

Abstract — SNMP is the most widely used network management
protocol. Since SNMP is based on a centralized approach, it is
confronted with scalability and efficiency problems when the
network expands. XML-based network management is a new
paradigm developed to overcome these limitations. In this paper, we
propose a framework for adaptive load-balancing using JPVM for
XML-based network management. The goal is to increase the
efficiency of processing the management data, and decrease the
communication time by distributing the management load across
multiple XML/SNMP gateways. The load distribution among
multiple gateways is adapted to achieve better results.

Index Term — Network Management, XML, and JPVM.

I. INTRODUCTION
he Simple Network Management Protocol (SNMP) is
currently the most widely used protocol to manage network
devices on the Internet. Nonetheless, today’s network has

incompatible infrastructure including different information
models, information access methods, and management protocols.
The main goal of network management systems is to ensure the
quality of the services that networked elements provide. To
achieve this, network managers must monitor, control, and
secure the computing assets connected to the network. The
administrator has no choice but to use separate and incompatible
management tools to manage the current heterogeneous network.
Currently available management tools and framework, such as
SNMP, are based on a centralized approach, and confronted with
scalability and efficiency problems when the network expands. A
number of approaches have been proposed to overcome these
limitations, including XML-based Network Management
(XNM). One of the issues for an XNM system is to be able to
support legacy SNMP agents, since they constitute the largest
base of network management systems.

XML-based network management applies Extensible Markup
Language (XML) technologies to network management. In
XNM, the management information is defined using XML and
the management data is exchanged in the form of an XML
document and processed using the standard methods available
for XML [1] [2] [3].

XML-based integrated network management architecture [1] [2]
consists of an XML-based manager (XBM), an SNMP/XML
gateway and SNMP agents. We proposed in [4] a framework for
extensions to an existing XML-based network management
system, which can reduce the response time between the XBM

and the SNMP agents. The extensions consist of new types of
messages, including the multi-get-request and multi-set-request.
These new types, for instance, allow a manager to send one or
more requests to one or more agents bundled in one message.
This framework decreases the overall traffic between the XBM
and the XML/SNMP gateway. In [5], we proposed a static
weighted load-balancing approach for XML-based network
management using JPVM, which we have shown provides better
results than other load balancing and single gateways
approaches.

In this paper, we present another JPVM-based approach to the
proposed extended XNM, which is an adaptive load balancing
approach that makes use of JPVM in XNM. We show that this
approach improves even further on the results obtained in [5].

The rest of the paper is organized as follows; first we will
introduce XML-based network management, and discuss the
current related work. Then, we will give a general overview of
the JPVM environment. The adaptive load balancing approach
with JPVM will then be presented. The section that follows will
include the experimental setup and results of comparing this
approach to the static one. The paper ends with a conclusion.

II. XML-BASED NETWORK MANAGEMENT
Extensible Markup Language (XML) is a Meta markup
language, which was standardized by the World Wide Web
Consortium (W3C) for document exchange in 1998 [6]. We can
define our own Structure of Management Information in a
flexible form using either Document Type Definition (DTD) or
XML Schema [7] [8] [9]. XML documents can be transmitted on
the Internet using HTTP. XML offers many free APIs for
accessing and manipulating the XML data. XML separates the
contents of a document and the expression methods, i.e., the
management data is stored in XML documents and the
presentation or format of the management data is stored in
Extensible Style Sheet Language (XSL) documents using XSL
Transformations (XSLT) representation. XML supports the
exchange of management data over all the hardware and
software that supports HTTP. XML needs low development cost,
since all the APIs and development kits are freely available.
XML supports the transfer of large amount of data in a single
document. All these advantages make XML a good candidate to
solve the problems of scalability and efficiency of existing
SNMP based NMS.

