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ABSTRACT

Full Name : Nemer Abd Al Halim Mohammad Amleh

Thesis Title . Impacts of Eenrgy Storage and Smart Restoration on the

Reliability of Electric Microgrid
Major Field . Electrical Engineering

Dateof Degree : May 2016

The development and utilization of renewable energy sources (RES), especially wind and
solar, has been given important consideration due to the increased consumption of
conventional energy resources and enhanced public awarenbsspofténtial impact of
conventional energy systems on the environmElotwever, RES have a random and

intermittent nature that affects their reliability in electrical networks.

In the 21st century, the concept of smart grid, which began and formed tratiaal
become a promising choice to face future challenges:h8alfng is an important feature
of the smart grid. The main task of sk#aling control is reaime monitoring of
network operation, predicting the state of the power grid, timely detectapid

diagnosis, and elimination of hidden faults, without human intervention.

The main aim of the thesis is to study the reliability of islanded microgrids under the
utilization of smart restoration arlSS to assess the acquired improvements in power
grid reliability. Therefore, this thesis implements smart restoration and energy storage
units to increase the reliability of a staaldne microgrid (MG) system. The wind and

solar energy resources are considered to be the main energy resources in MG. Two

XVi



models are implemented to reduce the effects of uncertainty in the wmodsolar
generated power, the ARMA model for wind speed and the triple exponential smoothing
model for solar energy prediction. The study was carried out on Roy Billinton teshsyste

(RBTS).
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Chapter 1

INTRODUCTION

1.1. Overview

Sun andwind are considered as green sources becaugwiohegligible contribution in
greenhouse gas emissions. These sources have been consideradtashative energy
to fossil fuels since the 19709 [However,renewableenergyremainednactive until the
2000s because dfs high energy pragction costs during that peridd]. During 2000s,
the use of renewable energy increased dubdadvancement in tliretechnologiesFor
example, the generated solar photovoltaic (PV) energy reddzd>Win 2012 while

wind energyreached®82 GW[3].

During 2000s, the technologicadvancemenstin renewable energgeneration has
allowed the use of the telecommunication technology in the power systems, which is
known the smart grid. Its main function is to continuousbnitor, detect, and diagnose

any change in the network. It is able to change the network topology and deal with the
bidirectional power flow. One of the most important features of the smart grid is the
smart restoration as the system. The smart restoratioan integrated system of
telecommunication equipment and computer devicdéscate and restore the interrupted
loads based on their priorities. One of the most important characteristics in the smart

restoration is its ability in optimizing the switdperations sequence. Thus, it optimizes

the gridds operation and reliability. Mo r e



(DG) resources and associated ESS units efficiently and strategically taking into account

the different technicadnd enviromental isses.

An important feature in the smart grid is its ability in employing the demand side
management (DSM). It can control the demand and allow the demand response schemes
easily through the smart meters and sensidrs. snart grid can improvethe reliability
andallow a large deploymemf the renewable energy sourc&EQ. However, using of

smart restorationonly camot completely solve theandom intermittency of the
renewableenergy. Controlling demand optiorould besuggestedas solutionfor the
aforementioned probhe. Nonethelesswith existence offluctuating and intermittent

energy sources, flexible demand kaswnilittle ability [4].

The remaining option in whi c heffidehtlg sdy puct u
usingan ESS, as seval studies proved thislaim [5]-[7]. The recent developments in

energy storage and power electroniesreincreasd the energy strage applicationg

the modern power system3hese advancements made the ESS as the best solution for
intermittency of reawable energy. Therefgresmart restoration and energy storage
facilitate the integration of renewable resources, improve system reliability and enhance

the efficiency of transmission and distritmrtinetworks



1.2. Thesis Motivations

The increasd focus on renewable energy motivates studies concethmgenewable
energyintegrationinto existing energy supply systemsind energyandsolar energyare
expected to play &ey role in the future energy supplysing ofthese sources very
importantto reduce the impact @he emissions of greenhouse gases (CO2, NOx).SOx
Neverthelessthe electricity generatiorirom wind and suns always fluctuahg due to
their intermittent nature that dependn the environmental statidoreover, forecasting
sdar and wind power involves uncertaintidn. islanded systems, MG reliability and

power availability became a main concern.

The use of secondary dispatchable generators is a good option that can be used to reduce
power intermittency impacts. A second oyptiis storing the generated energytimes of
low-demand so as the released at times of higlemand Although energy storage can

solve the power intermittency or uncertainty effects, but it cannot well overcome the

power lines or units outages at lagyale.

The best option that can be used to enhance the reliability of microgrid sgsttamded

case is the use of smart restoration. The smart restoration can overcome the interruptions
and outages through finding another route and coordinating the supply with ddmand.
can diminish the interrupted area and optimize the usage of thrgyergsources.
However, matching the energy generation from renewable resources with the load to
satisfy the balance condition jgroblematic Implementing the smart restoration to
improve the reliability of standlone microgrids is a challenging issuedahe thesis

attempts to investigate this issue using Monte Carlo simulation (MCS).



1.3. Thesis (bjectives

The main objective of this thesis is studying and implementing the smart restoration
theoretically to improve the staradone microgrid reliability. Thebjectives of this thesis

are summarized as follow:

1) Modeling and simulation of the shagrmwind speedandsolar power.

2) Evaluating the reliability of standlone microgrid system when the renewable
energy and energy storage are the main energy supgiBnsyn microgrid, and including
the uncertainty in the renewable energy.

3) Investigating the capability ahe smart restoration in improvirtge reliability of

standalone nicrogrid system.

1.4. Thesis Outline

This thesis is organized as follows:

Chapter Zrovides background abonticrogrids concept, reliability of the microgrids as
well as self healing of the microgrids. In addition, it includes background about
renewable energy sources and energy storagbis chapter also includes an overall
literature review on current approachesdelf-healing of microgrids and their reliability.

It also includediterature reviewon renewable energyasedDG integrationand energy
storageusagein distributionnetworks. Chapter3 describes the system madegl of the

wind speed, solar powelgad modeling, energy storage and their reliability modéls



introduces background on Monte Carlo simulation (MCS) and the smart restoration
impact on the reliability of the microgrid.

Chapter 4 presents case studies on the positive impacts of using of the smart restoration
and the energy storage on the reliability of the microdtidlso includes case studies on

the effects of the power capacity and the uncertainties in the genpoated from the

wind and sun. Finally, Chapter 5 concludes the research ith#ss. The directions for

further research are also presented in this chapter.



Chapter 2

LITERATURE REVIEW

2.1 Microgrid

Microgrid is a low voltage distribution network that delivers the power to small
communities[9]. The power can flow locally and the consumer can participate in the
electricity enterprise. It combines different renewable energy resources with conventional
substatios such as diesel statiorss it acts either as a net load to main grid or a power
supply (islanded operation). It contributes to reduce the carbon emission locally due to
using the renewable energy, enable of using several energy resources and rexiicing ¢
[1 P In microgrid, a simultaneous group of generating units are operated together for the
benefit of its membersThe supply sources may include engine generator sets, micro

turbines, fuel cells, photovoltaic, and otlsenallscale renewable generadptl].

