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╔▀◄  : Energy for discharge at hour t 

ENS : Energy not supplied 

EENS : Expected energy not supplied 

EENU : Expected energy not used 

ES : Energy storage 

ESS : Energy storage system 

EV : Electrical vehicle  
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╕◄  : Previous forecasted of current period 

╕◄   : Forecasted value of future period 

ⱦ  : Failure rate (f/y) 

LP : Load point 

MCS : Monte Carlo simulation 

MG : Microgrid 

MTTF  : Mean time between failurs 

MTTR  : Mean time between repairs 

N : Sample size  

Ⱨ  : Repair rate 

P : Number of AR terms 

╟►  : Rated power of wind turbine generator (WTG) 

╟◄  : Actual value of PV output 

╟╦╢◄  : Output power of WTG 

PV : Photovoltaic  

Q : Number of MA terms 

╡╬  : Charging rate 

╡▀  : Discharging rate 
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RBTS : Roy Billinton test system 

RE : Renewable energy 

RES : Renewable energy source 

SAIDI  : System average interruption duration index 

SAIFI  : System average interruption frequency index 

Ɑ   : Wind speed error variance 

╢╞╒◄  : Battery state of charge at hour t 

╢╞╒□╪●  : Max Battery state of charge 

╢╞╒□░▪  : Min Battery state of charge 

SP : Solar power 

UPS : Uninterruptable power supply 

╥╬░  : Cut in speed 

╥╬▫  : Cut out speed 

╥►  : Rated speed 

WP : Wind power 

WS : Wind speed 

╦╢◄  : Wind speed at hour t 

WT : Wind turbine 
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WTG : Wind turbine generator 

╧◄  : Time series data 
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The development and utilization of renewable energy sources (RES), especially wind and 

solar, has been given important consideration due to the increased consumption of 

conventional energy resources and enhanced public awareness of the potential impact of 

conventional energy systems on the environment. However, RES have a random and 

intermittent nature that affects their reliability in electrical networks.  

In the 21st century, the concept of smart grid, which began and formed gradually, has 

become a promising choice to face future challenges. Self-healing is an important feature 

of the smart grid. The main task of self-healing control is real-time monitoring of 

network operation, predicting the state of the power grid, timely detection, rapid 

diagnosis, and elimination of hidden faults, without human intervention. 

The main aim of the thesis is to study the reliability of islanded microgrids under the 

utilization of smart restoration and ESS to assess the acquired improvements in power 

grid reliability. Therefore, this thesis implements smart restoration and energy storage 

units to increase the reliability of a stand-alone microgrid (MG) system. The wind and 

solar energy resources are considered to be the main energy resources in MG. Two 
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models are implemented to reduce the effects of uncertainty in the wind- and solar-

generated power, the ARMA model for wind speed and the triple exponential smoothing 

model for solar energy prediction. The study was carried out on Roy Billinton test system 

(RBTS).  
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ϣЮϝЂϼЮϜ Ј϶Яв 

ЬвϝЪЮϜ аЂъϜ:  ϣЯвК ϸвϲв атЯϲЮϜϸϠК ϼвж 

ϣЮϝЂϼЮϜ дϜмжК :  ϼϝϪϐ  ̭ϝϠϼлЪЮϜ ϣЪϠІ ϣтЦмϪмв пЯК ϣтЪϺЮϜ ϣтϺПϦЮϜ ϢϸϝЛϦЂϖм ϣтϚϝϠϼлЪЮϜ ϣЦϝАЮϜ дтϾ϶ϦϢϼтПЊЮϜ 

ЈЊ϶ϦЮϜ : ϣтϚϝϠϼлЪЮϜ ϣЂϸжлЮϜ 

ϣтвЯЛЮϜ ϣϮϼϸЮϜ ϵтϼϝϦ :  ϞϮϼ1437 

 

 ϼмАϦЮϜ ϢϸϸϮϦвЮϜ ϣЦϝАЮϜ ϼϸϝЊв дв ϢϸϝУϦЂъϜм-  ЀвІЮϜм ϰϝтϼЮϜ ϝЊмЊ϶-  ϝвϝк ϜϼϝϠϦКϜ пАЛт ϝϲЎϜм Ϝϼвϒ ϤϝϠ

 ϸϼϜмвЮϜ иϺлЮ ϣϚтЂЮϜ ϼϝϪфϜ Ьмϲ аϝЛЮϜ сКмЮϜ ϢϸϝтϾ м рϼмУϲъϜ ϸмЦмЮϜ ϸϼϜмвЮ ϸтϜϾϦвЮϜ ШылϦЂъϝϠ ФЯЛϦт ϝв ϞϠЂϠ

 ϤϝтϠЯЂ ϝлЮ ϝЎтϒ ϢϸϸϮϦвЮϜ ϣЦϝАЮϜ ϼϸϝЊв дЪЮм .ϣϚтϠЮϜ пЯК ϝϠЯЂ ϼϪϔϦ сϦЮϜ ϣтϚϜмІКм ϣЛАЧϦв ϣЛтϠА ШЯϦвϦ ϝлжϒ сТ

.̭ϝϠϼлЪЮϜ ϤϝЪϠІ ϣтЦмϪмв сТ 

 дϼЧЮϜ сТ21  .ϣтЯϠЧϦЂвЮϜ ϤϝтϸϲϦЮϜ ϣлϮмв сТ ϝЪϼϦІв Ϝϼϝт϶ ϱϠЊтЮ ϝтϮтϼϸϦ ЬЪІϦ м ϣтЪϺЮϜ ϤϝЪϠІЮϜ амлУв ϼлД

ЮϜ ϜϺк Ϥϝвлв акϒ .ϤϝЪϠІЮϜ иϺк ϤϝжмЪв акϒ дв ϼϠϦЛт мк сЪϺЮϜ ЬтПІϦЮϜ ϢϸϝКϜ аϝДж ϢϼвϦЂвЮϜ ϣϠЦϜϼвЮϜ мк аϝДж

.рϼІϠЮϜ ϼЊжЛЮϜ Ь϶ϸϦ дмϸ ϝлϦЮϜϾϖм ЬϝАКчЮ ЙтϼЂЮϜ Јт϶ІϦЮϜ ̪ϣЪϠІЮϜ ϣЮϝϲϠ ϓ̵ϠжϦЮϜ ̪ϣЪϠІЮϜ ЬвЛЮ 

ЪϠІЮϜ ϣ̵тЦмϪмвЮ сϪϲϠЮϜ ̭ϝЊЧϦЂъϜ мк сЂтϚϼЮϜ ϣЮϝЂϼЮϜ иϺк РϸкϤϝ ϢϼтПЊЮϜ ϣЮмϾЛвЮϜ  аϝДж ϸмϮм ЬД сТ

ϣтϚϝϠϼлЪЮϜ ϣЦϝАЮϜ дтϾ϶Ϧ ϤϜϸϲм м сЪϺЮϜ ϢϸϝЛϦЂъϜ   ϜϺк аϜϸ϶ϦЂϜ дв ϣ̵тЦмϪмвЮϜ пЯК ϣЯ̵ЊϲвЮϜ ЙТϝжвЮϜ оϸв ϣТϼЛвЮ

.аϝДжЮϜ  дК ϣЮмϾЛвЮϜ ϢϼтПЊЮϜ ϤϝЪϠІЮϜ ϣтЦмϪмв ϢϸϝтϾЮ ϣЦϝАЮϜ дтϾ϶Ϧ ϤϜϸϲмм аϝДжЮϜ ϜϺк ЬвЛϦЂϦ ϣЮϝЂϼЮϜ иϺк ШЮϺЮ

ЬЛϦЂϦ сϦЮϜ ϣтЂтϚϼЮϜ ϣЪϠІЮϜ сЂϝЂϒ ϼϸЊвЪ ЀвІЮϜм ϰϝтϼЮϜ . м ϰϝтϼЮϜ ϣКϼЂϠ ϔϠжϦЯЮ дтϮϺмвж ϣЮϝЂϼЮϜ иϺк ϤϪϲϠ

дв ЬтЯЧϦЯЮ ШЮϺм ϣтЂвІЮϜ ϣЦϝАЮϜ ϼϪϒ  ϝвк дтϮϺмвжЮϜ дтϺк .ϼϸϝЊвЮϜ иϺк дв ϢϸЮмвЮϜ ϣтϚϝϠϼлЪЮϜ ϢϼϸЧЮϜ сТ ϣтжтЧтыЮϜ