Mohammed H. Sqalli and Shaik Sirajuddin
Computer Engineering Department

King Fahd University of Petroleum & Minerals
Dhahran, 31261, Saudi Arabia

E-mail: {sqalli, siraj}@ccse.kfupm.edu.sa

An Adaptive Load-balancing Approach to
XML-based Network Management using JPVM

T

Figure 1. shows one of the manager and agent combinations in
XML-based network management [2]. It shows the approach that
requires a translation from XML to SNMP through a gateway
 [1] [2]. Since most network devices have legacy SNMP agents
installed in them, this combination is simpler to implement in the
current network environment, and is more appropriate for the
current network management framework. This, however,
requires the development of an SNMP/XML gateway to
exchange the messages between the XML-based network
manager and SNMP agents.

Figure 1. An XML-based Network Management Architecture

XML-based network management can overcome many
limitations of SNMP. For instance, an SNMP request can not
exceed a maximum message length limit, but XML supports the
transfer of large amount of data in a single document. This
allows the transfer of multiple SNMP requests bundled in one
message from the manager to the gateway. This message can also
be summarized to decrease the amount of traffic to be exchanged
between the manager and the gateway. This will result in less
traffic at the manager side. The gateway will then expand the
message received from the manager into multiple SNMP
requests to be sent to multiple agents. With the use of multiple
gateways, the processing time of multiple SNMP requests can
also be reduced. All these advantages make XML a good
candidate to solve the problems of scalability and efficiency of
existing SNMP based NMS.

III. RELATED WORK
Martin-Flatin proposed using XML for network management in
his research work on Web-based integrated network management
architecture (WIMA) [3]. He proposed two SNMP MIB to XML
translation models. WIMA provides a way to exchange
management information between a manager and an agent
through HTTP. HTTP messages are structured with a
multipurpose Internet mail extensions (MIME) multipart. Each
MIME part can be an XML document, a binary file, BER-
encoded SNMP data, etc. By separating the communication and
information models, WIMA allows management applications to
transfer SNMP, common information model (CIM), or other
management data. A WIMA-based research prototype,
implemented push-based network management using Java
technology.

Strauss [10] developed a library called “libsmi”, which can be
used to access SMI MIB information. It can even translate
SNMP MIB to other languages, like JAVA, C, XML, etc. This
library has tools to check, analyze, dump, convert, and compare
MIB definitions. The tool used for this called “smidump”.

Network devices developed by the Juniper Network are equipped
with the JUNOS Operating system, which supports JUNOScript
 [11]. The JUNOSciprt allows the client applications to connect
to the Juniper network devices and exchange messages as XML
document. The request and response are represented as DTDs
and XML Schemas. The communication between the client and
network devices is through RPC requests. An XML-based RPC
consists of a request and the corresponding response. It is
transmitted through a connection-oriented session using any
transport protocols like SSH, TELNET, SSL or a serial console
connection.

Juniper network has already implemented a tool for mapping
SNMP SMI information modules to the XML Schema. This tool
is an extension of a previously implemented tool for converting
SNMP SMI to CORBA-IDL. Currently Juniper network is
working on implementation of XML document adapter for
SNMP MIB modules using Net-SNMP and XML-RPC libraries.

Muller implemented an SNMP/XML gateway as Java Servlet
that allows fetching of XML documents on the fly through
HTTP [10]. MIB portions can be addressed through XPath
expressions encoded in the URLs to be retrieved. The gateway
works as follows. When an MIB module to be dumped is passed
to mibdump, an SNMP session is initiated, and then sequences of
SNMP GetNext operations are issued to retrieve all objects of
the MIB from the agent. Mibdump collects the retrieved data and
the contents of these data are dumped in the form of an
appropriate XML document with respect to the predefined XML
Schema.