These micrgrids solve the problems associated with penetratiorerméwable energy
baseddistributed generators (DG) and make ttvalk grid suitable for large scale
deployment of DGs. They make the controlling of the DGsnore flexible way and

reduce the centralized management of the syglem



2.2 Reliability of Micro grid and Self-healing of the Power System

Reliability of microgrid studies thenavailability, numberof incidents, noof hours of
interruption, no of voltage violations that exceed the limits and no. of frequency
excursions beyond the limits. In addition, reliability study of MG started to take into
account theenergy storageunits that play a key rée in minimizing the effectsof
renewable energasedDGs and introduce a safe and stable operation of the MG.
However, eliability of MG is more complicatetecause of usingenewablebasedDGs
whose outpupowerfluctuates, thideads to instability in the operation of the microgrid

which in turn affets the reliability of the MG1 R

In addition, he reliability of the renewable energgsourcas measured of how long the
source generates a stable amount of enérggseresources generatdectricity inan
intermittent andunstable way andc ané6t rely on. Therefore,
to introdu@ a flexible back up generation4]1On the other hand, dispatchableesyy
resource is considered reliable if it can generate the required electrical enarggt the

demand

Accordingly, reliability analysis of MG should take into account the natural
characteristics of these resources. iveind is characterized as an intermittesntd
unstablesource becausgind speechastime-varying nature and not constamthich may

not supply thepeak demand when needddbowever,reliability of wind power system

can be mcreasedy using the power electronics and programmable contrtollaiow a

flexible controlling of the wind turbine [1 h Solar energy also is considered as an
intermittent soure because it depends on the geographical area and it does not shine at
night. On the other hand, like wind power system, availability of solar power can be
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increased by the usage of energy storage system (B®#¢ Hydro-electrical power is
considered reliable because it can generates the electricity as long as there is a plenty of
water flows into turbinesSince we can control the amount of water to flow through the
turbine, we can control the amount of efea power to be supplied and thus the

reliability is high[1 %

The reliability evaluation methods in MG are basically two, frequency and duration
method andVionte Carlo simulationMCS) methodthat can be used to determine the
MG6 s cont r i Hility of dulk gtidoandrteel MGaitselffL § In [1F, an
assessment of the benefits of MG on reliability of power system has been proposed using
MCS and applied to théEEE-RBTS system. Ithas shown that MGs significantly

enhance th reliability of the bullgrid.

Ref. [9] proposed evaluatiomethodof Availability of MG using MCS during natural
disasters. It addressed the effects of life lines performance and local energy storage on the
MG availability during natural disasters. The study disclosed that MBe\as much

more availability than the bulk grid in these circumstances. Another study showed that
MG improved reliability and decreased SAIFI and SAIDI by incorporating DER with

variable capacityl §

Selthealingis the seHrestoringof the power grido its normal operation using advanced
monitoring methods that continuously diagnose and assess the operational status of the
grid and remove any fault witlut affecting the supplied loa@ p The problem of self

healing consists of finding the sequenéeswitch operations that optimize the reatan



state [4]. Its main functions are to evaluate the power grid behavior in a real time
mannerand help the grid to response quickly to any disturbance. And lastly, it isolates

the disturbance and restoree grid to its normal state quickKi®2].

Self-healing in the micrgrid is morecomplicatedthan in the conventional networks due

to the distributiometworkgenerabrs, distributed storage devices and electrical vehicles
[21]. The difficulty of implementig the selhealing inthe distribuion network is also

due to the new initial conditions that vary at each outage dteetmobile loads and
existenceof the renewable energy sourd@g]. However, this can be improved by using

the smart meters and sensors that increase the observability of the system and provide

real time data about the status of the distributer{28¢

Self-healing nowadays is an importdaapic and many researches/adeen achieved and
numerous works are now being done in this area.selfhealing control structure has
been accomplished in the smart distribatgrid that consists of three laydiz4]: Base
layer which is the power grid andshouldbe able to ecept the clean energy and deal
with bidirectional power flow.Secondly, 8pport layer whib is the data and
communication equipment. Lastlypglication layer which consists of monitoring,
decisionmaking assessmen€ontrol and recovery to achiegelf-healing of power grid.
While selfhealing structurelepends on the intelligent agents has been proposed in [25].
This structure uses the intelligent agents smdrt metesin orderto estimatendcontrol
the load and restoréhe electricity grid. The pasive and active netwosk where
automatic switches can be controlled via an adente been studied by this meth&ait

it assumed that the operation process should be bassgnohronized measurements.

Anotherintelligent agentdased sethealing methd thatusesdistributed energy storage



has been proposed in [28]his methoduses the series and shunt agents to control the

restoration process.

Selthealing methodsin the dstributon network are divided into local control,
centralized and distributegel-healing[27]. Local control method uses relay devices to
recover from fault and thus no need of communication. But it can only handle transient
fault not to fix permanent fault. Centralized control relies on the main station to maintain
the topologymodel. However, when the distribution network is complex, centralized self
healing takes longer time. On the other hand, distribute¢healfng relies on smart pole
switch to locate fault, isolate and restore power supply. Which makes its response faster
Accordingly, ref.[27] proposed the pole switches method to enhance thdeaihg

problems associated with local control ded#faling strategy.

Other works reconfigured smart restoration based orstraetured grid technique as in
[28]. It showed that dividingbulk grid into islands improves power supply reliability and
reducs size of the area of power outage. However, implementing this approach is
difficult due to the problem of adjusting to a full agreement either in frequency, voltage
or phase angle between two or more separate systems before inted2&jon
Accordingly, he latter proposed a practical method and disclosed solid conclusions, can
be dependent on, which mitigate the aforementioned problem. It showed that a reliable
integration between MG and the bulk grid requires the voltage difference between them
smaller @mough while the frequency of the external grid should be slightly greater than
the frequency of MG and the phase angle of the extgmalshould lead MG phase
angle Some works tried to improve reliability of MG by incorporating demand response

(DR) schene in selfhealing [30]. It converted the reliability problem into an
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optimization problem that minimizes the total operation cost of energy not supplied
(ENS) due to DR scheme. It used the load curtailment program to diminish the
interrupted loads in MGHowever, selecting a candidate load for restoring has major
impact on final outagecodt di dndot consider the other op

generation in each MG by using neveB

Many studies researched sk#aling in microgrid using the ditbuted sekhealing i.e.

ref. [31] studied service restoration (SR) in microgrid and introduced twmsirnal
solutions close to the optimal solution under the unscheduled disconnection from the
main grid scenario. These solutions have been obtainsgdbapon stochastic
information. It argued that ESS plays a critical role in decreasing the negative impacts of
the uncertainties of the forecasted renewable power generation. Other study in ref. [32]
outlined the achievements towards realizing a smartrogi at British Columbia
Institute of Technology (BCIT) at Canada. It researched the design of the smart microgrid
including protection and control scheme of the microgrid during the presence and
absence of the utility connection. Ref. [33] has propasesiable multiagents system
(MAS)-based load restoration algorithm for microgrid. The study stated that the
advantage of this method is that can be applied to power system of any size and

configuration in addition to its guaranteed stability.
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2.3 RenewableEnergy and Energy Sorage Applications

Renewable Energy (RE) is one of the best solutions to the depletion of energy resources
and the environmental issues such as the global warminge@@sion and othel84].

These nonconventional sources can be use@ducing the total electricity production

cost. As it can be utilized in Micregrids (MG) to suppress the expansion of the
transmission grid to remote isolated areas. In addifR#h contributesin reducingthe
maintenance and transmission costs offtle® of diesel generators that are commonly
used in these placd85]. Recently, the world has witnessed iragi@g growth in RE
sources (RESkespecially in wind powermany countries are getting a considerable
percentage of their electricity generation from RE&]. But due to most of RES are
intermittent in its nature which increases power fluctuation and discontinuity in power

supply limits its use and penetrationdistribution networks.