тϸЧϦЮ сЂъϜ дтЂϲϦЮϜ ϬϺмвж м ϰϝтϼЮϜ ϣКϼЂ ϼтϸЧϦ сТ аϸ϶ϦЂϜ рϺЮϜ ϝвϼϐ ϬϺмвж дв ϢϸЮмвЮϜ ϣтϚϝϠϼлЪЮϜ ϢϼϸЧЮϜ ϼ

 рмϼ ϬϺмвжϠ ϣЯϪвв ϢϼтПЊ ϣЪϠІ пЯК ϣЂϜϼϸЮϜ иϺк ϤтϼϮϜ ϸЧТ ̪ϣЮϝЂϼЮϜ иϺк РϜϸкϒ ФтЧϲϦЮм .ϣтЂвІЮϜ ϣЦϝАЮϜ

ЙтϾмϦЮϜ ϤϝЪϠІ ϣтЦмϪмв ЬтЯϲϦ м ϣЂϜϼϸ ЌϜϼОц сЛтϾмϦЮϜ дмϦжЯϠ ϣЮмϾЛвЮϜ. 
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Chapter 1  

INTRODUCTION  

 

1.1. Overview  

Sun and wind are considered as green sources because of their negligible contribution in 

greenhouse gas emissions. These sources have been considered as an alternative energy 

to fossil fuels since the 1970s [1]. However, renewable energy remained inactive until the 

2000s because of its high energy production costs during that period [2]. During 2000s, 

the use of renewable energy increased due to the advancement in their technologies. For 

example, the generated solar photovoltaic (PV) energy reached 102 GW in 2012 while 

wind energy reached 282 GW [3]. 

During 2000s, the technological advancements in renewable energy generation has 

allowed the use of the telecommunication technology in the power systems, which is 

known the smart grid. Its main function is to continuously monitor, detect, and diagnose 

any change in the network. It is able to change the network topology and deal with the 

bidirectional power flow. One of the most important features of the smart grid is the 

smart restoration as the system. The smart restoration is an integrated system of 

telecommunication equipment and computer devices to locate and restore the interrupted 

loads based on their priorities.  One of the most important characteristics in the smart 

restoration is its ability in optimizing the switch operations sequence. Thus, it optimizes 

the gridôs operation and reliability. Moreover, it can operate the distributed generation 
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(DG) resources and associated ESS units efficiently and strategically taking into account 

the different technical and environmental issues. 

An important feature in the smart grid is its ability in employing the demand side 

management (DSM). It can control the demand and allow the demand response schemes 

easily through the smart meters and sensors. The smart grid can improve the reliability 

and allow a large deployment of the renewable energy sources (RES). However, using of 

smart restoration only cannot completely solve the random intermittency of the 

renewable energy. Controlling demand option could be suggested as solution for the 

aforementioned problem. Nonetheless, with existence of fluctuating and intermittent 

energy sources, flexible demand has shown little ability [4].  

The remaining option in which these þuctuations can be suppressed efficiently is by 

using an ESS, as several studies proved this claim [5]-[7]. The recent developments in 

energy storage and power electronics have increased the energy storage applications in 

the modern power systems. These advancements made the ESS as the best solution for 

intermittency of renewable energy. Therefore, smart restoration and energy storage 

facilitate the integration of renewable resources, improve system reliability and enhance 

the efficiency of transmission and distribution networks. 
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1.2. Thesis Motivations 

The increased focus on renewable energy motivates studies concerning the renewable 

energy integration into existing energy supply systems. Wind energy and solar energy are 

expected to play a key role in the future energy supply. Using of these sources is very 

important to reduce the impact of the emissions of greenhouse gases (CO2, NOx, SOx). 

Nevertheless, the electricity generation from wind and sun is always fluctuating due to 

their intermittent nature that depends on the environmental status. Moreover, forecasting 

solar and wind power involves uncertainties. In islanded systems, MG reliability and 

power availability became a main concern. 

The use of secondary dispatchable generators is a good option that can be used to reduce 

power intermittency impacts. A second option is storing the generated energy at times of 

low-demand so as to be released at times of high-demand. Although energy storage can 

solve the power intermittency or uncertainty effects, but it cannot well overcome the 

power lines or units outages at large scale.  

The best option that can be used to enhance the reliability of microgrid system in islanded 

case is the use of smart restoration. The smart restoration can overcome the interruptions 

and outages through finding another route and coordinating the supply with demand. It 

can diminish the interrupted area and optimize the usage of the energy resources. 

However, matching the energy generation from renewable resources with the load to 

satisfy the balance condition is problematic. Implementing the smart restoration to 

improve the reliability of stand-alone microgrids is a challenging issue and the thesis 

attempts to investigate this issue using Monte Carlo simulation (MCS).  
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1.3. Thesis Objectives 

The main objective of this thesis is studying and implementing the smart restoration 

theoretically to improve the stand-alone microgrid reliability. The objectives of this thesis 

are summarized as follow:  

1) Modeling and simulation of the short-term wind speed and solar power. 

2) Evaluating the reliability of stand-alone microgrid system when the renewable 

energy and energy storage are the main energy supply system in microgrid, and including 

the uncertainty in the renewable energy. 

3) Investigating the capability of the smart restoration in improving the reliability of 

stand-alone microgrid system. 

 

 

1.4.  Thesis Outline 

This thesis is organized as follows: 

Chapter 2 provides background about microgrids concept, reliability of the microgrids as 

well as self healing of the microgrids. In addition, it includes background about 

renewable energy sources and energy storage.  This chapter also includes an overall 

literature review on current approaches for self-healing of microgrids and their reliability. 

It also includes literature review on renewable energy-based DG integration and energy 

storage usage in distribution networks. Chapter 3 describes the system modeling of the 

wind speed, solar power, load modeling, energy storage and their reliability models. It 
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introduces background on Monte Carlo simulation (MCS) and the smart restoration 

impact on the reliability of the microgrid.  

Chapter 4 presents case studies on the positive impacts of using of the smart restoration 

and the energy storage on the reliability of the microgrid. It also includes case studies on 

the effects of the power capacity and the uncertainties in the generated power from the 

wind and sun.  Finally, Chapter 5 concludes the research in this thesis.  The directions for 

further research are also presented in this chapter. 
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Chapter 2  

LITERATURE REVIEW  

 

2.1  Microgrid  

Microgrid is a low voltage distribution network that delivers the power to small 

communities [9]. The power can flow locally and the consumer can participate in the 

electricity enterprise. It combines different renewable energy resources with conventional 

substations such as diesel stations. As it acts either as a net load to main grid or a power 

supply (islanded operation). It contributes to reduce the carbon emission locally due to 

using the renewable energy, enable of using several energy resources and reducing cost 

[10]. In microgrid, a simultaneous group of generating units are operated together for the 

benefit of its members. The supply sources may include engine generator sets, micro 

turbines, fuel cells, photovoltaic, and other small-scale renewable generators [11]. 

 

These microgrids solve the problems associated with penetration of renewable energy-

based distributed generators (DG) and make the bulk grid suitable for large scale 

deployment of DGs. They make the controlling of the DGs in more flexible way and 

reduce the centralized management of the system [12]. 
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2.2 Reliability of Micro grid and Self-healing of the Power System 

Reliability of microgrid studies the unavailability, number of incidents, no. of hours of 

interruption, no. of voltage violations that exceed the limits and no. of frequency 

excursions beyond the limits. In addition, reliability study of MG started to take into 

account the energy storage units that play a key role in minimizing the effects of 

renewable energy-based DGs and introduce a safe and stable operation of the MG. 

However, reliability of MG is more complicated because of using renewable-based DGs 

whose output power fluctuates, this leads to instability in the operation of the microgrid 

which in turn affects the reliability of the MG [13].  

In addition, the reliability of the renewable energy resource is measured of how long the 

source generates a stable amount of energy. These resources generate electricity in an 

intermittent and unstable way and it canôt rely on. Therefore, they are used in energy mix 

to introduce a flexible back up generation [14]. On the other hand, dispatchable energy 

resource is considered reliable if it can generate the required electrical energy to meet the 

demand.  

Accordingly, reliability analysis of MG should take into account the natural 

characteristics of these resources. i.e., wind is characterized as an intermittent and 

unstable source because wind speed has time-varying nature and not constant, which may 

not supply the peak demand when needed. However, reliability of wind power system 

can be increased by using the power electronics and programmable controller to allow a 

flexible controlling of the wind turbine [15]. Solar energy also is considered as an 

intermittent source because it depends on the geographical area and it does not shine at 

night. On the other hand, like wind power system, availability of solar power can be 
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increased by the usage of energy storage system (ESS). While Hydro-electrical power is 

considered reliable because it can generates the electricity as long as there is a plenty of 

water flows into turbines. Since we can control the amount of water to flow through the 

turbine, we can control the amount of electrical power to be supplied and thus the 

reliability is high [14]. 