Today’s Network is equipped with legacy SNMP based agents,
and it is difficult to manage legacy SNMP agents through an
XML-based manager. Conversion of the XML-based request to
an SNMP-based request through an XML/SNMP gateway
provides the interaction between the XML-based manager and
SNMP-based agents. For validation of the algorithm, POSTECH
implemented an XML-based SNMP MIB browser using this
SNMP MIB to the XML translator. This gateway is developed
by POSTECH at their DPNM laboratory [1] [2]. This gateway
provides modules to manage networks equipped with SNMP
agents [1]. The implementation of the gateway requires two
types of translations: specification translations and interaction
translations. The specification translation is concerned about the
translation of the SNMP MIB to XML. POSTECH uses an
automatic translation algorithm for SNMP MIB to XML. The
interaction translation methods for XML/SNMP gateway are the
process level interaction translation, the message level
interaction translation, and the protocol level interaction
translation.

In [4], a framework for extensions to an existing XML-based
network management was proposed, which can reduce the
processing time between the XML-based manager and the

XML/SNMP
Gateway

XML-Based Manager

XML/HTTP

SNMP

Device
SNMP Agent

SNMP agents. The extensions consist of new types of messages,
including Multi-Get-Request and Multi-Set-Request. These new
types, for instance, allow a manager to send one or more requests
to one or more agents.

In [5], we proposed a static weighted load-balancing approach
for XML-based network management using JPVM. This
approach outperformed other load balancing approaches as well
as the different single gateways options.

IV. SYSTEM ARCHITECTURE
Our framework is based on the XML/SNMP gateway
architecture, which is shown in Figure 2. Communication is
between an XML-based Manager, an XML/SNMP Gateway, and
SNMP Agents. In this paper, we present an adaptive load-
balancing approach for the implementation of a JPVM-based
XML/SNMP gateways.

XM L-bas e d Ne tw ork
M anage m e nt Station

Route r Br idge
Work s tation

XML-Request Serv let

XPath/Xquery

DOM Tree Updation

Muti-Get and Multi-Set
Request

SNMP Communication

SNMP
Request/

Response

SNMP
Request/

Response

SNMP
Request/

Response

XML-based Response
HTTP

XML Response

XM L/SNM P Gate w ay

Figure 2. Single-DOM Tree based Framework.

In this section we present the JPVM-based approach for XML-
based Network Management. First, we present the single-DOM
tree XML-based Network Management architecture. Then, we
give a general background of the JPVM. Finally, we describe the
proposed architecture and its implementation. We also present
the algorithms for load balancing and our contribution to JPVM.

A. Single DOM Tree-based Approach
The proposed architecture for the single-DOM tree has three
main components as shown in Figure 2.:

• XML-based Network Management Station (XBM).
• XML/SNMP Gateway.
• SNMP agents.

The XML-based request is represented as an XML document.
The XBM prepares and sends the XML-based request to the
XML/SNMP gateway. The request is received by the XML
request servlet, which retrieves the number of target agents
present in the request. It extracts the Xpath component of the
request and sends it to the Xpath/Xquery module, which parses
the XML-based request document. Parsing extracts the target
MIB object present in the XML-based request received from the
XBM.

Using these target objects and the target hosts, the SNMP
communication module will send the SNMP-based requests to
the agents and receives the SNMP responses. The DOM tree is
updated with the received response values. The updated
response DOM tree can be translated into any form according to
the user requirements using the XSL style sheets. Here in our
approach we apply the XML style sheet to convert the response
DOM tree into an HTML format and it is transmitted over the
HTTP protocol to the XBM. Another option would be to
transmit the XML document to the XBM which will in turn
convert it to an HTML document. This will provide more
flexibility to the XBM to manipulate the response, at the expense
of adding more processing overhead. Since our goal is to
minimize the overhead of the manager, we have chosen the first
option.

B. JPVM Background
Ferrari introduced JPVM [12] (Java Parallel Virtual Machine)
library. The JPVM library is a software system for explicit
message passing based on distributed memory MIMD parallel
programming in Java. JPVM supports an interface similar to C
and FORTRAN interfaces provided by the PVM (Parallel Virtual
Machine) system. The JPVM system is easily accessible to the
PVM programmers and has low investment target for migrating
parallel applications to a Java platform. JPVM offers new
features such as thread safety, and multiple communication end-
points per task. JPVM has been implemented in Java and is
highly portable among the platforms supporting any version of
the Java Virtual Machine.