On the other hand, the integration of an energy storage system (ESS) is one of the best
solutions to ensure the power quality and stability of a power system with éhsing
penetration of RES such as wind energy. These eneogygst (ES) devices introduce
many services to the grid such as smoothing the power output from WT,@&{dPN36]-

[39]. It contributes to system adequaayd improvegpower systenreliability such as
avoiding interruption of sensitive load and supply tbadl in uninterruptable power
supply (UPS) fashiop0]. ES can be classified based on four paramé¢dis storage
capacity, charging/discharging limit (max/min capacity of ES), charging/discharging
efficiency andrated power of theenergy storage unitThere arealso other factors
characterize ES, the operating strategies such as shavoegk load, providingnergy

reserve, smoothinthe output powefrom WTG [41] and priority of the RE$34].
12



2.3.1.Solar Power Modeling

One of the main challenges tine electrical gridis the integration othe solar powerto

the existingpowersupply systemsl'he main problem of integrating solar paweto the
existing electricitygrid, lies in its discontinuous generation, becaul®¢ power drop
when the solar irradiae decreases [42].he fluctuationsan PV power deliveryto the

grid causeproblems for grid operators whmoust keep the balance between the generated
power and t Amey implementaiian othesalad energy convsion process
should take this betvior into account in its operatirgirategiesHence, the shotterm
forecasting othe solar powelis essential in optimizing theowersystemoperations and
increasingthe participation of thesolar powe in the electricity grid. Andthe rising
number & solar energy applicationalso increases the importance bé tsolarpower

forecas{43].

Several areas are affected by the stenrh solar power forecasting such as: control, unit
commitment, security sssessma, gotimum planning of power generationnergy
exchange, grid integration. On the other hahd,solar power fomasting isaffecied by
several factorssuch as: meteorological, climate, light intensity, dust particle. The
conventional techniquehat are typicallyused for the solar powéorecasts are multiple
linear regressions,t@chastic time seriesgeneral exponential smoothingate space,

Kalman filter, as well as thartificial neural networkechniques [44]

Many shorttermforecasting models for solar power were proposdhdafiterature Most
of the accomplisheavorks in the shortterm forecasting models for P$ystens were

presentedor solar radiation forecasting [43],[45], while few works were designated for
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models wereorienteddirectly to solarpower predictions in PV sysms [46],[47]. A
Suppat vector machines (SVM) has been proposed in [47] to predict the hourly PV
power generation foa horizon of 24 hrs. Another proposed SVM model in [48%
shown that SVM has better ability in the dealing with tinee-varying and onlinear
nature of the solar dataverthe autoregressiveAR) model andhe radial basis function
neural network (RBFNN) modeln these work severalforecasted weather variables
(such as cloudinesstemperature,etc.), were used as inputs to the modgénetic
programming of fuzzy rules has bedascribedin [49 to forecastthe output of a PV
plant The previous proposed models only provide the elepiger point forecasts.
While a proposed model in ref. [4@fovides uncertaintyalues of thepoint forecasts.
This model allows the evaluation of thesk associated with forecasting errors.
Uncertainty values are important @tectricity markets because forecasting errors may

lead to economipenalties

A novel hybrid model for PV power forecastihgsbeen proposed in [50lt combines
ARIMA, SVM, artificial neural nework (ANN), and adaptive neurofuzzy inference
systems(ANFISs) methods with GA algorithmlit showedthat the hybrid prediction

modelprovidesthe most accurate predictions

2.3.2. Wind Power Modeling

Wind energy is one of the most promising green energy sources. However, wind has
complex and stochastic nature, and the generated power from wind turbine is a function

of direct wind speed fluctuations. Therefore, accurate wind power forecasiscassary
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for the economics of wind energy utilization and power system reliability. Wind power
forecasts may be performed at various time scales, depending on the application. The
prediction horizon may range from few minutes up to a few days or eveméanhs. It

can be divided into two parts: shaoetrm or longterm forecasting. Sheterm forecasting

is used to predicting wind speeds or wind power few minutes, hours or daystetong
forecasting includes predictions for several daysekseor monthg51]. Wind power
forecasting improvements may be achieved by using more data and providing uncertainty

estimates aingside the predicted values [52

Current approaches of wirgpeedforecasting generally fall into two main categories.
One is the physicahodel approach and the other is the time series model approach. The
first approach, not only considers historical data but also the meteorologridditions

and wind turbinesnformation (power curve, hub height, etc.). Physical models are
usually bettefor long-term forecasting (6 hours ahead or more) and it does not fit short
term prediction because of the difficulty of data acquisition drel domplexity in
computation [SB Physical modeling requires wide and deep knowledge about

atmospherics rd is difficut to set up and maintain [b4

On the other hand, the time series model approach only uses historical data to establish
the prediction. This approach fits only shtatm forecasting (<2 hours ahead) because of

the existence of a coradlon between consecutive wind speeds where studies of wind
speed behawr confirmed this phenomenon [6Modeling of thehistorical wind speed

data isdone based on statistical theories. The future value is predicted by using the
existing time series matiand the recent past values. The simplest method of this kind in

which the predicted wind speed in the next time slot is the last measured one. More
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advanced techniques are the ARMA models, Kalman Filters, ANN, Fuzzy Logic and a

hybrid prediction basedowaelet transformation and ARMA [$3

A proposed model in [95s based on a discrete time Markov chain models of order one
and two. It allows to directly estimating the wind power distributions on a very-short
term horizon. The models are compared toséh Models of ability to evaluate the

prediction errors associated with the predicted values.

The previous two approaches have limitations. Therefore, some researchers have
combined physical and statistical models which resulta mybrid models, as irefs
[56],[57], by using Numerical Weather Prediction (NWP) data as inputsstatsstical

model. i.e. ref. [BRinvestigated a combination of numeric and probabilistic models in
onedayahead wind power forecasts by the Gaussian Processes (GPs) apyhed

outputs of a NWP model.

Wind power generation modeling methods are divided into two apgpesathe wind

speed approach [51], [bAnd the wind power approacb4]-[56], [58]. Both of them
basically depend on wind speed measurements. But the windr gemeration falls
between the lower and upper limits of WT power curve and does not follow a standard
probability distribution. This increases the difficulty to apply standard statistical models
in the wind power approach. On the other hand, a smalliertbe wind speed modeling

in the wind speed approach leads to a large error in the predicted wind power. This is due

to the cubic relation between the generated wind pawerthe wind speed [h8
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2.3.3.Energy Sorage Application

Global warming is one of théiggestproblems in the worldshould be taken into
account In trying to mitigate these fears, it is known that using of renewable energy
sources has potentially become very importantreducing the emissions oharmful

gaes (CO2, NOx, SOx But the electricity generatiorfirom the most renewable energy
resources (RER) is always fluctuatede totheir intermittent nature that dependn the
environmental statusThe variability of renewable energy and its impact on the powe
system reliabilityare major challenges stdnin its increased penetratio®n the other

hand, ontrolling production and controlling demand options could be appdied
solutionsfor the aforementioned problems and ensuring balance between production and
demand. Howevernyith existence offluctuating energy sources, flexible demand has

shownlittle ability [4].

The remaining option in which these puctua
manner is by utilizing an energy storage syst&fd ]. Energy storage will play a key
role in decarbonizing the electricity systems worldwi8le And recent developments in
energy storage and power electronics technolagiksncrease the application of energy
storage technologies and make it a potentiallitable solution for modern power
systems to be operated in a more flexible, controllatdener Using of energy storage
technologies eases the scheduling of renewable energy generation thatmpigsae

in increasing the penetration of renewable enaglppally. Add to this, existence of
energy storage in aupply system enables the decoupling of electricity generation from
load. In other words, the electricity that can be generated from interriREER or at
times oflow-demand is shifted in tim® be released at times of higemand or when
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there isa lack in the generateglectricity. Therefore, energy storapas strong abilityn
reducing the imbalance in power and mitigating voltage rise lgmmob due to the
stochastic intermittence ihé renewable poweln this way, energy storage facilitates the
integration of renewables, enhances the efficiency of transmission and distribution
networks (reduce grid congestion, frequency and voltage flimhsy, increases the level

of de-carbonization of the electricity gri@]L

Energy storage systems for a long time have been utilizesghaimy forms and
applications. Nowadays, energy storage technologiessa@ toachiese electric power
sydems of highereliability with enabling a broader use of renewable en¢&§}. using

of energy storageintroduces many benefits including time shifting, peak demand
shaving generation efficiencyimprovement and transmission capacitytilization
improvament, etc There are many power system applications where storage is important,
with diderent requirements such as response time, energy and power capacities; i.e., the
time scales may range from microseconds (power quality, frequency response) to months
(seasonal storage). Thus, no single energy storage technology will be the best for all

power applicationsd0).