The reliability evaluation methods in MG are basically two, frequency and duration 

method and Monte Carlo simulation (MCS) method that can be used to determine the 

MGôs contribution to reliability of bulk grid and the MG itself [16]. In [17], an 

assessment of the benefits of MG on reliability of power system has been proposed using 

MCS and applied to the IEEE-RBTS system. It has shown that MGs significantly 

enhance the reliability of the bulk grid. 

Ref. [9] proposed evaluation method of Availability of MG using MCS during natural 

disasters. It addressed the effects of life lines performance and local energy storage on the 

MG availability during natural disasters. The study disclosed that MG achieves much 

more availability than the bulk grid in these circumstances. Another study showed that 

MG improved reliability and decreased SAIFI and SAIDI by incorporating DER with 

variable capacity [19]. 

 

Self-healing is the self-restoring of the power grid to its normal operation using advanced 

monitoring methods that continuously diagnose and assess the operational status of the 

grid and remove any fault without affecting the supplied load [20]. The problem of self-

healing consists of finding the sequence of switch operations that optimize the restoration 
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state [21]. Its main functions are to evaluate the power grid behavior in a real time 

manner and help the grid to response quickly to any disturbance. And lastly, it isolates 

the disturbance and restores the grid to its normal state quickly [22]. 

Self-healing in the microgrid is more complicated than in the conventional networks due 

to the distribution network generators, distributed storage devices and electrical vehicles 

[21]. The difficulty of implementing the self-healing in the distribution network is also 

due to the new initial conditions that vary at each outage due to the mobile loads and 

existence of the renewable energy sources [21]. However, this can be improved by using 

the smart meters and sensors that increase the observability of the system and provide 

real time data about the status of the distributer line [23]. 

Self-healing nowadays is an important topic and many researches have been achieved and 

numerous works are now being done in this area. i.e., self-healing control structure has 

been accomplished in the smart distribution grid that consists of three layers [24]: Base 

layer which is the power grid and it should be able to accept the clean energy and deal 

with bidirectional power flow. Secondly, Support layer which is the data and 

communication equipment. Lastly, application layer which consists of monitoring, 

decision-making, assessment, Control and recovery to achieve self-healing of power grid. 

While self-healing structure depends on the intelligent agents has been proposed in [25]. 

This structure uses the intelligent agents and smart meters in order to estimate and control 

the load and restore the electricity grid. The passive and active networks, where 

automatic switches can be controlled via an agent, have been studied by this method. But 

it assumed that the operation process should be based on synchronized measurements. 

Another intelligent agents-based self-healing method that uses distributed energy storage 
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has been proposed in [26]. This method uses the series and shunt agents to control the 

restoration process.  

Self-healing methods in the distribution network are divided into local control, 

centralized and distributed self-healing [27]. Local control method uses relay devices to 

recover from fault and thus no need of communication. But it can only handle transient 

fault not to fix permanent fault. Centralized control relies on the main station to maintain 

the topology model. However, when the distribution network is complex, centralized self-

healing takes longer time. On the other hand, distributed self-healing relies on smart pole 

switch to locate fault, isolate and restore power supply. Which makes its response faster. 

Accordingly, ref. [27] proposed the pole switches method to enhance the self-healing 

problems associated with local control self-healing strategy. 

Other works reconfigured smart restoration based on tree-structured grid technique as in 

[28]. It showed that dividing bulk grid into islands improves power supply reliability and 

reduces size of the area of power outage. However, implementing this approach is 

difficult due to the problem of adjusting to a full agreement either in frequency, voltage 

or phase angle between two or more separate systems before integration [29]. 

Accordingly, the latter proposed a practical method and disclosed solid conclusions, can 

be dependent on, which mitigate the aforementioned problem. It showed that a reliable 

integration between MG and the bulk grid requires the voltage difference between them 

smaller enough while the frequency of the external grid should be slightly greater than 

the frequency of MG and the phase angle of the external grid should lead MG phase 

angle. Some works tried to improve reliability of MG by incorporating demand response 

(DR) scheme in self-healing [30]. It converted the reliability problem into an 
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optimization problem that minimizes the total operation cost of energy not supplied 

(ENS) due to DR scheme. It used the load curtailment program to diminish the 

interrupted loads in MG. However, selecting a candidate load for restoring has major 

impact on final outage cost. It didnôt consider the other option which is the increasing of 

generation in each MG by using new DGs.  

Many studies researched self-healing in microgrid using the distributed self-healing i.e. 

ref. [31] studied service restoration (SR) in microgrid and introduced two sub-optimal 

solutions close to the optimal solution under the unscheduled disconnection from the 

main grid scenario. These solutions have been obtained based upon stochastic 

information. It argued that ESS plays a critical role in decreasing the negative impacts of 

the uncertainties of the forecasted renewable power generation. Other study in ref. [32] 

outlined the achievements towards realizing a smart microgrid at British Columbia 

Institute of Technology (BCIT) at Canada. It researched the design of the smart microgrid 

including protection and control scheme of the microgrid during the presence and 

absence of the utility connection. Ref. [33] has proposed a stable multiagents system 

(MAS)-based load restoration algorithm for microgrid. The study stated that the 

advantage of this method is that can be applied to power system of any size and 

configuration in addition to its guaranteed stability. 
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2.3 Renewable Energy and Energy Storage Applications 

Renewable Energy (RE) is one of the best solutions to the depletion of energy resources 

and the environmental issues such as the global warming, CO2 emission and others [34]. 

These nonconventional sources can be used in reducing the total electricity production 

cost. As it can be utilized in Micro-grids (MG) to suppress the expansion of the 

transmission grid to remote isolated areas. In addition, RE contributes in reducing the 

maintenance and transmission costs of the fuel of diesel generators that are commonly 

used in these places [35]. Recently, the world has witnessed increasing growth in RE 

sources (RES) especially in wind power, many countries are getting a considerable 

percentage of their electricity generation from RES. [34].  But due to most of RES are 

intermittent in its nature which increases power fluctuation and discontinuity in power 

supply limits its use and penetration in distribution networks. 

 

On the other hand, the integration of an energy storage system (ESS) is one of the best 

solutions to ensure the power quality and stability of a power system with easing the 

penetration of RES such as wind energy. These energy storage (ES) devices introduce 

many services to the grid such as smoothing the power output from WTG, PV, etc. [36]-

[39]. It contributes to system adequacy and improves power system reliability such as 

avoiding interruption of sensitive load and supply the load in uninterruptable power 

supply (UPS) fashion [40]. ES can be classified based on four parameters [34]; storage 

capacity, charging/discharging limit (max/min capacity of ES), charging/discharging 

efficiency and rated power of the energy storage unit. There are also other factors 

characterize ES, the operating strategies such as shaving of peak load, providing energy 

reserve, smoothing the output power from WTG [41] and priority of the RES [34]. 
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2.3.1. Solar Power Modeling 

One of the main challenges in the electrical grid is the integration of the solar power to 

the existing power supply systems. The main problem of integrating solar power into the 

existing electricity grid, lies in its discontinuous generation, because PV power drops 

when the solar irradiance decreases [42]. The fluctuations in PV power delivery to the 

grid cause problems for grid operators who must keep the balance between the generated 

power and the gridôs load. Any implementation of the solar energy conversion process 

should take this behavior into account in its operating strategies. Hence, the short-term 

forecasting of the solar power is essential in optimizing the power system operations and 

increasing the participation of the solar power in the electricity grid. And the rising 

number of solar energy applications also increases the importance of the solar power 

forecast [43]. 

Several areas are affected by the short-term solar power forecasting such as: control, unit 

commitment, security assessment, optimum planning of power generation, energy 

exchange, grid integration. On the other hand, the solar power forecasting is affected by 

several factors such as: meteorological, climate, light intensity, dust particle. The 

conventional techniques that are typically used for the solar power forecasts are multiple 

linear regressions, stochastic time series, general exponential smoothing, state space, 

Kalman filter, as well as the artificial neural network techniques [44].  

Many short-term forecasting models for solar power were proposed in the literature. Most 

of the accomplished works in the short-term forecasting models for PV systems were 

presented for solar radiation forecasting [43],[45], while few works were designated for 
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models were oriented directly to solar power predictions in PV systems [46],[47]. A 

Support vector machines (SVM) has been proposed in [47] to predict the hourly PV 

power generation for a horizon of 24 hrs. Another proposed SVM model in [48] has 

shown that SVM has better ability in the dealing with the time-varying and nonlinear 

nature of the solar data over the autoregressive (AR) model and the radial basis function 

neural network (RBFNN) model. In these work, several forecasted weather variables 

(such as cloudiness, temperature, etc.), were used as inputs to the model. Genetic 

programming of fuzzy rules has been described in [49] to forecast the output of a PV 

plant. The previous proposed models only provide the electric power point forecasts. 

