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Viscoelastic surfactants (VES) gels are used as acid diverters in well 

stimulation, whereas internal breakers are compounds which reduce the 

viscosity of these gels after acid diversion. Internal breakers reduce formation 

damage induced by VES gels. Proposed mechanisms of viscosity reduction of 

VES gels by internal breakers at high temperatures are not well understood. 

This study attempted to understand the viscosity reduction mechanism of a 

certain long-tail sulfobetaine surfactant solution, erucamidopropyl 

hydroxypropyl sulfobetaine, using organic compounds. This surfactant was 

within a system containing other compounds. Rheology and cryogenic 

transmission electron microscopy (cryo-TEM) were used to study the effect of 

the following organic compounds on a fixed concentration of an aqueous 

surfactant solution (3.96 wt % of the surfactant system) at 30°C and 60°C: n-

decane, crude oil, extra virgin olive oil, and polyglycolic acid (PGA). All the 

samples were equilibrated for a week. The solution was viscoelastic and 

highly viscous at both temperatures due to the presence of cylindrical micelle 

networks. Only n-decane drastically affected the zero-shear viscosity of the 

surfactant solution at 30°C. The zero-shear viscosity of the surfactant solution 
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reduced with increasing concentration of the oils by approximately three to 

five orders of magnitude at 60°C. N-decane induced three regimes of viscosity 

change at both temperatures: the high viscosity regime, the transition regime, 

and the low viscosity regime. The other oils induced only one and two 

regimes of viscosity change at 30°C and 60°C, respectively. PGA did not 

induce considerable changes in viscosity at both temperatures. In conclusion, 

the oils are breakers for this VES solution. Moreover, temperature and oil 

molecular structure do govern the viscosity reduction of the solution. 

Meanwhile, PGA is not a compound to be used with this VES solution. 
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