Energy storage technologies can be mainly categorized into three groups: mechanical,
electromagnetic and electrochemical storggf#. The firstgroup combines compressed

air energy storage, pumped hydro storage and flywheels. Electromagnetic storage
includes superconducting magnetic storage and stgpacitors. Electrochemical storage
includes hydrogen energy storage and all batteries typesstdrege technologies are

also grouped with respect to the storage capacity. Because storage capacity can be used to

exclude those sizes not suitablethe renewable energy systems [61],][68s well as
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different energy storage technologies have a watee of discharge rates that ranges

from few seonds to hours and even days][62

Regarding to their capacity, energy storages can be divided intetshorand longerm

energy storagefb9. In the short term, the storage is used between the ramping d

time of wind and solaplantsand the ramping up time of these plants as well as it is used

to stabilize the frequency and voltage of the g8ld $hortterm storage systems include

the supercapacitor energy storage, flywheel energy storage andosueting magnetic
energy storageThe longterm storage systems aused in the energy management and
energy compensation. It includes pumped hydro energy storage, compressed air energy

storage, battery energy storagad hydrogen energy storage J[59

Energy storage can betagrated at different levels:][8

1. Generation level: balancing and reserve power, etc.
2. Transmssion level: frequency control.
3. Distribution level: voltage control, capacity support, etc.

4. Customer level: peak shaving, time shiftintg,. e

Each location will contribute to the reliability and availability of the power and increase

the share of renewable energy in electricity system.

Several ES modslhave been proposéaldecrease the impact of RERch as Whd and
sun i.e., in [41], the reliability evaluation of the small staabne RE systems has been
proposed.lt has proposedpproach to enhance WP system reliability in distribution

network by incorporating ESS. lias explainegbrocedure to determine the ES capacity
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and charginfglischarging power rating®r different operatig strategiesAnd ref. [63]
proposed a stochastic framework to deiesrthe optimal sizing of ES. The studged
SMCS alongside with seardfased optimization technique to minimize the system cost

andsatigy reliability requirements.

Many papers researched the community ES (CES) which is located near the customer
side. It is considered the best ES to mitigate the impacts of RES at the grifb4Jdge
Several works considered the CES, i.€[68], proposedan energy management system
(EMS) that facilitates the CES in distribution system with high RE penetration and
electrical vehicles (EV). The proposed EMS was developed to determine the optimal
dispdch level for CES to reduce tidemand during peak houiRefs.[66]-[68] show that

using CES in distribution systems help generate electricity without emission and may
reduce its production cost. R@#8] argues that single phase ES near to customer side in
form CES is more efficient in reducing the produstimost of electricity than the three
phase storage at the substation or stred69}) a proposeanethodthat shows CES can
solve the voltage violation in distributiometwork with PV integration. However, ref.

[67] argues that CES cost a large amournhohey which sbuld be taken into account.

The main gap, that this thesis discusses and fills, is using the smart restoration and energy
storage to improve the reliability of MG under the case of stdmde and full

penetration of renewable energy.
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Chapter 3

MODELI NG AND PROBLEM FORMULAT

3.1. Introduction

In this thesis, the solar energy and wind energy are considered as the main sources in the
mi crogrid that ar e us déodd. Tthese twm soerges carhlee mi c
connected directly to the load point or connected to a feeder to serve several load points.

In this thesis, the two connections have been examined.

The autoregressive moving average (ARMA) model is usdtis thesis to mdel the
shortterm forecasting of wmd speedIt uses a historical wind speed data for a wsitd

in Ottawa, Canada [70]. Theutputwind power isthen computed by using the power
wind speedcurve Solar power is modeled by using the triple exponentiabathing
method. This method is very useful when the most recent values contain the most
information are needed for shderm predictions. fie system loadre represerdd by

hourly load curvefor one yearThe energy storagsystem is modeled as a dispatole

sourcemodel.

3.2. Solar Power Modeling

In the shorterm forecasting of the solar power, the most recenegatontain the most

information needed for predicting the solar power in the near future. Therefore,
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exponential smoothing methodanbe usedSince solar power data contains trend and

seasonal features, triple exponential smoothing model is used.

3.2.1. Triple Exponential Smoothing Model

Solar power data involves trend and seasonal features, which establishes the application
of triple exponential smoothing method to model the data. In this method, a third
smoothing parameter is added to take care of the seasonality. The formula of the triple

exponential smoothing model is expressed in the following equatiofis [43

O | 0 Y p | O°"Y (3.5)
Y 10O O p 1Y (3.6)
Y 1O O p Y (3.7)

WhereY s the seasonal value of the next peridds the seasonal value of the present
period.[ is the smoothing constant of the seasonality. Equation (3.5) takes care of the
estimated value. Equation (3.6) provides smoothing for the trend and (3.7) takes care of

the seasonality.

Then the forecast is obtained by adding the outputs of the previous equations as in (3.8):

"Y0O O Y Y (3.8)
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Incorporatinguncertainties inthe reliability study introduces the worst scenario that
could happen, which allows the system operator to prepare and accauSeveral
models have been proged to incorporate the uncertainty in the power source [71]. In
this thesis, the uncertainty in the power source has been incorporated by using the mean
absolute percentage error (MAPE). This index indicates the uncertainty percentage in the
power sourcelt is computed by finding the cumulative absolute difference between the
actual values and forecasted values divided by the total sum of the actual values. As the
uncertainty increases, the MAPE increases. For example, if the MAPE has been found
0.1095 inthe solar power and 0.2224 in the wind speed for a prediction horizon of 1
hour, this means thdlhe actualPV or wind speed outpuisould swing up or downby

0.1095 or 0.2224t mostof the predictedoutputs, respectively.

If the forecasted PV outpig ) and MAPE ise, then
n ne Q (3.9)
n ne Q (3.10)

Wherery ,n are the maximum and minimum limits of the expected PV output,

respectively.

Then, the new expected PV output is given by (3.11)

N n 1 0Ez'Q N (3.1)

Wherei ® £i€a uniformly distributed random number in the interval [OfL]. is the

expected PV output.
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3.3. Reliability A nalysis of Solar Power §stem

In reliability analysis, RAMS is an abbreviation for Reliability, Availability,
Maintainability and Safety and aims to suggest an integrated and methodological
approach to deal with system dependabilitiie fundamental objective of the RAMS

analysis is tg@inpoint the system failure causes anddmponent$72].

Many functions are used in the RAMS analysis such as the failure density function,
reliability function and failure cumulative distribution function, etc. The components in
power system are typatly assumed to have constant failure rate during their life cycle as
the past of the power systems certifies this fact. Therefore, the failure density function
should be exponentially distributed. The reliability function is then expressed with

respect tahe random variabl& as follow:
Yo 0Y i 600QQQiQ Qf Q (3.12)

This function represents the probability of a component or system to survive greater than
or equal to time tWhile the failure distribution function is the probability of a

component or system to fail during certain period of time or less than or equal to time t.
00 0Y HQOQai _Q Qt p Q (3.13)

The instantaneous failure rate (Hazard rate) is the probability of a system or component
to fail between timg andt + dt, given it is operating at time t. It is computed by

inversely derivingR(t) with respect to the time divided IR(t) as,

o —8— @ — (3.14)
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Since the failure rate of the power system components is constant, therefore

There are several techniques are usegetdorm the reliability analysis. Among these
techniques, the quantitative analysis techniques which are based on the modeling of the
physical and logical connections between system components and doing the reliability
analysis using statistical methodSeries/parallel system reliability analysis is one of
these techniques that is widely used. According to this technique, the series system has a
normal state at time t, if and only if all its components are found in upstate at time t.
While in the parallemodel, the system is considered in normal state at time t, if and only

if one or more of its components are found in upstate at time t. In power system, the
failure of the component is independent from the others. Therefore, the reliability of a

series sgtem of n components can be evaluated as,
Yo B Yo B Q QB (3.15)
Whereas the reliability of a parallel system can be evaluated by (3.16),

Yo p 00 p B p 0 (3.16)

Typically, the photovoltaic (PV) system consists of four main components [72] as shown

in Fig. 3.1.