While a proposed model in ref. [46] provides uncertainty values of the point forecasts. 

This model allows the evaluation of the risk associated with forecasting errors. 

Uncertainty values are important in electricity markets because forecasting errors may 

lead to economic penalties. 

A novel hybrid model for PV power forecasting has been proposed in [50]. It combines 

ARIMA, SVM, artificial neural network (ANN), and adaptive neurofuzzy inference 

systems (ANFISs) methods with GA algorithm. It showed that the hybrid prediction 

model provides the most accurate predictions. 

 

2.3.2. Wind Power Modeling 

Wind energy is one of the most promising green energy sources. However, wind has 

complex and stochastic nature, and the generated power from wind turbine is a function 

of direct wind speed fluctuations. Therefore, accurate wind power forecasts are necessary 
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for the economics of wind energy utilization and power system reliability. Wind power 

forecasts may be performed at various time scales, depending on the application. The 

prediction horizon may range from few minutes up to a few days or even few months. It 

can be divided into two parts: short-term or long-term forecasting. Short-term forecasting 

is used to predicting wind speeds or wind power few minutes, hours or days. Long-term 

forecasting includes predictions for several days, weeks or months [51]. Wind power 

forecasting improvements may be achieved by using more data and providing uncertainty 

estimates alongside the predicted values [52].  

Current approaches of wind speed forecasting generally fall into two main categories. 

One is the physical model approach and the other is the time series model approach. The 

first approach, not only considers historical data but also the meteorological conditions 

and wind turbines information (power curve, hub height, etc.). Physical models are 

usually better for long-term forecasting (6 hours ahead or more) and it does not fit short-

term prediction because of the difficulty of data acquisition and the complexity in 

computation [53]. Physical  modeling  requires  wide and deep knowledge  about  

atmospherics  and  is  difficult  to  set  up  and maintain [54]. 

On the other hand, the time series model approach only uses historical data to establish 

the prediction. This approach fits only short-term forecasting (<2 hours ahead) because of 

the existence of a correlation between consecutive wind speeds where studies of wind 

speed behavior confirmed this phenomenon [61]. Modeling of the historical wind speed 

data is done based on statistical theories. The future value is predicted by using the 

existing time series model and the recent past values. The simplest method of this kind in 

which the predicted wind speed in the next time slot is the last measured one. More 
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advanced techniques are the ARMA models, Kalman Filters, ANN, Fuzzy Logic and a 

hybrid prediction based on wavelet transformation and ARMA [53]. 

A proposed model in [55] is based on a discrete time Markov chain models of order one 

and two. It allows to directly estimating the wind power distributions on a very short-

term horizon. The models are compared to those Models of ability to evaluate the 

prediction errors associated with the predicted values. 

The previous two approaches have limitations. Therefore,  some researchers have 

combined physical and statistical models which results in a hybrid models, as in refs 

[56],[57], by using Numerical Weather Prediction (NWP) data as inputs to a statistical 

model. i.e. ref. [54] investigated a combination of numeric and probabilistic models in 

one-day-ahead wind power forecasts by the Gaussian Processes (GPs) applied to the 

outputs of a NWP model. 

Wind power generation modeling methods are divided into two approaches: the wind 

speed approach [51], [57] and the wind power approach [54]-[56], [58]. Both of them 

basically depend on wind speed measurements. But the wind power generation falls 

between the lower and upper limits of WT power curve and does not follow a standard 

probability distribution. This increases the difficulty to apply standard statistical models 

in the wind power approach. On the other hand, a small error in the wind speed modeling 

in the wind speed approach leads to a large error in the predicted wind power. This is due 

to the cubic relation between the generated wind power and the wind speed [58]. 
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2.3.3. Energy Storage Application  

Global warming is one of the biggest problems in the world, should be taken into 

account. In trying to mitigate these fears, it is known that using of renewable energy 

sources  has potentially become very important in reducing  the emissions of harmful 

gases (CO2, NOx, SOx). But the electricity generation from the most renewable energy 

resources (RER) is always fluctuated due to their intermittent nature that depends on the 

environmental status. The variability of renewable energy and its impact on the power 

system reliability are major challenges stand in its increased penetration. On the other 

hand, controlling production and controlling demand options could be applied as 

solutions for the aforementioned problems and ensuring balance between production and 

demand. However, with existence of fluctuating energy sources, flexible demand has 

shown little ability [4]. 

The remaining option in which these þuctuations can be suppressed in the most effective 

manner is by utilizing an energy storage system [5]-[7]. Energy storage will play a key 

role in decarbonizing the electricity systems worldwide [8]. And recent developments in 

energy storage and power electronics technologies will  increase the application of energy 

storage technologies and make it a potentially suitable solution for modern power 

systems to be operated in a more flexible, controllable manner. Using of energy storage 

technologies eases the scheduling of renewable energy generation that plays a main role 

in increasing the penetration of renewable energy globally. Add to this, existence of 

energy storage in a supply system enables the decoupling of electricity generation from 

load. In other words, the electricity that can be generated from intermittent RER or at 

times of low-demand is shifted in time to be released at times of high-demand or when 



18 
 

there is a lack in the generated electricity. Therefore, energy storage has strong ability in 

reducing the imbalance in power and mitigating voltage rise problems due to the 

stochastic intermittence in the renewable power. In this way, energy storage facilitates the 

integration of renewables, enhances the efficiency of transmission and distribution 

networks (reduce grid congestion, frequency and voltage fluctuations), increases the level 

of de-carbonization of the electricity grid [9]. 

Energy  storage  systems  for  a  long  time  have  been utilized  in  many  forms  and  

applications. Nowadays, energy storage technologies are used to achieve electric power 

systems of higher reliability with enabling a broader use of renewable energy [59]. using 

of energy storage introduces many benefits including time shifting, peak demand 

shaving, generation efficiency improvement, and transmission capacity utilization 

improvement, etc. There are many power system applications where storage is important, 

with diǟerent requirements such as response time, energy and power capacities; i.e., the 

time scales may range from microseconds (power quality, frequency response) to months 

(seasonal storage). Thus, no single energy storage technology will be the best for all 

power applications [60].  

Energy storage technologies can be mainly categorized into three groups: mechanical, 

electromagnetic and electrochemical storage [59]. The first group combines compressed 

air energy storage, pumped hydro storage and flywheels. Electromagnetic storage 

includes superconducting magnetic storage and super-capacitors. Electrochemical storage 

includes hydrogen energy storage and all batteries types. The storage technologies are 

also grouped with respect to the storage capacity. Because storage capacity can be used to 

exclude those sizes not suitable to the renewable energy systems [61], [62]. As well as 
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different energy storage technologies have a wide range of discharge rates that ranges 

from few seconds to hours and even days [62].   

Regarding to their capacity, energy storages can be divided into short-term and long-term 

energy storages [59]. In the short term, the storage is used between the ramping down 

time of wind and solar plants and the ramping up time of these plants as well as it is used 

to stabilize the frequency and voltage of the grid [8]. Short-term storage systems include 

the supercapacitor energy storage, flywheel energy storage and superconducting magnetic 

energy storage. The long-term storage systems are used in the energy management and 

energy compensation. It includes pumped hydro energy storage, compressed air energy 

storage, battery energy storage, and hydrogen energy storage [59].  

Energy storage can be integrated at different levels: [8] 

1. Generation level: balancing and reserve power, etc.  

2. Transmission level: frequency control. 

3. Distribution level: voltage control, capacity support, etc.  

4. Customer level: peak shaving, time shifting, etc. 

Each location will contribute to the reliability and availability of the power and increase 

the share of renewable energy in electricity system. 

 

Several ES models have been proposed to decrease the impact of RER such as Wind and 

sun. i.e., in [41], the reliability evaluation of the small stand-alone RE systems has been 

proposed. It has proposed approach to enhance WP system reliability in distribution 

network by incorporating ESS. It has explained procedure to determine the ES capacity 
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and charging/discharging power ratings for different operating strategies. And ref. [63] 

proposed a stochastic framework to determine the optimal sizing of ES. The study used 

SMCS alongside with search-based optimization technique to minimize the system cost 

and satisfy reliability requirements.  

Many papers researched the community ES (CES) which is located near the customer 

side. It is considered the best ES to mitigate the impacts of RES at the grid edge [64]. 