C. JPVM Interface
In this section we explore the JPVM interface that provides the
task creation, and execution. The most important interface of the
JPVM package is the jpvmEnvironment class. The instance of
this class is used to connect and interact with the JPVM systems
and other tasks executing within the system. An Object of this
class represents the communication end-points within the system,
and each communication point is identified by means of a unique
jpvmTaskId. In PVM, each task has single a communication end-
point (and a single task identifier), but JPVM allows programmer
to maintain logically unlimited number of communication
connections by allocating multiple instances of
jpvmEnvironment.

First, we need to set the JPVM environment on all the hosts that
we are interested to use for parallel communication. For this, we
need to run the jpvmDaemon java program on all the hosts. By
running jpvmDaemon threads, we just initiate the JPVM
environment. These threads are not used until all the hosts know
about their JPVM environment. Next, we need to start the
Console on one of the jpvmDaemon running hosts. The console
program can be started running the jpvmConsole java program.
Then, we have to register or add the other jpvmDaemon hosts to
the host running the console program. We add the hosts by
giving the name and the port at which the jpvmDaemon started.
This port is used during message passing between the JPVM
hosts, and is the port through which the JPVM communication
takes place.

D. JPVM Architecture

The proposed JPVM architecture is shown in [5]. It has mainly 3
components, namely an XML-based Manager, JPVM gateways,
and SNMP agents. All the JPVM gateways are configured to run
daemon processes. There will be one JPVM gateway that will
run the jpvmConsole in order to notify all the hosts of one
another’s existence and this is called the master JPVM gateway.
The master JPVM gateway will communicate directly with the
XML-based manager. The other JPVM gateways are known as
slave JPVM gateways. These slave gateways communicate only
with the master JPVM gateway. Hence, the JPVM-based
network management is based on a master/slave paradigm.

E. Implementation of the Proposed Framework
The JPVM-based framework is implemented as a master-slave
architecture, where a master JPVM is running at the web server.
The master JPVM gateway receives a request from the XML-
based manager. A jpvmDaemon program will be running on all
the JPVM gateways. The master JPVM gateway is connected to
a number of slave JPVM gateways, and will run the jpvmconsole
program. The JPVM slave gateways have only the slave
programs running on them for communication with the master
JPVM and SNMP agents. The slave JPVM carries out the actual
XML to SNMP translation and SNMP communication with the
SNMP agents. The master JPVM status can be either working or
not working. If the master has a working status, it can also
communicate with the SNMP agents after dividing the tasks.

The JPVM master gateway algorithm is presented in Algorithm
1. When the master JPVM joins the responses into one XML
response document, it will apply XSL to the this document
before transmitting the response over HTTP protocol to the
XML-based manager.

Algorithm JPVM Master Gateway

Begin
 Initialization:
 Start the JPVM Environment
 Create Pool of JPVM Slave gateways
 Initialize the JPVM _Spawn for each Slave
 Wait For Request:
 Divide the work among Slave gateways
 Send/Dispatch the work to each Slave JPVM gateways
 Get the result from all the Slave JPVM gateways
 Join the responses into an XML document
 Termination:
 Send to each Slave the Stop command
 Exit from the JPVM Environment
End Master JPVM

Algorithm 1: Master JPVM gateway Algorithm

The slave JPVM algorithm is presented in Algorithm 2. Once the
work is received from the master, each slave JPVM performs
Single DOM tree-based approach (converting the XML-request
into SNMP requests, sending SNMP requests, receiving the
SNMP responses, and updating the SNMP responses in the
DOM tree). All the slave JPVM gateways will send an XML
response document to the master JPVM gateway. Then, all the

slaves wait again for work from the master. This repeats until the
master sends the terminate command to all the slave JPVM
gateways.

