document is that whenever a user needs to view the document he must be given only the information that is compatible with his access rights. In other words, all the elements, texts, attributes, etc. that the user is not authorized to view, must be concealed before presenting the document to the user. To achieve this goal researchers use an algorithm known as compute view algorithm. The compute view algorithm parses the whole document, and based on the criteria mentioned in authorization rules, it generates view for the given user.

Although this seems to be applicable only for the document retrieval, we will show how the same concept can be applied for updating an XML document. Before we discuss different algorithms for view generation it is assumed that the rights propagation has been done and access permissions are specified for every element. We will discuss the different compute view algorithms that people are using.

[1] gives a simple compute view algorithm to generate user views. The algorithm is as follows:

After the algorithm finishes R contains the pre-order list of the nodes, which belong to the view. Using this algorithm one can easily compute the view for each user. [1]'s implementation is available on the Internet.

[2] uses two approaches simultaneously to compute the view , namely bottom-up and top-down approaches. For an XML document both have the same effect. The approach takes advantage of the graph based nature of both XML documents and the DTDs, so that access request can be evaluated according to two different strategies: top-down and bottom-up.

· Top-down strategy: the algorithm checks the authorizations specified at the DTD level for the requested protection objects, starting from the authorizations specified at the DTD root granularity level. If all appropriated permissions are found at this level, and no other explicit authorizations are defined at a finer granularity level, then the access is totally authorized. Otherwise, the algorithm considers authorizations specified at the element granularity level, starting from the first level DTD sub-elements and going down (if necessary) through the hierarchical structure of the DTD, until an appropriate authorization is found or the attribute/link level is reached.

· Bottom-up strategy: this strategy evaluates the authorizations specified at the DTD level for the requested protection object(s), starting from the ones specified at the most specific granularity level of the DTD and going up through the DTD hierarchical structure until an appropriate authorization is found of the DTD root granularity level is reached.

Both the approaches have same effect on the finalized view generation of the documents. Now the question arises that which of the strategy should be used under what conditions. An answer is that in the absence of negative authorizations in the authorization rules, top-down strategies are preferable otherwise bottom-up strategy should be used.

The introduction of these strategies is [2]'s original work and is a very intelligent technique in copping up with the efficiency requirements for view generation. [1] and [3] are also computing views but there is no consideration of the complexity of their approaches.

Some researchers, e.g [3], have achieved the goal of user view generation through a process called Document Tree Labeling process. This process though somewhat expensive is also a simple one. The algorithm works in two passes: first it labels each of the node in an XML tree as one of (+,-,e) for grant, deny or not defined. Then a conflict resolution policy is employed for authorization propagation. After applying the conflict resolution policy every node has either a '+' or '-' label that indicates whether the node is viewable or not. Before letting the user view the document the nodes with '-' label are pruned.

A very impressive issue raised by [3] is that what if after pruning, the resultant document does not comply with its DTD? The problem may happen, for example, when required attributes are deleted. This issue was not raised by [1] and [2]. A solution to this problem is to apply loosening transformation to the DTD. Loosening a DTD simply means to define as optional all the elements and attributes marked as required in the original DTD. The DTD loosening prevents users from detecting whether information was hidden by the security enforcement or simply missing in the original document.

7. Updating XML

A number of approaches have been proposed to W3C from the standardization of XML access. As the result of these efforts many XML query languages, such as, Quilt, SDQL, XML-QL, XQuery, etc., are becoming popular in the market. While retrieval is important for querying a database, update is also an essential property for a query language. All of the above-mentioned languages do not have the ability to modify an XML document.

Modification consists of three main operations, namely:

· Insert

· Delete

· Update

Insertion is the creation of a new element sub-tree in an XML document. Deletion is the removal of specified element sub-tree, while update operation may consist of deletion followed by an insert operation.

[4] proposed update queries to XML documents. The basis of these update queries is their MMDOC-QL language. MMDOC-QL [7] is a multimedia document manipulation language, which embeds within it the notation of path predicate calculus to describe XML retrieval and modification. We will quote its Insert, Delete and Update queries for XML documents

An example of the XML insertion is in the form of "Insert HREF hypertext links for all bibref tags, for example, in a research paper where the destinations of each link should be one of bibitems in paper references" MMDOC-QL equivalent is as follows

INSERT: (<a> WITH href="#"%refloc)

 DIRECTLY CONTAINING

 (<bibref> WITH refloc=%refloc)

 PATTERN: {*[0-9][0-9]/%refloc};

 FROM: paper.xml

 CONTEXT: {(<bibref> with refloc=%refloc)

 AND(<bibitem> with id=%refloc)};
Here the logic variables are indicated by "%" such as "%refloc". PATTERN clause is used to describe the domain constraints of free logical variables including tag, attribute, content, address and data type, by using regular expressions.

Similarly if we want to delete href hyperlinks then DELETE clause use the found addresses to describe where to remove href hyperlinks.

DELETE: (<a> WITH href="#"%refloc)

 DIRECTLY CONTAINING (AT %a))

 PATTERN: { *[0-9][0-9]/%refloc};

 FROM: paper.xml

 CONTEXT: {(<bibref> with refloc=%refloc AT %a)

 AND(<bibitem> with id=%refloc)};
Update specifications in MMDOC-QL are specific combinations of insertion and deletion specifications. In the following, it specifies how to change the e-mail address in mygcapaper.xml to “peiya.liu@scr.siemens.com”.