Several works considered the CES, i.e. in [65], proposed an energy management system 

(EMS) that facilitates the CES in distribution system with high RE penetration and 

electrical vehicles (EV). The proposed EMS was developed to determine the optimal 

dispatch level for CES to reduce the demand during peak hours. Refs. [66]-[68] show that 

using CES in distribution systems help generate electricity without emission and may 

reduce its production cost.  Ref. [68] argues that single phase ES near to customer side in 

form CES is more efficient in reducing the production cost of electricity than the three 

phase storage at the substation or street. In [69], a proposed method that shows CES can 

solve the voltage violation in distribution network with PV integration. However, ref. 

[67] argues that CES cost a large amount of money which should be taken into account. 

The main gap, that this thesis discusses and fills, is using the smart restoration and energy 

storage to improve the reliability of MG under the case of stand-alone and full 

penetration of renewable energy. 
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Chapter 3  

MODELING AND PROBLEM FORMULATION  

 

3.1. Introduction  

In this thesis, the solar energy and wind energy are considered as the main sources in the 

microgrid that are used to power the microgridôs load. These two sources can be 

connected directly to the load point or connected to a feeder to serve several load points. 

In this thesis, the two connections have been examined.  

The autoregressive moving average (ARMA) model is used in this thesis to model the 

short-term forecasting of wind speed. It uses a historical wind speed data for a wind site 

in Ottawa, Canada [70]. The output wind power is then computed by using the power-

wind speed curve. Solar power is modeled by using the triple exponential smoothing 

method. This method is very useful when the most recent values contain the most 

information are needed for short-term predictions. The system load are represented by 

hourly load curve for one year. The energy storage system is modeled as a dispatchable 

source model.  

 

3.2. Solar Power Modeling 

In the short-term forecasting of the solar power, the most recent values contain the most 

information needed for predicting the solar power in the near future. Therefore, 
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exponential smoothing methods can be used. Since solar power data contains trend and 

seasonal features, triple exponential smoothing model is used.  

3.2.1. Triple Exponential Smoothing Model 

Solar power data involves trend and seasonal features, which establishes the application 

of triple exponential smoothing method to model the data. In this method, a third 

smoothing parameter is added to take care of the seasonality. The formula of the triple 

exponential smoothing model is expressed in the following equations [43]: 

   

                                      Ὂ ‌Ὀ Ὓ ρ ‌ Ὂ Ὕ                                    (3.5) 

                                          Ὕ ‍Ὂ Ὂ ρ ‍Ὕ                                       (3.6) 

                                          Ὓ ‎Ὀ Ὂ ρ ‎Ὓ                                       (3.7) 

 

Where Ὓ  is the seasonal value of the next period. Ὓ is the seasonal value of the present 

period. ‎ is the smoothing constant of the seasonality. Equation (3.5) takes care of the 

estimated value. Equation (3.6) provides smoothing for the trend and (3.7) takes care of 

the seasonality. 

Then the forecast is obtained by adding the outputs of the previous equations as in (3.8): 

 

                                            ὛὃὊ Ὂ Ὕ Ὓ                                             (3.8) 
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Incorporating uncertainties in the reliability study introduces the worst scenario that 

could happen, which allows the system operator to prepare and account for. Several 

models have been proposed to incorporate the uncertainty in the power source [71]. In 

this thesis, the uncertainty in the power source has been incorporated by using the mean 

absolute percentage error (MAPE). This index indicates the uncertainty percentage in the 

power source. It is computed by finding the cumulative absolute difference between the 

actual values and forecasted values divided by the total sum of the actual values. As the 

uncertainty increases, the MAPE increases. For example, if the MAPE has been found 

0.1095 in the solar power and 0.2224 in the wind speed for a prediction horizon of 1 

hour, this means that the actual PV or wind speed outputs would swing up or down by 

0.1095 or 0.2224 at most of the predicted outputs, respectively.  

 If the forecasted PV output is ὴ and MAPE is e, then  

                                                         ὴ ὴρ Ὡ                                                  (3.9) 

                                                         ὴ ὴρ Ὡ                                                 (3.10) 

Where ὴ , ὴ  are the maximum and minimum limits of the expected PV output, 

respectively. 

Then, the new expected PV output is given by (3.11) 

                                             ὴ ὴ ὶὥὲὨzὴ ὴ                             (3.11) 

 

Where ὶὥὲὨ is a uniformly distributed random number in the interval [0,1]. ὴ  is the 

expected PV output. 
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3.3. Reliability A nalysis of Solar Power System 

In reliability analysis, RAMS is an abbreviation for Reliability, Availability, 

Maintainability and Safety and aims to suggest an integrated and methodological 

approach to deal with system dependability. The fundamental objective of the RAMS 

analysis is to pinpoint the system failure causes and its components [72]. 

Many functions are used in the RAMS analysis such as the failure density function, 

reliability function and failure cumulative distribution function, etc. The components in 

power system are typically assumed to have constant failure rate during their life cycle as 

the past of the power systems certifies this fact. Therefore, the failure density function 

should be exponentially distributed. The reliability function is then expressed with 

respect to the random variable T as follow: 

                           Ὑὸ ὖὝ ὸȟίόὧὧὩὩὨί᷿ ‗Ὡ Ὠ† Ὡ                        (3.12) 

This function represents the probability of a component or system to survive greater than 

or equal to time t. While the failure distribution function is the probability of a 

component or system to fail during certain period of time or less than or equal to time t. 

                                 Ὂὸ ὖὝ ὸȟὪὥὭὰί᷿‗Ὡ Ὠ† ρ Ὡ                    (3.13) 

The instantaneous failure rate (Hazard rate) is the probability of a system or component 

to fail between time t and t + dt, given it is operating at time t. It is computed by 

inversely deriving R(t) with respect to the time divided by R(t) as, 

                                                       ‗ὸ Ȣ                                  (3.14) 
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Since the failure rate of the power system components is constant, therefore 

‗ὸ ‗ 

There are several techniques are used to perform the reliability analysis. Among these 

techniques, the quantitative analysis techniques which are based on the modeling of the 

physical and logical connections between system components and doing the reliability 

analysis using statistical methods. Series/parallel system reliability analysis is one of 

these techniques that is widely used. According to this technique, the series system has a 

normal state at time t, if and only if all its components are found in upstate at time t. 

While in the parallel model, the system is considered in normal state at time t, if and only 

if one or more of its components are found in upstate at time t. In power system, the 

failure of the component is independent from the others. Therefore, the reliability of a 

series system of n components can be evaluated as, 

                                           Ὑ ὸ Б Ὑ ὸ Б Ὡ ὩВ                 (3.15) 

Whereas the reliability of a parallel system can be evaluated by (3.16), 

                                              Ὑ ὸ ρ Ὂ ὸ ρ Б ρ Ὡ                    (3.16) 

 

Typically, the photovoltaic (PV) system consists of four main components [72] as shown 

in Fig. 3.1.  

1) PV generator: it consists of a group of solar panels (SP), each panel combines a set 

of interconnected solar cells. Each cell converts the sunlight into DC current at certain 
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voltage. The panels are connected to form array to provide the desired voltage and 

current. 

2) Inverter: it converts the DC voltage into a desired AC voltage. 

3) Energy meter: it is a measurement device that measures the produced electrical 

energy from PV generator. It also can be used to identify the PV system performance. 

4) Electrical boxes: these boxes are used to connect the system components and 

provide the required protection against the short circuits and peaks voltage.  

 
Fig.3.1 Reliability block diagram of the PV power plant  

 

The above components are always connected in series configuration as in Fig. 3.1. This 

results in a series system whose reliability model can be evaluated as, 

                                              Ὑ ὸ Ὑ Ὑz Ὑz                                             (3.17) 

Where Ὑ  is the reliability of the PV generator. Ὑ is the reliability of the electrical 

boxes. Ὑ  is the reliability of the inverter. The reliability of each part can be expressed 

by using equation (3.15) or (3.16) or both as, 
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Ὑ Ὡ
В

ᶻρ Б ρ Ὡ ᶻρ Б ρ

Ὡ                                                                                                                       (3.18)    

                                               Ὑ Ὡ                                                               (3.20) 

                                                Ὑ Ὡ                                                               (3.21) 

If all the panels have the same ‗  and each parallel part has the same number of SPs, 

(3.18) becomes, 

                                  Ὑ Ὡ ᶻρ ρ Ὡ                   (3.19) 

Where Ὓὖ  is the number of SPs that are connected in series. Ὓὖ  is the number 

of the parallel SPs in each part. ‗  is the failure rate of the SP. ‗  is the failure rate of 

the electrical box. ‗  is the failure rate of the inverter.  