Algorithm JPVM Slave Gateway
Begin
 Start the JPVM Environment
 Parse the RFC-1213 MIB objects
 While (true)
 Wait to receive work from the Master
 If (Stop)
 Exit from the JPVM Environment
 If (Work)
 Get the XML-Document
 Do the Work.
 End While
 Exit from the JPVM Environment
End Slave

Algorithm 2: Slave JPVM gateway Algorithm

F. Load Balancing Approaches
Load balancing involves assignment of tasks to each processor in
proportion to its performance. The goal of load balancing is to
assign the work proportional to the performance of the node or
processor thereby minimizing the execution time of the
application.

In the equal work non-weighted load balancing approach, the
work is equally divided and assigned to all slave JPVM gateways
(i.e., the work is divided based on the number of slave JPVM
gateways present in the pool). This approach provides good
performance only for a homogeneous network of workstations.

A second approach is the static weighted load-balancing
algorithm in which the work is divided based on the processing
speed, i.e., the CPU rate, of the workstations. In this approach,
we assign a weight to the workstations depending on their
processing speed, and during the work assignment it will be
given work according to its weight. The higher the weight the
larger the amount assigned to the slave JPVM gateway.

The weights are assigned based on the base processor’s
processing speed as follows: First, each workstation is assigned
the same number of agents that it will communicate with. The
workstation that takes the longest time to finish the work is taken
as the base processor. The weight of this workstation is set to 1,
and the weight of any other workstation is obtained by dividing
the base processor time by the amount of time taken by this
workstation.

The second approach provides better results when we have a
heterogeneous network of workstations. More details about these
results can be found in [5].

G. Adaptive Load Balancing Approach
The CPU rate of a particular processor cannot be directly
translated to the workstation performance on a particular
application, and so is not usually a correct measure of
performance. However, for our purposes, the clock rate does
provide a way to make a general approximation of the relative

performance of the workstation. Hence, in the static weighted
load-balancing approach, where the weight of each processor is
solely in function of the CPU rate, the response time obtained is
not necessarily the best we can get.

In the adaptive load balancing approach, the work is initially
allocated as that of the static weighted load balancing approach.
Then, the weights of the processors are adapted so that all the
processors are utilized optimally to minimize the overall
response time. First, the response times are recorded for each
processor for every one hour for loads ranging from 1, 10, 20 ...
to 200 agents, with increments of 10 agents. The master JPVM
algorithm for the adaptive load balancing approach is presented
in Algorithm 3.

When a request with n agents arrives at the XML/SNMP
gateway, the gateway initially divides the work based on the
static weight of each processor, i.e., processor’s speed. Based on
this information, the work will be assigned to each slave JPVM.
The response time is then collected for each slave JPVM
gateway with the statically assigned number of agents. The
average of all response times collected from all slave JPVM
gateways is then computed. According to the average response
time value, we compute the new number of agents to be assigned
to each slave JPVM. For each processor, this number is
determined by consulting the previously recorded values of
response times and interpolating to the closest values. The new
weights will then be assigned to each slave JPVM gateway.

Adaptive Load Balancing Algorithm - Master JPVM
Begin
 Initialization:
 Start the JPVM Environment
 Get Pool of JPVM Slave gateways
 Initialize the JPVM _Spawn for each Slave (Start of JPVM)
 Calculate Initial Weights based on the Processor Speed.
 Send the Initial work to each Slave JPVM gateway
 Do until Weights adapts
 Get the results From the Slave JPVM gateways.
 Get the response time from Slave JPVM gateways.
 Adapt the response time
 Send the work to Slave JPVM gateway
 End Do
Termination:
 Send to Each Slave the Stop Command
 Exit from the JPVM Environment
End Master JPVM

Algorithm 3: Adaptive Load Balancing Algorithm

The algorithm maintains and promotes a fair distribution of the
load by evaluating the weights for the slave JPVM gateways, and
using this information as a metric for the next load distribution.
The response time for load specific intervals are calculated
periodically during the course of program execution. The
redistribution is determined by the processor’s most recent
performance.