1) PV generator: it consists of a group of solar panels ) panel combines a set

of interconnected solar cells. Each cell converts the sunlight into DC current at certain

25



voltage. The panels are connected to form array to provide the desired voltage and
current.

2) Inverter: it converts the DC voltage into a ideg AC voltage.

3) Energy meter: it is a measurement device that measures the produced electrical
energy from PV generator. It also can be used to identify the PV system performance.

4) Electrical boxes: these boxes are used to connect the system components and

provide the required protection against the short circuits and peaks voltage.

PV Gen E. Box Inverter 4' AC Bus

SP SP M

SP [~ SP H SP H SP HH SP SP Sp SP M

4 SP SP |-

Fig.3.1 Reliability block dagram of the PV power plant

The above components are always connected in series configuration as in Fig. 3.1. This

results in a series systeminose reliability model can be evaluated as,
Y o Yz¥Y 7Y (3.17)

Where'Y is the reliability of the PV generatolY is the reliability of he electrical
boxes.Y s the reliability of the inverter. The reliability of each part can be expressed

by using equation (3.15) or (3.16) or both as,
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Q (3.18)
Y Q (3.20)
Yo (3.21)

If all the panels have the same and each parallel part has the samenber of SPs,

(3.18) becomes,

Y Q zZp p Q (3.19)

Where"Y0 is the number of SPs that are connected in séXés. is the number
of the parallel SPs in each part. is the failure rate of the SP. is the failure rate of

the electrical box. is the failure rate of the inverter.

3.4Wind Speed Modeling

The existing wind power generation modeling methadsdivided into two approbes:
the wind speed approach [51],]58hd the wind power approach [5{86],[58]. Both of
them basically depend on wind speed measurememswind speed approach has been
used in this thesis for modeling and forecastingshertterm forecasting of the wind

speed by using the autoregressive moving average (ARMA) model.

The model is usuallgalledthe ARMA (p,q) model where jpnd q arghe ordes of the

autoregressive part anthe moving average part, respectiveljhe autoegressive
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integrated moving average (ARIMA) is similar to ARMA but it uses a third parameter
that defines the order of the integration when the time series follows -atat@nary
stochastic process. This model is usually written as ARIMA (p,d,q) andhe wrder of

the integration.
Theautoregressive model of ordefqr a certain time series X(t) can be expressed as,

MO0 B | ®0 Q0 Q6 ® (3.22)
and themoving average model of ordgican be written as,

Mo B T Q6 Q Qo (3.23)
Thus,ARMA(p, q) consists ofthetwo models AR(p) and MA(QQ) as,

W0 B | ®6 QO B Q0 Q0 Q6 W (3.24)

Wherel /8 h andi B R are the coefficints of the AR(p) and MA (q) respectively.
wis the constant termQo is the error term that is assumed independent identically

distributed random variables (i.i.d.) sampled from the normal distribution with zero

meanQox 0 m™h, . Where, is the variance.

In thisresearchthe followingfour coefficients have beamsedto validate the modelThe
Pearson correlatiooefficient [73], the mean absolute error (MAE), the root mean
square error (RMSE) and the mean absolute percentage error (MAPE) that associated

with the originatime-series (@) and theforecastedime-series( w):

[ g—. (3.25)
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YO YO =B & 6 (3.26)
000 -B v ®S (3.27)
booo2 2 ¢ (3.28)

Wherei | is the Pearson correlatiaiefficient 0 is the number of data points in the
original time series, and, are the standard deviationsdandw respectively, f is

the covariance of th@anda

. R (3.29)

and' are the mean values aflanda respectively.

The uncertainties in theimd speed can be included using the same procedure that has
been explained in the solar power modelifigen, the wind power output is given by the
power curveit is expressed d34],

6z0 6z0 O 0 L U

b O U (3.30
£®DI 0 QI Q

c
c
A Slos

Thew , ® andw arethe cutin, rated and cutout wind spesid (m/s), respedvely. 0
is the rated power of the WTG in MW is the wind speed\, B and C are constanémd

can be calculated using the following equations [74],

b0 O TOU — (3.31)

T U v — ou 0 (3.32)
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3.5.Reliability Analysis of the Wind Turbine Generator

(3.33)

The wind farm operates in a modular approach wheach turbine operates

independeny from the other Each turbineconsistsof many componentghat work in

seriesas shown in Fig. 3.2. Sor the turbine to work, all components mustviorking

properly.

Number Name Number Name
1 Base/ 9 Low speed
foundations (main) shaft
2 Tower 10 Gearbox
1 High speed
3 blades shaft
9+11 Drive train
4 Mgteorologlcal 12 Brake
unit system
5 Nacelle 13 Generator
6 Pitch system 14 Yaw system
7 Hub 15 Converter
8 Main bearing 16 Bedplate.

Fig.3.2 Components of the W@: [75]

The reliability block diagram of the complete structuoé the WTG is complex

Therefore, a simplifiedeliability block diagram for th&/TG can be representéxy the

four primary subsystens in series [76]. They are the blades, gearbox, generator and

controls equipmerdsshownin Fig. 3.3.

30



Generator
Blades

Gearbox Control

Fig.3.3 Simplified reliabilty block diagram for the WTG.

Thefailure rateof any mechanical parsuch ashe WTG, can be represented as [77],

o - - (3.34)

Where] is the shapeparameterof the failure function; —is the scale parametéhat

represents the time between failuaeslis greater thadf or .t O 0

Fig. 3.4 shows a complete failure cuntke bathtub curve. The threegionscan be
described by equatiorB.34 by using different values fothe shape parametgr as

follow:

A <1, infant mortality

A =1, normal life

A > 1,deterioratioror wear out

Wheny p, the failure rate. 6 becomes constant. Therefore, equation (3.34) can be

reduced to

- (3.35)

Exponential distribution can be used to describe the reliability of wind turbine and its

failure probability when the failure rate lies on the normal lifeareg
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Typical Bathtub Curve for Wind Turbines

Decreasing failure rate Increasing failure rate -

afanimoralty end of life wear out
Slightly increasing
H failure rate — normal life

Time

Fig.3.4 Bathtub curve for WTs. [18

All subsystems of the wind turbine are connected in series as shown in Fig. 3.3. Since the
failures of the subsystems of the WTG occur independently from each other; equation

(3.15) can be written as,
Yo B YO B Q QB (3.36)

Y 0 is the reliability of the WTG. n is the number of the components or the subsystems
of the WTG. _ is the failure rate in fail@/year per the ith subsystem in the WTG. The

failure rate of the WTG can now take the form,
B (3.37)

TheWTG has two stategpeaatingandfailure stats. The output power i8 0 whenthe
WTG is in operatingstate and zero whethe WTG is in failure state Therefore, the
reliability modelof WTG poweroutputwith forced outage rate (FORYis summarized

in table 3.1:

32



Table 3.1 Relialility Model of WTG Power @tput

State Capacity (MW) Probability
1 0 Y
2 0 0 p Y

Multiple WTGs provide large amount of power and introduce redundancy that increases

the availability of the power. The WTGs in wind farm are independent fromatheh

which makes their failures are also independent.

Consider awind farm of n identical WTGs with rated powet) MW. Assume thathe
forced outages ofNTGs are neglected, the output powerté wind farm isthen
£€z0 0 MW. If theFOR of each WTGs 1, the probabilityof k WTGsor less to ben

forced outag@ndthe probability of m units to be on maintenararegivenas[79],

0 B A p A (3.38)

n n p N (3.39)

Wherem Q ¢

3.6. Load Modeling

In reliability analysis of power system, cturate dad modeling is very important.