 

3.4. Wind Speed Modeling 

The existing wind power generation modeling methods are divided into two approaches: 

the wind speed approach [51],[57] and the wind power approach [54]-[56],[58]. Both of 

them basically depend on wind speed measurements. The wind speed approach has been 

used in this thesis for modeling and forecasting the short-term forecasting of the wind 

speed by using the autoregressive moving average (ARMA) model.  

The model is usually called the ARMA (p,q) model where p and q are the orders of the 

autoregressive part and the moving average part, respectively. The autoregressive 
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integrated moving average (ARIMA) is similar to ARMA but it uses a third parameter 

that defines the order of the integration when the time series follows a non-stationary 

stochastic process. This model is usually written as ARIMA (p,d,q) and d is the order of 

the integration.  

The autoregressive model of order p for a certain time series X(t) can be expressed as, 

                                     ὢὸ  В ‌ὢὸ Ὥ Ὡὸ ὧ                                     (3.22) 

and the moving average model of order q can be written as, 

                                    ὢὸ  В ‍Ὡὸ Ὥ Ὡὸ                                              (3.23) 

Thus, ARMA(p, q)  consists of the two models, AR(p) and MA(q) as, 

                      ὢὸ  В ‌ὢὸ Ὥ В ‍Ὡὸ Ὥ Ὡὸ ὧ                       (3.24) 

Where ‌ȟȣ ȟ‌and ‍ȟȣ ȟ‍are the coefficints of the AR(p) and MA (q) respectively. 

ὧ is the constant term. Ὡὸ is the error term that is assumed independent identically 

distributed random variables (i.i.d.) sampled from the normal distribution with zero 

mean: Ὡὸͯ ὔπȟ„ .  Where „ is the variance. 

In this research, the following four coefficients have been used to validate the model. The 

Pearson correlation coefficient [73], the mean absolute error (MAE), the root mean 

square error (RMSE) and the mean absolute percentage error (MAPE) that associated 

with the original time-series ( ὼ ) and the forecasted time-series ( ὼ ): 

                                                    ὶȟ
ȟ

                                                                (3.25) 
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                                                   ὙὓὛὉ В ὼ ὼ                                      (3.26) 

                                                   ὓὃὉ В ȿὼ ὼȿ                                             (3.27) 

                                                    ὓὃὖὉ
В ȿ ȿ

В
                                                  (3.28) 

Where ὶȟ is the Pearson correlation coefficient. ὔ is the number of data points in the 

original time series, „ and „ are the standard deviations of ὼ and ὼ, respectively. „ȟ is 

the covariance of the ὼ and ὼ: 

                                                       „ȟ
В

                                          (3.29) 

‘ and ‘ are the mean values of ὼ and ὼ, respectively. 

The uncertainties in the wind speed can be included using the same procedure that has 

been explained in the solar power modeling. Then, the wind power output is given by the 

power curve, it is expressed as [74], 

                                    ὖὺ
ὃ ὄ ὺz ὅ ὺz ὖ       ὺ ὺ ὺ 
ὖ                                             ὺ ὺ ὺ
π                                              έὸὬὩὶύὭίὩ    

                (3.30) 

The ὠ , ὠ and ὠ  are the cut-in, rated and cutout wind speeds in (m/s), respectively. ὖ 

is the rated power of the WTG in MW. ὺ is the wind speed. A, B and C are constants and 

can be calculated using the following equations [74], 

                                     ὃ ὺ ὺ ὺ τὺὺ                   (3.31)                  

                                     ὄ τὺ ὺ σὺ ὺ                 (3.32) 
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                                     ὅ ς τ                                                  (3.33) 

 

3.5. Reliability Analysis of the Wind Turbine Generator 

The wind farm operates in a modular approach where each turbine operates 

independently from the other. Each turbine consists of many components that work in 

series as shown in Fig. 3.2. So for the turbine to work, all components must be working 

properly. 

   

  

 

 

 

Fig.3.2 Components of the WTG: [75] 

 

The reliability block diagram of the complete structure of the WTG is complex. 

Therefore, a simplified reliability block diagram for the WTG can be represented by the 

four primary sub-systems in series [76]. They are the blades, gearbox, generator and 

controls equipment as shown in Fig. 3.3.  

Number Name Number Name 

1 
Base/ 
foundations 

9 
Low speed 
(main) shaft 

2 Tower 10 Gearbox 

3 blades 
11 

High speed 
shaft 

9+11 Drive train 

4 
Meteorological 

unit 
12 

Brake 

system 

5 Nacelle 13 Generator 

6 Pitch system 14 Yaw system 

7 Hub 15 Converter 

8 Main bearing 16 Bedplate. 
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Fig.3.3 Simplified reliability block diagram for the WTG. 

 

The failure rate of any mechanical part, such as the WTG, can be represented as [77], 

                                                          ‗ὸ                                                  (3.34) 

Where ‍ is the shape parameter of the failure function; — is the scale parameter that 

represents the time between failures and is greater than 0 for t Ó 0. 

Fig. 3.4 shows a complete failure curve, the bathtub curve. The three regions can be 

described by equation (3.34) by using different values for the shape parameter ‍ as 

follow: 

Å ‍ < 1, infant mortality 

Å ‍ = 1, normal life 

Å ‍ > 1, deterioration or wear out 

When ‍ ρ, the failure rate ‗ὸ becomes constant. Therefore, equation (3.34) can be 

reduced to  

                                                                    ‗                                                          (3.35) 

Exponential distribution can be used to describe the reliability of wind turbine and its 

failure probability when the failure rate lies on the normal life region. 
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Fig.3.4 Bathtub curve for WTs. [78] 

 

All subsystems of the wind turbine are connected in series as shown in Fig. 3.3. Since the 

failures of the subsystems of the WTG occur independently from each other; equation 

(3.15) can be written as, 

                                        Ὑ ὸ Б Ὑ ὸ Б Ὡ ὩВ                    (3.36) 

Ὑ ὸ is the reliability of the WTG. n is the number of the components or the subsystems 

of the WTG.  ‗ is the failure rate in failure/year per the ith subsystem in the WTG. The 

failure rate of the WTG can now take the form,  

                                                                    ‗ В ‗                                          (3.37)   

The WTG has two states, operating and failure states. The output power is ὖὺ when the 

WTG is in operating state and zero when the WTG is in failure state.  Therefore, the 

reliability model of WTG power output with forced outage rate (FOR) Ὗ is summarized 

in table 3.1: 
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Table 3.1 Reliability Model of WTG Power Output 

State Capacity (MW) Probability  

1 0 Ὗ 

2 ὖὺ ρ Ὗ 

 

Multiple WTGs provide large amount of power and introduce redundancy that increases 

the availability of the power. The WTGs in wind farm are independent from each other 

which makes their failures are also independent.  

Consider a wind farm of n identical WTGs with rated power ὖ MW. Assume that the 

forced outages of WTGs are neglected, the output power of the wind farm is then 

ὲz ὖὺ MW. If the FOR of each WTG is ὴ, the probability of k WTGs or less to be on 

forced outage and the probability of m units to be on maintenance are given as [79], 

                                                     ὖ В ὴ ρ ὴ                                      (3.38) 

                                                      ὴ ὴ ρ ὴ                                        (3.39) 

Where π Ὧ ὲ 

 

 

3.6. Load Modeling 

In reliability analysis of power system, accurate load modeling is very important. 

However, load modeling is not an easy task and time consuming because of many factors 

such as weather forecast errors, customer behaviors, etc.  Therefore, many different load 

models have been used in reliability evaluation [80]-[82]. The time varying load models 
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of the hourly load variation curve of the RBTS [83] shown in Fig. 3.5 is used in this 

study. The peak load is 20 MW and average load is 12.3 MW. 

 
Fig.3.5 The hourly load variation curve of the RBTS system 

 

 

 

3.7. Energy Storage Modeling 

Energy storage has been used in many power system applications such as peak shaving, 

time-shifting applications, improving power quality and power system reliability, etc. 

Hence, many models of energy storage have been presented in literature [84], [85], where 

it is always modeled as a dispatchable source [86].  

Energy storage is a popular option that is used to smooth the output power variations 

from the intermittent power source, such as wind turbine and PV panels, and provide a 

stable power output to the grid ὖ. i.e., if the power output from the renewable power 

source ὖὸ is greater than ὖ, the excess power ὖὸ ὖis used for charging of the 

energy storage. The stored energy is discharged when the output power ὖὸ is less than 
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ὖ. Hence, the charging and discharging power can therefore be calculated from the 

following two equations: 

                                                 ὖ ὸ
ὖὸ ὖ      ὖὸ ὖ

π                    ὖὸ ὖ
                              (3.40) 

                                                 ὖ ὸ
ὖ ὖὸ     ὖ ὖὸ

π                    ὖ ὖὸ
                          (3.41) 

In addition, the probability of discharging and charging can be estimated from eqs. (3.42) 

and (3.43), respectively. 