We will show in the next section that this approach outperforms
the approaches discussed in the previous section. In our
experiments, we will focus on the case when there are two slave
JPVM gateways with different processing speeds.

This approach can be used in monitoring systems where the same
tasks, i.e., collecting MIB objects information from SNMP
agents, are frequently repeated. This will provide better response
times with each new monitoring cycle.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
The master JVPM gateway is connected to a number of slave
JVPM gateways. All the JPVM gateways are PCs running
Windows 2000. The master JPVM gateway has Apache
TOMCAT 5.0 web server running on it. The same experimental
setup has been used for equal work, static and adaptive
approaches. In all three cases, the slave JPVM gateways are of
different processing speed, i.e., a 350 MHz Intel Pentium II
processor and a 711 MHz Intel Pentium III processor. The
experiments were conducted from our University campus, and all
the SNMP agents are connected over 100Mbps access network
connection and a Gigabit Ethernet backbone. Each experiment
was conducted for 25 runs. The maximum number of agents used
in our experiment is 200.

B. Results and Discussion

Table 1 shows the response time values for the single gateway
approaches (i.e., 350-JPVM, and 711-JPVM), equal work
assignment, static weighted approach, and adaptive approach as
the number of agent increases. For the equal work approach,
both slave JPVM gateways are assigned the same number of
agents, i.e., half the total number of agents. In the static weighted
approach, the 711 MHz Intel Pentium III processor is assigned
twice as much the number of agents as the 350 MHz Intel
Pentium II processor. In the case of static and adaptive
approaches, the number of agents assigned to each gateway is
shown in the last four columns of
Table 1.

Table 1. Response Time values for Static Weighted vs. Adaptive

350-JPVM 711-JPVM Equal
Work Static Adaptive

350 711 350 711
1 1221.8 737.0 821.2 786.4 625.0 0 1 0 1
10 2445.5 1636.4 1939.8 1551.1 1087.6 3 7 4 6
20 4534.6 2834.2 2692.9 2021.7 1714.2 7 13 8 12
30 7141.2 4728.8 3734.4 3304.4 2914.2 10 20 11 19
40 11038.0 6499.4 4726.9 4394.9 3697.0 13 27 15 25
50 14061.2 8233.8 5370.6 5692.7 4993.2 17 33 19 31
60 18769.1 10420.6 6566.5 6936.2 5892.2 20 40 23 37
70 21405.7 11770.8 8199.6 8059.5 7058.0 23 47 27 43
80 26023.5 13751.8 10249.8 9445.0 8097.4 27 53 30 50
90 37661.0 20030.8 12238.7 11032.1 9597.4 30 60 34 56

100 45195.8 24419.2 14764.3 12724.9 10974.0 33 67 38 62
110 54004.7 27860.2 17302.0 13195.9 11762.8 37 73 39 71
120 63118.7 32006.0 19338.9 14319.2 12996.9 40 80 45 75
130 71224.4 36608.6 20815.2 20515.7 15583.9 43 87 50 80
140 80195.3 41776.2 21974.6 23042.4 18352.7 47 93 55 85
150 90753.5 46507.0 25396.4 25655.3 19873.4 50 100 60 90
160 100824.0 50656.8 27840.1 28348.6 22127.4 53 107 67 93
170 113200.7 57196.2 30250.5 30553.8 23823.5 57 113 72 98
180 129406.3 66253.4 37756.4 34308.4 26106.5 60 120 77 103
190 147638.4 71603.0 40355.1 37045.5 27705.4 63 127 80 110
200 153398.6 76602.2 44477.9 38905.3 30393.0 67 133 83 117

Static (agents
assigned)

Adaptive (agents
assigned)

Response Time
Agents

Figure 3 shows the response time for single gateway approaches
with and without JPVM. We can see that the same gateway
without JPVM performs little better than the same one with
JPVM. This is due to the overhead of JPVM, but it is negligible.
However, we can see that the response times of the 711 MHz
Intel Pentium III processor is much better than the 350 MHz
Intel Pentium II processor. These results were expected.