However, loadnodeling is not an easy task and time consuming because of many factors

such as weather forecast errargsstomer behaviorgtc. Therefore, many differefdad

modelshave been used in reliability evaluation [§82]. Thetime varying load modsl|
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of the hourly load varation curve of the RBTS [§3shown in Fig. 3.5s used in this

study.The peak load is 20 MW and average load is 12.3 MW.

1.2~ —+— Industrial 1
—6— Commercial
— Residential

Demand (pu)

0.2~ -

ot I I I o I I L D
0 5 10 15 20 25 30 35 40 45 50

Time (hour)

Fig.3.5 The hourly load variation curve of the RBTS system

3.7. Energy Storage Modeling

Energy storage has been used in maower system applications such as peak shaving,
time-shifting applications, improving power quality and power system reliability, etc
Hence, many models of energy storage have been preselitechinre[84], [85], where

it is always modeled as a displaalle source [8p

Energy storage i popular optiorthat is used to smooth the output power variations
from the intermittent power sourcgsuch as windurbine and PV panels, amdovide a
stable power output to the grid. i.e., if the power output from the renewable power
sourcel O is greater than , the excess powar 0 0 is used for charging of the

energystorage. The stored energy is discharged when the output potveis less than
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0 . Hence, the charging and disofiag power can therefore be calculated from the

following two equations:

y 0 006 0 24
U O T 5 .
Tt U0 U ( Q
. 0 006 0 00
) 0 5 T (34])
U U0

In addition, the probability of discharging and charging can be estimated fron3&@s. (

and @.43, respectively.

odo 0O 00D (3.42

0 (3.43

o
&
o
C2
©
@)
C

Where théO is the power cumulative distribution function of the intermittent renewable
source.

The rounditrip efficiency of the energy storage indicates to the amount of the energy loss

that takes place in one chargidigcharging cycle and it is defined[&3],

- -8 (3.49

Where— is the charging efficiency. It is defined as the ratio of the charged power to the

input power.— is the digharging efficiency that providethe ratio of the output

power to the discharged power.

The storage device ratings are the main factors that affect the charging and discharging

processes. The limited power ratings of the storage device are usuadigled by
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bounding the charging and discharging equations. With limited power ratings, the

charging and discharging expressions should then be modififg¥{o

. i EDo O 00 0
0 U v - (3.4

i DO U

. | ED Oom 0 0
0 V) ~ - (3.46

1 0 U

If there isno capacity limit are on charging power, all excess power can be used for

charging the storage.

The energy storage is mainly evaluated by four parameters: charging and discharging
efficiencies, power and energy capaciti€se relationsip between the storage state of
charge "YU 6and the charging and discharging powerf0 is basically expressed

by the following equations8p]

o "YO®& —0 &0 h O0Q@HQQE Q

YO & p _ 3 (3.47)
YO® - 0 &0 h @i "QQ¢ Q

0 0 0 (3.49

0 0 0 (3.49

YOO YO® YO 6 (3.50

In addition,the strategyf operating energy storage alaffectsthe energy storage such

as peak load shaving [89], smoothing power output from the WTG or PV panels and
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priority of the supply source. In this thesibe energy storage is used to decretise
shortag in thegenerat¢d power from the WTGs and PV thetve priority to supply load.

The proposed operating strategyais follows

1) If the available wind power or solar powatthe current timeaunit is greater than
system load, energy storage will store tlxeess energy as long as the energy storage
limits are not violated. Energy storage cannot always store the available excess energy
because of thehaging ratelimits and the current SOC of the storage.

2) If the available wind power or solar powatithe curent timeunit meets system load
exactly, energy storage will not be used.

3) If the available wind power or solar powagithe current timeinit is less than system

load, energy storage will hesedto powersystem load alongside the produced renewable
power as long as the energy storage limits are not violated. Energy storage cannot always
dischargdts stored energy due to the limits of discharging rate of the energy storage and
the current SO@ theenergystorage.

4) If the available wind power or solpower in the current time slot is less than system
load and energy storage cannot compensate the shortage in supply, at this thement
load curtailment will be used to balance supply and load.

5) If the availdle wind power or solar power #te current timeunit cannot be used to
power the system load or part of it due to interruptions, the excess energy is stored in the

energy storages long as the energy storage limits are not violated

In this research, the lower and upper bouodsheY0 @ are asumed to be 50% and
100% ofcapacity of the energy storage unit, respectiv@é}.[Fig. 3.6 showsa model of

agrid-connected’V, WTG and energy storage system [85].
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r DC/AC
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Fig.3.6Model of a gridconnected ¥, WTG and energy storage system.

The reliability model ofESS [72] is shown in Fig. 3.7. It has four states, charge,
discharge, standby and down std®atterywill be in dscharge statewhen demandis
larger tharproduction On the other handt is in charge statewvhendemands lessthan
supply EESis in standby state whet is fully charged odischargediIt will be in down

state when it is in failure state.

932
I v
| Standby | Discharge<_
(3) 33 (2)

O31 Sak o H
., Charge o | Down [ |
(1) (4)

t |

M

Fig.3.7 State model of energy storage unit

where_ is the transition rate between sta@esepresentshefailure rate. p is the repair

rate
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3.8. Reliability | ndices

There are many reliability indices that were proposed in the literature and used in the
reliability studies Expected Energy Not Supplied (EENS) indsxhe most widely used
reliability index in reliability analysis Calculationof load not supplied is required at
every timestepin order tocomputethe value of thisndex as explained by eqs3.%J)

and @.52.

0 { AGowtBO {5 BO | (3.5])

000{ "Y- (3.52

Expected energy notised (EENU), isanother important index thakepreserd the
renewable energy produced but not used @dependson the operating strategy of the
renewable source®(]. The EENU for a certain period of time cée computed by

using

0 FoaootBO 5 BO 5 6 YO® (3.53)

(3.54)

where0 | is the amount of the load shedding at time stép t. , is the amount of
the excess power at time"Yis the entire period of simulation time in hou& is the
time unit in hourd is the capacity of the available energy storage uits.® is the

state of charge in the energy storage at time t.
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Availability 0 of the component or the system is defined aspitubablity of the
component or t systento bein the operating statevhile the unavailability Y is the
probability ofthe component or the systemhmin the failure stateThese indices can be

calculated from (3.55) and (3.56),

5 — (3.55)

Y — (3.56)

System a&erage interruption duration index (SAIDI) provides the expected amount of
downtime that each customer walkperiencen average during a certain periodtwhe

and can be calculated using (3.57

"Yd 00" (3.57)

System average interruption frequency index (SAIFI) provides the expected number of
failures that each customer wiixperienceduring a certain period of time and can be

calculatedusing(3.58),

Yo '0'06 (3.58

The previous indices evaluate the reliability of the system. WWihdaverage down time

and failure frequencyxan be useds load indices. Average down tinpeovidesthe
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amount of time per failure on averagaile the hilure frequencyrovidesthe number of
failures that the load point experienced during 1 year. They can be caladatg(B.59
and (.60,

CE U ¢ 0 ROVO QN 6+-1Q (3.59

"0 QOQIT M 6 QE6 (3.60

Where™Y is the unavailability of the load point in houfs. is the total number of

failuresand¢ is the number of years.

3.9. Monte Carlo Simulation and Smart Restoration of Electric
Microgrid

3.9.1. Monte Carlo Simulation for Smart Restoration

Monte Carlo simulation is a computerized mathematical techniquep#rédrms risk and
decisionmaking in quantitative analysisMCS is characterized as a sampling method

because the inputs are generated and selected randomly from probability distribution to

simulate a samplingrocess from actual population.