                                                        0Òὖὸ ὖ Ὂ ὖ                                       (3.42) 

                                                        0Òὖὸ ὖ ρ Ὂ ὖ                                (3.43) 

Where the Ὂ is the power cumulative distribution function of the intermittent renewable 

source.  

The round-trip efficiency of the energy storage indicates to the amount of the energy loss 

that takes place in one charging-discharging cycle and it is defined as [87], 

                                                              – – Ȣ–                                               (3.44) 

Where –  is the charging efficiency. It is defined as the ratio of the charged power to the 

input power. –  is the discharging efficiency that provides the ratio of the output 

power to the discharged power. 

The storage device ratings are the main factors that affect the charging and discharging 

processes. The limited power ratings of the storage device are usually modeled by 
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bounding the charging and discharging equations. With limited power ratings, the 

charging and discharging expressions should then be modified to, [87] 

 

                                        ὖ ὺ
ÍÉÎὖὸ ὖȟὖ        ὖὸ ὖ

π                                               ὖὸ ὖ
                (3.45) 

                                        ὖ ὺ
ÍÉÎὖ ὖὸȟὖ          ὖ ὖὸ

π                                                ὖ ὖὸ
          (3.46) 

 

If there is no capacity limit are on charging power, all excess power can be used for 

charging the storage. 

The energy storage is mainly evaluated by four parameters: charging and discharging 

efficiencies, power and energy capacities. The relationship between the storage state of 

charge Ὓὕὅ and the charging and discharging power ὖ Ⱦὖ  is basically expressed 

by the following equations: [88]  

                          Ὓὕὅὸ ρ
Ὓὕὅὸ ὖ Ȣɝὸ   ȟ     ὈὭίὧὬὥὶὫὭὲὫ

Ὓὕὅὸ – ὖ Ȣɝὸ            ȟ     ὅὬὥὶὫὭὲὫ      
          (3.47) 

                           ὖ ὖ ὖ                                                                    (3.48) 

                           ὖ ὖ ὖ                                                                           (3.49) 

                           Ὓὕὅ Ὓὕὅὸ Ὓὕὅ                                                          (3.50) 

In addition, the strategy of operating energy storage also affects the energy storage such 

as peak load shaving [89], smoothing power output from the WTG or PV panels and 
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priority of the supply source.  In this thesis, the energy storage is used to decrease the 

shortage in the generated power from the WTGs and PV that have priority to supply load. 

The proposed operating strategy is as follows: 

1) If the available wind power or solar power at the current time unit is greater than 

system load, energy storage will store the excess energy as long as the energy storage 

limits are not violated. Energy storage cannot always store the available excess energy 

because of the charging rate limits and the current SOC of the storage.  

2) If the available wind power or solar power at the current time unit meets system load 

exactly, energy storage will not be used.  

3) If the available wind power or solar power at the current time unit is less than system 

load, energy storage will be used to power system load alongside the produced renewable 

power as long as the energy storage limits are not violated. Energy storage cannot always 

discharge its stored energy due to the limits of discharging rate of the energy storage and 

the current SOC in the energy storage.  

4) If the available wind power or solar power in the current time slot is less than system 

load and energy storage cannot compensate the shortage in supply, at this moment the 

load curtailment will be used to balance supply and load. 

5) If the available wind power or solar power at the current time unit cannot be used to 

power the system load or part of it due to interruptions, the excess energy is stored in the 

energy storage as long as the energy storage limits are not violated. 

In this research, the lower and upper bounds on the Ὓὕὅὸare assumed to be 50% and 

100% of capacity of the energy storage unit, respectively [86]. Fig. 3.6 shows a model of 

a grid-connected PV, WTG and energy storage system [85]. 
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Fig.3.6 Model of a grid-connected PV, WTG and energy storage system. 

 

The reliability model of ESS [72] is shown in Fig. 3.7. It has four states, charge, 

discharge, standby and down state. Battery will be in discharge state, when demand is 

larger than production. On the other hand, it is in charge state, when demand is less than 

supply. EES is in standby state when it is fully charged or discharged. It will be in down 

state when it is in failure state. 

Standby

 (3)

Charge 

(1)

Discharge

(2)

Down 

(4)

ɚ 

ɚ 

µ 

µ 

ɚ13 ɚ31 
ɚ12 

ɚ21 
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ɚ32 

 

Fig.3.7 State model of energy storage unit  

 

where ‗  is the transition rate between states. ɚ represents the failure rate. µ is the repair 

rate.
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3.8. Reliability I ndices  

There are many reliability indices that were proposed in the literature and used in the 

reliability studies. Expected Energy Not Supplied (EENS) index is the most widely used 

reliability index in reliability analysis. Calculation of load not supplied is required at 

every time step in order to compute the value of this index as explained by eqs. (3.51) 

and (3.52). 

                                             ὖ ȟ άὥὼ πȟВὖ ȟ Вὖ ȟ                          (3.51) 

                                             ὉὉὔὛ
В ȟzЎ                                             (3.52) 

Expected energy not used (EENU), is another important index that represents the 

renewable energy produced but not used and depends on the operating strategy of the 

renewable sources [90]. The EENU for a certain period of time can be computed by 

using, 

 

                            ὖ ȟ άὥὼ πȟВὖ ȟ Вὖ ȟ ὅ Ὓὕὅὸ         (3.53)   

                            ὉὉὔὟ
В ȟzЎ

                                                          (3.54) 

 

where ὖ ȟ is the amount of the load shedding at time step t. ὖ ȟ is the amount of 

the excess power at time t. Ὕ is the entire period of simulation time in hours. Ўὸ is the 

time unit in hour. ὅ is the capacity of the available energy storage units. Ὓὕὅὸ is the 

state of charge in the energy storage at time t. 
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Availability ὃ of the component or the system is defined as the probability of the 

component or the system to be in the operating state, while the unavailability Ὗ  is the 

probability of the component or the system to be in the failure state. These indices can be 

calculated from (3.55) and (3.56), 

                                                  ὃ                                        (3.55) 

                                                  Ὗ                                        (3.56) 

 

System average interruption duration index (SAIDI) provides the expected amount of 

down time that each customer will experience in average during a certain period of time 

and can be calculated using (3.57), 

 

 

                                      ὛὃὍὈὍ 
    

     
                         (3.57) 

System average interruption frequency index (SAIFI) provides the expected number of 

failures that each customer will experience during a certain period of time and can be 

calculated using (3.58), 

 

                                        ὛὃὍὊὍ
    

     
                        (3.58) 

 

The previous indices evaluate the reliability of the system. While the average down time 

and failure frequency can be used as load indices. Average down time provides the 
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amount of time per failure on average while the failure frequency provides the number of 

failures that the load point experienced during 1 year. They can be calculated using (3.59) 

and (3.60), 

                                               ὈέύὲὸὭάὩ ὴὩὶ ὪὥὭὰόὶὩ                                     (3.59) 

                                                ὊὥὭὰόὶὩ ὪὶὩήόὩὲὧώ                                          (3.60) 

 

Where Ὗ  is the unavailability of the load point in hours. ὔ is the total number of 

failures and ὲ is the number of years. 

 

 

3.9. Monte Carlo Simulation and Smart Restoration of Electric 

Microgrid  

3.9.1. Monte Carlo Simulation for Smart Restoration 

Monte Carlo simulation is a computerized mathematical technique that performs risk and 

decision making in quantitative analysis. MCS is characterized as a sampling method 

because the inputs are generated and selected randomly from probability distribution to 

simulate a sampling process from actual population.  

MCS is able to translate the input uncertainties to uncertainties in the system outputs to 

show the impact of the input uncertainties on the outcomes, as well as it allows us to 

explore the all possible outcomes by which we can determine the likelihood of each 

outcome and estimate the probability. MCS procedure can vary from one form to another 
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based on the system under study. However, MCS procedure for any system in general 

should pass through the five steps listed below, 

1) Create a parametric model, ώ Ὢὼȟὼȟȣὼ  

2) Generate a set of random inputs, ὼȟὼȟȣὼ  

3) Evaluate the model and record the results as ώ 

4) Repeat steps 2 and 3 for Ὥ ρ ὸέ ὲ 

5) Analyze the results using histograms, confidence intervals, etc. 

 

MCS is used to evaluate the reliability of power supply and load availability. It helps in 

estimating the expected energy curtailment and loss of load expectation (LOLE).  Also, 

the frequency and the likelihood can be estimated for each system state over certain 

period of time.  