UPDATE: ({<email> DIRECTLY CONTAINING %e-mail):

 SET

 (%e-mail = "peiya.liu@scr.siemens.com"))

 PATTERN: {};

 FROM: paper.xml

 CONTEXT: { TRUE):
8. Write Access to XML

[1] proposed a model for read-access control for XML documents. We extend the same model and add an update query processor to handle write-access control model.

The overall process, which is an extension to [1] is presented here:

1. Easy-to-read authorization rules expressed in Doc.XAS are translated into XSLT rules (templates) producing an XSL sheet (Doc.XSL). This translation is performed by the XSLT processor by applying xas2xsl.XSL. This translation is performed once.

2. If a user issues a query requesting write-access to a portion of Doc.XML then the query is sent to the query processor. The query processor takes userid as input from the Doc.xsl. Doc.xsl in turn takes userid and Subjects.xss as parameter. This query processor is an enhanced XSLT processor. First it analyzes the query and extracts the XPath tree nodes it is going to affect. The names of all these nodes are stored in a list called ListOfNodes. ListOfNodes is just a list containing the names. For each of the INSERT, DELETE and UPDATE operations the mechanism to extract ListOfNodes is different. For example for INSERT node, the ListOfNodes should contain the names of all the nodes that appear in INSERT and CONTEXT clauses as well as all the parents nodes of the nodes appeared in CONTEXT clause. An exactly similar mechanism, but with different clauses, is introduced for DELETE and UPDATE operations.

3.Then it applies algorithm updateQuery to decide whether to apply update or not. If the user has write permissions to all the affected nodes in the tree the query processor applies the update query according to the procedure of [4]. Then it computes view of the Doc.xml that is compatible with the user rights and presents the user view of Doc.xml. Otherwise it should return specific error.

A pictorial view of over all process is as follows:

9. Conclusion and Future Directions

In this survey we have discussed different XML document access techniques for read and write query operations. Also the weaknesses and strengths of each individual effort are summarized. [1],[2] and [3] are examples of access control for retrieval query specification, while [4] is a update query specification for XML documents.

After discussing the above-mentioned techniques we have proposed a model for access control for update queries. Our model can be seen as an enhancement of the models provided by [1] and [4].

A very important issue concerning database updates is concurrency control. If more than one query is handled at a time then definitely some concurrency control algorithms need to be designed. In our approach we concentrated only on update issues and have assumed a single query environment for the sake of simplicity. For future enhancements, concurrency control issues could be addressed for reading/writing XML documents.

References

[1] Gabillon, A. and Bruno, “Regulating access to XML Documents”. In Proceedings of the Fifteenth Annual IFIP WG 11.3 Conference on Database Security (Niagara on the Lake, Ontario, July 2001)

[2] E. Bertino, S. Castano, E. Ferrari and M. Mesiti. "Specifying and Enforcing Access Control Policies for XML Document Sources". World Wide Web Journal, vol. 3, no. 3, Pg 139-151 (2000) Baltzer Science Publishers.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, "Securing XML Documents,'' in Proc. of the 2000 International Conference on Extending Database Technology (EDBT2000), Konstanz, Germany, March 27-31, 2000.

[4] Peiya Liu, Liang H. Hsu “A Logic Approach to XML Document Update Query Specifications,” in Proc. Of Internationales Congress Centrum (ICC) Berlin , Germany, May 2001.

[5] Sergey B., L. Page. “The anatomy of a Large-Scale Hypertextual Web Search Engine”, in: Proceedings of the Seventh International World Wide Web Conference,1998.

[6] Samarati, P., E. Bertino, and S. Jajodia, “An Authorization Model for a Distributed Hypertext System”, IEEE Transactions on Knowledge and Data Engineering August 1996 (Vol. 8, No. 4) Pg. 555-562.

[7] Peiya Liu, Liang H. Hsu “An approach to specifying and querying multimedia objects and scheduled structures in XML documents,” in Proc. Of Internationales Congress Centrum (ICC) Berlin, Germany, May 2001

Let U be the user for which the view has to be computed

	Let L be an empty list of nodes

	Insert the root element into L

	Let R be an empty list of nodes

	while L is not empty Do

		N<-- the first node of L

		Select all the rules such as N matches the object pattern and U is selected by the subject path

		Apply the conflict resolution policy

		If the elected rule is a deny rule then

			Remove N from L

		Else

			Append N to R

			Replace N into L by the attributes and child nodes of N

	End While

Xas2xsl.xsl

XSLT processor

XML Parser

Doc.xas

Subjects.xss

Userid

Doc.xsl

XML Parser

Query Processor

Doc.xml

User view of Doc.xml or Error code.

Query

Algorithm: updateQuery input Query Q, userid

output: True if no conflicts otherwise false.

ListOfNodes (Null

If it is an insert query

For whole query

ListOfNodes (ListOfNodes + new Nodes in INSERT Clause and the parent nodes of all the nodes in CONTEXT clause.

If it is a delete query

For whole query

ListOfNodes (ListOfNodes + new Nodes in DELETE Clause and the parent nodes of all the nodes in CONTEXT clause.

If it is an update query

For whole query

ListOfNodes (ListOfNodes + new Nodes in SET Clause and the parent nodes of all the nodes in CONTEXT clause.

Now label all the nodes in XPath tree to be either write access granted or denied for the specified user having id as userid.

For all nodes in ListOfNodes

If corresponding XPath tree node is marked denied return false

return true