MCS isableto translate the input uncertainties to uncertainties in the system otdputs
show the impact of the input uncertainties on the outcpreesvell as it allows us to
explorethe all possible oebmes by which we can determine the likelihood of each

outcome and estimate tpeobability MCS procedure can vary froameform to another
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based on the system unddudy However, MCS procedure for any system in general

should pass thrgyh the fivesters listed below,

1) Create a parametric model, "Qc ho 8 @
2) Generate a set of random inputs o 8 @
3) Evaluate the model and record the resultm as

4) Repeatsteps2and3fexr po &

5) Analyze the results using histograms, confidentervals, etc.

MCS is used to evaluate the reliability of power supply and load availability. It helps in
estimating the expected energy curtailment and loss of load expectation (LOLE). Also,
the frequency and the likelihood can be estimated for eastersystate over certain

period of time.

In this thesisMCS is usedto evaluate and analyze the reliability of MG and the impacts
of smart restoration on the reliabilityig. 3.8shows a flowchart that explains the process

of computing some of reliabiiitindices such as the availability, the duration and number
of failures, the down time and the failure frequency of each load point (LP) by M@S.

steps are explained as follows,

Step 1.Collectthe mean time to failure (MTTF) and the mean time to repair (MTOFR)
each component.
Step 2.Generate two random numbers uniformly distributed, (&) for each

component.
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Step 3.Convert y to time to failure (TTF) anduo time to repair (TTR) by using the

inverse transform method:

YO —a & (3.61)
YYY —& &0 (3.62

Step 4.Form an array (D) of size 1 x (TTF+TTR) feach component that consists of
ones and zeros.
Step 5.Repeat step 2 to 4 until the sizeD equals number of hours inyeas.
Step6.Per f or m t he @ndstaledhe cegukt mrraytTi o n
/ MTTFs, MTTRsS, / n: No. of components
N initialize D=[], TTF: Time to failure
T=1[1], i=0 TTR: Time to repair
¥
I [
|

Generate TTFi, TTRi.

1!

TTF=ones(1, TTFi)
TTR=zeros(1,TTRIi)

!

| Di=[Di, TTF, TTR] |

| T = D1&D2&D3é &Dn |

1!

Reliability indices

End

Fig.3.8 Flowchart of evaluating Reliability indices of a LP by MCS
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3.9.2. Smart Restoration of Electric Microgrid

Themainfunction of smart restoration te locat and restee the interrupted loads based
on their priorities.It hasthe capabilityof optimizing the sequenaef switch operations.
Implementing smart restoraticalows the distributed generation (DG) resources and
associated ESS units be operatedfficiently andstrategicallyHence, smart restoration

is able toimprove the reliability and allow a large deployment of the renewable energy

sources (RES).

In this thesis, themsart restoration systens implementedsuch that the standalone
microgrid system carbe in one ofthree states as shown in Fig. 3.®eTpower system

will be in the normal statevhen all equipmentworks within their limits. It will be in

failure state when there is a major outage@eneration ocustomer load. The restorative

state takes place when the system restores the isolated area from major failure by using
the backup resource, such as ESS. The restorative state hadebeged taeturnthe

system back to the normal stabeit could acadentallytakethe system again to failure

state. he general process of the smart restorafiowrislanded system is shown in Fig.

3.10.

Normal
state

Restorative
state

Failure
state

-
e o
e -
-----

----------

Fig.3.9 States of the MG
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Isolate the
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v

Find secondary
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Yes

Power the
interrupted sections

oo Failure state

Y
-t | Restorative state aults are
cleared

Fig.3.10 General flowchart ofrsart restoration

The system applies smart restoration to recover the MG from a failure state and uses the
stored or the excess energy from the neighbors. Smart restoration assumes load priority
separately in each one of the four sections of the MG, tghcapability of changing

these prioritiesThese priorities are as follow:

MG1: 1-2-5-4-3-6-7.

MG2: 89.

MG3: 1211-14-10-1513.

MG4: 1618-17-20-19-22-21.

If the demand of the microgrid greater than the supply or if there is a failure, the smart

restoration looks for DG to serve the load. Then, if the load is not served, smart
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restoration looks for DGs or ESS in the other MGs and reconfigures the whole MG to

transfer the power to theterrupted load. This process is explained in Fig. 3.11.

Update MG data <=
Failure in MG
Demand > Supply
In MG
. Pispatchabl®
Reconfigure MG
Yes
Buy energy
from other MGs
;b Serve the load =

Fig.3.11 Flowchart of smart restoration operation when demand is greater than supply

When the demand in the MG is less than the supply, the ESS will be charged. If it is not
possible, smart restoration reconfigures the MG and sells the energy to the other MGs as

explained in Fig. 3.12.

A 4

Update MG data |4

A

Supply > Demand
In MG

Charge batteries

Sell energy to
other MGs

Fig.3.12 Flowchart of smart restoration operation when dematesg&ghan supply
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Fig. 3.13 shows hourly load profile oflead point in MG. The top curve in Fig. 3.13
shows that outages occurred due to failures or shortage in power. After using smart
restoration, the load is served by using the batteries or transferring the power from other

MGs.

=
[N

— Before smart restoration ‘

AL L T

10 20 30 40 50 60 100
Time (hour)

Load (pu)
o o o o
N e (=2 © =
T T T T T

T T T T T T
[—After smart restoration

d U U i

0 L L L I L L
0 10 20 30 40 50 60 70 80 90 100
Time (hour)

Fig.3.13 hourly load profile of a loé point in MG

In this study, lhe wind and solar power units are installethatgreerplaces in the RBTS
system as shown in Fig 3.1LP and T in the figure mean load point and topology,
respectively. The selected places have been chosen batad re@asonthe place that is

the nearest to the biggest number of custontess.example, the intersection point of
transmission line 5 and 6 in MG 1 has been selected as the targeted place for the power
source.This point is approximately the most point n&aall load points in MG 1. If any

other point is selected, it will not be near to all points in MGle simulation considers

three cases in each MG. Case 1 uses the wind power only at the specified places. The
solar power is used in Case 2. Case 3 tileesvind and solar power at the same time and

assumeshat their capacities are equal.
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Fig.3.14 Single line diagram of RBTS system

The capacity of the wind power or the solar power in each section ranges-2omig/.

Smart restoration is used in the edlses and it works when a failure or power shortage
happens. It tries to restore the interrupted load points by looking for another route or
transferring the power from the neighboring MGs or using the stored energy. Each case is
simulated with and withouhe smart restoration. Both cases use the energy storage and
assume existence diie uncertaintyin the renewable power supply. In each case, the
systemruns the simulatiorand computes the reliability indice$he RBTS bus 2 is

divided into four MGs, each one has its own load priority list as shown in Fig 3.15.
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Fig.3.15 Power flowdiagramin the RBTS system

After usingthe smart restoration, the RBTS bus 2 can be viewedlray topology with
multiple power sarces. The MGs are connected to each other through switches. The
switch has two states: normal and down states. When the power in the MG is not enough,
the smart restoration looks for energy storage or another path to restore the load point by
using the egess generated power in the neighbors. If there is a failure that separates the
load point from the grid and there is no possible path for the power to pass through, the
load point will experience a permanent failure unless there is storage near theittad p

as illustrated in Fig 3.10The imported power from the neighbors can pass through the

bus 2 or through the switches the ring path, as shown irgF3.15
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3.9.3. Resources Scheduling in Microgrid

Scheduling of the resources is very important. It optimizes the usage of the resources and
makes the MG withstands the interruption in better way. The scheduling is utilized by the
smart restoration by considering how much energy will be in the next tmtetau
optimize the operation of MG. For example, if the generated energy from the wind in the
next two hours is expected to be 2 and 0.5 MW in MG 1 and the total load is expected to
be 6 and 6.5 MW. If the current SOC in the ESS is 14 MWh and th&"$3C0 Mwh.

