Khan, M.A.U. and Mousa, W.A.H. (2002) *Image coding using entropy-constrained reflected residual vector quantization.* Image Processing. 2002. Proceedings. 2002 International conference, 1.

| PDF 19Kb | |

Microsoft Word 26Kb |

## Abstract

Residual vector quantization (RVQ) is a structurally constrained vector quantization (VQ) paradigm. RVQ employs multipath search and has higher encoding cost as compared to sequential single-path search. Reflected residual vector quantization (Ref-RVQ), a design with additional symmetry on the codebook, was developed later to a jointly optimized RVQ structure with single-path search. The constrained Ref-RVQ codebook exhibits an increase in distortion. However, it was conjectured that the Ref-RVQ codebook has a lower output entropy than that of the multipath RVQ codebook. Therefore, the Ref-RVQ design was generalized to include noiseless entropy coding. We apply it to image coding. The method is referred to as entropy-constrained Ref-RVQ (EC-Ref-RVQ). Since the RVQ scheme is able to implement very large dimensional vector quantization designs like 16/spl times/16 and 32/spl times/32 VQs, it is found highly successful in extracting linear and non-linear correlation among image pixels. We intend to implement these large dimensional vectors with the EC-Ref-RVQ scheme to realize a computationally less demanding image-RVQ design. Simulation results demonstrate that EC-Ref-RVQ, while maintaining single path search, provides 1 dB improvement in PSNR for image data over the multipath EC-RVQ.

Item Type: | Article |
---|---|

Date: | 2002 |

Date Type: | Publication |

Subjects: | Computer |

Divisions: | College Of Sciences > Mathematical Science Dept |

Creators: | Khan, M.A.U. and Mousa, W.A.H. |

ID Code: | 14111 |

Deposited By: | KFUPM ePrints Admin |

Deposited On: | 24 Jun 2008 16:23 |

Last Modified: | 12 Apr 2011 13:14 |

Repository Staff Only: item control page