Single Gateway Approaches

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Number of Agents

R
es

po
ns

e
Ti

m
e

(m
s)

350-No-JPVM 350-JPVM
711-No-JPVM 711-JPVM

Figure 3: Response Time for Single Gateway Approaches

Figure 4 shows the response time for equal work, static, and
adaptive load balancing with two slave JPVM gateways
compared to the single 711 MHz slave JPVM gateway. The
response time is better with adaptive load balancing compared to
equal work and to static weighted load balancing. When the
number of agents increases, the difference becomes more
apparent. The recommendation is to use adaptive load balancing
mainly when the network has a large number of agents.

XML-based Network Management Approaches
using JPVM

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

70000.0

80000.0

90000.0

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Number of Agents

R
es

po
ns

e
Ti

m
e

(m
s)

711-JPVM Equal Work Static Adaptive

Figure 4: Response Time for Static vs. Adaptive Load Balancing

We can conclude that the response time of the adaptive load
balancing approach outperforms the previous load balancing
approaches used, i.e., equal work and static weighted. In
addition, the adaptive approach will provide better response
times as the master gateway learns more about the execution
times of each slave gateway. Our goal is to improve these results
further by investigating other dynamic and adaptive approaches.

VI. CONCLUSION
In this paper, we presented an adaptive load balancing approach
to XML-based network management, to distribute the load
across multiple parallel JPVM gateways. We have shown that
adaptive load balancing outperforms other approaches, namely
equal work and static weighted. The adaptive load balancing
allocates the number of agents dynamically to each slave JPVM
gateway to achieve a better efficiency. The weight setting can be
further tuned to improve the results obtained, and this will be the
subject of future work.

ACKNOWLEDGMENT
The authors acknowledge the support of King Fahd University of
Petroleum Minerals (KFUPM) in the development of this work.
This material is based in part on work supported by a KFUPM
research project under Fast Track Grant No. FT/2004-20.

REFERENCES
[1] Jeong-Hyuk Yoon, Hong-Taek Ju and James W. Hong, “Development of

SNMP-XML translator and Gateway for XML-based integrated network
management”, International journal of Network Management, 2003, 259-
276.

[2] Mi-Jung Choi, James W. Hong, and Hong-Taek Ju, “XML-Based Network
Management for IP Networks”, ETRI Journal, Volume 25, November 6,
2003.

[3] J. P. Martin-Flatin, “Web-Based Management of IP Networks and
Systems”, Wiley series in communications Networking and Distributed
Systems, 2003.

[4] Sqalli H. M., and Sirajuddin S., “Extensions to XML based Network
Management”, International Conference on Information and Computer
Sciences (ICICS-2004), Dhahran, Saudi Arabia, November 2004.

[5] Sqalli H. M., and Sirajuddin S., “Static Weighted Load-balancing for XML-
based Network Management using JPVM”, 8th International Conference on
Management of Multimedia Networks and Services (MMNS-2005), J.
Dalmau and G. Hasegawa (Eds.): LNCS 3754, pp. 228 – 241, Barcelona,
Spain, October 24-28, 2005.

[6] W3C, “Extensible Markup Language (XML) 1.0”, W3C Recommendation,
October 2000.

[7] W3C, “XML Schema Part0: Primer”, W3C Recommendation, May 2001.
[8] W3C, “XML Schema Part1: Structures”, W3C Recommendation, May 2001.
[9] W3C, “XML Schema Part2: Data Types”, W3C Recommendation, May

2001.
[10] Straus, F. “A library to access SMI MIB information”,

http://www.ibr.cs.tubs.de/projects/libsmi/
[11] Phil Shafer “XML-Based Network Management” – White Paper, Juniper

Networks, Inc., 2001,
http://www.Juniper.net/solutions/literature/white_papers/200017.pdf

[12] Adam J. Ferrari, “JPVM: Network Parallel Computing in Java”, Technical
Report CS-97-29, December 1997.