If there is a dispatchable generator of capacity of 8 MW and ramping rate of 4 MW has
not been started yet. Moreover, the supply in the other MGs is expected to be less than
the demand in the next two hours. In this scenario, smart restoraidivéahoices to

cover the shortage in the coming two hours. First choice is discharging the ESS at rate 4
MW. It cannot be used because it is unable to cover the shortage in the second hour due
ramping rate of the generator. The second one is starspgtdhable generator at rate 4
MW. It is expensive because it operates the generator at 4 MW in the first hour and 2
MW in the second hour and does not use the ESS in the first hour. The third choice is
discharging ESS at rate 3 MWh and operating the gément rate 1 MW. It is also
expensive because it operates the generator at 1 MW in the first hour and at 5 MW in the
second hour. The fourth choice is discharging ESS at rate 2 MW and operating the
generator at 2 MW too. In this choice, the generatoratps at 2 MW in the first hour

and at 4 MW in the second hour which is expensive too. The last choice is discharging
ESS at 1 MW and operating the generator at 3 MW. This choice is the cheapest choice
where the generator operates at rate of 3 MW in tloehiwurs and uses all the energy in

the ESS that can be drained.
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Another example, if the next hour is the hour 201 in the Fig. 3.16 that shows the total
demand and supply in each MG in Fig. 3.15. The forecasted demands in MG 1 and MG2
are 5 and 2 MW thatxeeed the forecasted supply which are 4 and 1.2 MW respectively,
while the supply exceeds demand in MG 3 and MG 4. Also the SOC reached tH8.SOC
In this case, smart restoration reconfigures the whole MG to cover the shortage in MG 1
and MG 2. It will tansfer the power from MG 3 and MG 4 through the common bus and

cover the shortage in MG 1 and MG 2 if this forecasted action happened.
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Fig.3.16 The total demandral supply in MG1, MG2, MG3 and MG4 respectively
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Chapter 4

SIMULATION AND RESULTS

4.1. Introduction

The MG gets its power from two main rewable resourceshe wind andsolar The
capacity of the wind farm or the solar power in each section is 25 MW. The average load
of the whole system is 12.3 MW and the peak load is 20 Mé y@arload datahave
beenselected for usagend the simulation runs have been performed over 265 yea
period. The energy rating of ESS is 20 MWh and the power rating is 4 MW. The initial
stored energy in the energy storage is assumed to be 100% of the energy capacity of the
storage.The reliability data of energy storage are shown in Table 4.1, whidée a2

summarizes the reliability data of the wind turbines [76] and PV system [91].

Table 4.1 Data of Energy StorageyStem

Parameters of ESS Values
Energy rating (MWh) 20
Power rating (MW) 10
Min SOC 50%
Max SOC 100%
Failure rate (f/year) 0.1
Repair ratgr/year) 0.3
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Table 4.2Data of WT, PV $stem

Parameters Wind Turbine PV system
Number 5 1
Capacity 10 MW 50 MW
Cut in speed 4 m/s -
Rated speed 15 m/s -

Cut out speed 26 m/s -
Mean failure rate 1.8 flyear 0.6 flyear
Repair rate 0.2 rlyear 0.2rlyear

The simulation has been performed under four different cases as illustrated in Table 4.3.
In each case, the systesimulates the RBTS data with teeurcepower hour by hour

and computes the reliability indices.

Table 4.3 Simulation Cases

Case Energystorage Uncertainty
Case 1 Excluded Excluded
Case 2 Excluded Included
Case 3 Included Excluded
Case 4 Included Included

The reliability data of the IEEIRRBTS system has been used in all the cases. These data

are summarized in Table 4.4 and Table 4.5.
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Table 4.4 Reliability Dataof Transformers

Replacing Rate

Component Failure Rat€fly) Repair Ratdr/y) (t1y)

Tr. 11/0.415 kv 0.015 43.8 876

Table 4.5 Reliability Data ofthe Distribution linesin the RBTS System

Line number Failure ratgfly) Repair ratgr/y)
2,6,10, 14, 17, 21, 25,

28, 30, 34 0.039 1752
1,4,7,9, 12, 16, 19,

22,24, 27,29, 32, 35 0.04875 1752
3,5,8,11, 13, 15, 18, 0.052 1752

20, 23, 26, 31, 33, 36

4.2 Simulation of Solar and Wind Power

4.2.1. Simulation of Solar Power

Fig. 4.1 shows the first 100 houo$ the forecastedime seriedy the use ofthe three
exponential smoothingnodek for a prediction horizon of one hour.Table 4.6
summarizes the results of the statistical coefficients for the three exponential foodels
prediction horizon of 1 hour. It can be seen that the coefficients confirm that triple

exponential smoothing is the best model.
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Fig.4.1 1°100 hrs. From the @inal and the Forecasted Timer&s bythe Three Exponential Smoothingoklieks,
(Forecashorizon of 1 hrs.).

Table 4.6 Comparison of the Three Exponential Smoothinadils

Coefficient Single smoothing Double smoothing Triple smoothing
i 0.9278 0.9815 0.9939
RMSE 0.1270 0.0687 0.0482
MAE 0.0863 0.0439 0.0300
MAPE 0.3155 0.1603 0.1095

Fig. 4.2 shows the entireriginal time series and the forecastede seriedy the use of
triple exponential smoothinghodel for a horizon of one houfhe forecast of solar

power is used to give a perspective about the solar power values.
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Fig.4.2 The originaland the forecasted time series by triple exponential smoothing model.

Forecast horizon of 1 hr.

The assessment results of aforementioned statistical coefficients for the triple exponential
smoothing are summarized in Table 4[Tis tablehasbeenachievedfrom forecasting
resultsfor predicton horizonsof 1, 2 and3 hours.lIt is noted from Table 4.7, when the
horizon of prediction increases, all indexeget worse This shows that longterm
forecastingof solar power cannot be accomplished byttifde exponential smoothing

because of the error introduced with longer time steps

Table 4.7 Model Assessment Triple Exponentiah8othing

FOHrs::ic’;ztri]ng 1 hr. 2 hr. 3 hr.

i 0.9939 0.9397 0.7947
RMSE 0.0482 0.1558 0.2916
MAE 0.0300 0.1033 0.1973
MAPE 0.1095 0.3777 0.7214
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The forecasting horizon df hour 2 hours an@® hours for 100 hourperiod are shown in

Fig. 4.3 As shown in Fig. 4.3, these cusveertify the noted remark in table 4.the
accuracy decreases a< tforecasting horizon increaseBhe reason in that theolar

power data has nonlinear and thverying nature due to the meteorological conditions
and night time, which increases the complexity in predicting its values in theédong
predictions. The solution for this problem is ksing the historical data and physical data
such as the humidity, temperature distributions, the percentage of cloud in the sky across

the year é
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Fig.4.3 1°'100 hrs. from the original and the forecasted time series by triple exponential smoothing model,

(Forecast horizon of,2 and &rs.).

4.2.2. Simulation of Wind Power

In this thesis, ARMA method is selected to model the wind speed data. When ARMA is
used, irst stepis to decide whichARMA model that besffits the timeseries behavior.
Thereforethe autocorrelatiomnd partial autocorrelation functions are used plotted

in Fig. 4.6. The wind speed data in this thesis is a 6 years historical wind speed from

[70].



The autocorrelatiocoefficientin Fig. 4.4 decreases slowly whre timelag inaeases.

It indicates that anautoregressivemodel may fit the time series. The partial
autocorrelatiorgraphconfirms that the autoregressive model will best fit the time series.
Because thepartial autocorrel@gon stars decayfrom the second lagit estdlishesan

autoregressivenodelof order 2, ARMA(2,0).

Fig.4.4 Original time series, and the autocorrelation functions

Fig. 4.5shows the autocorrelation and partial autocorrelation coefficients of the first
derivative timeseries. The autocorrelation graph confirtigat the autoregressive
integrated moving average ARIMA (0,1,1) model is possibiecethe autocorrelation

function begins decayingdm the first time lag.
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