In this thesis, MCS is used to evaluate and analyze the reliability of MG and the impacts 

of smart restoration on the reliability. Fig. 3.8 shows a flowchart that explains the process 

of computing some of reliability indices such as the availability, the duration and number 

of failures, the down time and the failure frequency of each load point (LP) by MCS. The 

steps are explained as follows, 

Step 1. Collect the mean time to failure (MTTF) and the mean time to repair (MTTR) of 

each component. 

Step 2. Generate two random numbers uniformly distributed (u1, u2) for each 

component. 
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Step 3. Convert u1 to time to failure (TTF) and u2 to time to repair (TTR) by using the 

inverse transform method:  

                                                  ὝὝὊ ὰὲό                                                     (3.61) 

                                                  ὝὝὙ ὰὲό                                                     (3.62) 

Step 4. Form an array (D) of size 1 x (TTF+TTR) for each component that consists of 

ones and zeros. 

Step 5. Repeat step 2 to 4 until the size of D equals number of hours in n years. 

Step 6. Perform the ñAndò operation and store the result in array T. 

Start

MTTFs, MTTRs, 

n initialize  D= [ ], 

T= [ ], i=0 

Generate  TTFi, TTRi.

Di=[Di, TTF, TTR]

Length (Di) 

==8760

T = D1&D2&D3é&Dn

Reliability indices

End

No

Yes

n: No. of components 

TTF: Time to failure

TTR: Time to repair

No

Yes

i==n

TTF=ones(1,TTFi)

TTR=zeros(1,TTRi)

i=i+1

 

Fig.3.8 Flowchart of evaluating Reliability indices of a LP by MCS             
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3.9.2. Smart Restoration of Electric Microgrid  

The main function of smart restoration is to locate and restore the interrupted loads based 

on their priorities. It has the capability of optimizing the sequence of switch operations. 

Implementing smart restoration allows the distributed generation (DG) resources and 

associated ESS units to be operated efficiently and strategically. Hence, smart restoration 

is able to improve the reliability and allow a large deployment of the renewable energy 

sources (RES). 

In this thesis, the smart restoration system is implemented such that the stand-alone 

microgrid system can be in one of three states as shown in Fig. 3.9. The power system 

will be in the normal state when all equipment works within their limits. It will be in 

failure state when there is a major outage in generation or customer load. The restorative 

state takes place when the system restores the isolated area from major failure by using 

the backup resource, such as ESS. The restorative state has been designed to return the 

system back to the normal state, but could accidentally take the system again to failure 

state. The general process of the smart restoration for islanded system is shown in Fig. 

3.10. 

Normal 

state

Failure 

state

Restorative 

state

ɚ1 

µ1

ɚ2 

µ2 

µ3 

 

Fig.3.9 States of the MG 
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Fig.3.10 General flowchart of smart restoration 

 

The system applies smart restoration to recover the MG from a failure state and uses the 

stored or the excess energy from the neighbors.  Smart restoration assumes load priority 

separately in each one of the four sections of the MG, with the capability of changing 

these priorities. These priorities are as follow: 

MG1: 1-2-5-4-3-6-7. 

MG2: 8-9. 

MG3: 12-11-14-10-15-13. 

MG4: 16-18-17-20-19-22-21. 

If the demand of the microgrid is greater than the supply or if there is a failure, the smart 

restoration looks for DG to serve the load. Then, if the load is not served, smart 
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restoration looks for DGs or ESS in the other MGs and reconfigures the whole MG to 

transfer the power to the interrupted load. This process is explained in Fig. 3.11. 

Demand > Supply

In MG

Serve the load

Dispatchable

Source, ESS

Buy energy 

from other MGs

Update MG data

No

Yes

Reconfigure MG 

Failure in MG 

 

Fig.3.11 Flowchart of smart restoration operation when demand is greater than supply 

 

When the demand in the MG is less than the supply, the ESS will be charged. If it is not 

possible, smart restoration reconfigures the MG and sells the energy to the other MGs as 

explained in Fig. 3.12. 

Supply > Demand

In MG 

Are batteries 

full

Charge batteries

Update MG data

No

Yes

Sell energy to 

other MGs

 

Fig.3.12 Flowchart of smart restoration operation when demand is less than supply 
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Fig. 3.13 shows hourly load profile of a load point in MG. The top curve in Fig. 3.13 

shows that outages occurred due to failures or shortage in power. After using smart 

restoration, the load is served by using the batteries or transferring the power from other 

MGs. 

 

Fig.3.13 hourly load profile of a load point in MG  

 

In this study, the wind and solar power units are installed at the green places in the RBTS 

system as shown in Fig 3.14. LP and T in the figure mean load point and topology, 

respectively. The selected places have been chosen based on this reason, the place that is 

the nearest to the biggest number of customers. For example, the intersection point of 

transmission line 5 and 6 in MG 1 has been selected as the targeted place for the power 

source. This point is approximately the most point near to all load points in MG 1. If any 

other point is selected, it will not be near to all points in MG 1. The simulation considers 

three cases in each MG. Case 1 uses the wind power only at the specified places. The 

solar power is used in Case 2. Case 3 uses the wind and solar power at the same time and 

assumes that their capacities are equal. 
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Fig.3.14 Single line diagram of RBTS system 

 

 

The capacity of the wind power or the solar power in each section ranges from 5-25 MW. 

Smart restoration is used in the all cases and it works when a failure or power shortage 

happens. It tries to restore the interrupted load points by looking for another route or 

transferring the power from the neighboring MGs or using the stored energy. Each case is 

simulated with and without the smart restoration. Both cases use the energy storage and 

assume existence of the uncertainty in the renewable power supply. In each case, the 

system runs the simulation and computes the reliability indices. The RBTS bus 2 is 

divided into four MGs, each one has its own load priority list as shown in Fig 3.15.  
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Fig.3.15 Power flow diagram in the RBTS system 

 

After using the smart restoration, the RBTS bus 2 can be viewed as a ring topology with 

multiple power sources. The MGs are connected to each other through switches. The 

switch has two states: normal and down states. When the power in the MG is not enough, 

the smart restoration looks for energy storage or another path to restore the load point by 

using the excess generated power in the neighbors. If there is a failure that separates the 

load point from the grid and there is no possible path for the power to pass through, the 

load point will experience a permanent failure unless there is storage near the load point 

as illustrated in Fig 3.10. The imported power from the neighbors can pass through the 

bus 2 or through the switches on the ring path, as shown in Fig. 3.15. 
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3.9.3. Resources Scheduling in Microgrid 

Scheduling of the resources is very important. It optimizes the usage of the resources and 

makes the MG withstands the interruption in better way. The scheduling is utilized by the 

smart restoration by considering how much energy will be in the next time unit to 

optimize the operation of MG. For example, if the generated energy from the wind in the 

next two hours is expected to be 2 and 0.5 MW in MG 1 and the total load is expected to 

be 6 and 6.5 MW. If the current SOC in the ESS is 14 MWh and the SOC
min

 is 10 MWh. 

If there is a dispatchable generator of capacity of 8 MW and ramping rate of 4 MW has 

not been started yet. Moreover, the supply in the other MGs is expected to be less than 

the demand in the next two hours. In this scenario, smart restoration has five choices to 

cover the shortage in the coming two hours. First choice is discharging the ESS at rate 4 

MW. It cannot be used because it is unable to cover the shortage in the second hour due 

ramping rate of the generator. The second one is starting dispatchable generator at rate 4 

MW. It is expensive because it operates the generator at 4 MW in the first hour and 2 

MW in the second hour and does not use the ESS in the first hour. The third choice is 

discharging ESS at rate 3 MWh and operating the generator at rate 1 MW. It is also 

expensive because it operates the generator at 1 MW in the first hour and at 5 MW in the 

second hour. The fourth choice is discharging ESS at rate 2 MW and operating the 

generator at 2 MW too. In this choice, the generator operates at 2 MW in the first hour 

and at 4 MW in the second hour which is expensive too. The last choice is discharging 

ESS at 1 MW and operating the generator at 3 MW. This choice is the cheapest choice 

where the generator operates at rate of 3 MW in the two hours and uses all the energy in 

the ESS that can be drained.  
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Another example, if the next hour is the hour 201 in the Fig. 3.16 that shows the total 

demand and supply in each MG in Fig. 3.15. The forecasted demands in MG 1 and MG2 

are 5 and 2 MW that exceed the forecasted supply which are 4 and 1.2 MW respectively, 

while the supply exceeds demand in MG 3 and MG 4. Also the SOC reached the SOC
min

. 

In this case, smart restoration reconfigures the whole MG to cover the shortage in MG 1 

and MG 2. It will transfer the power from MG 3 and MG 4 through the common bus and 

cover the shortage in MG 1 and MG 2 if this forecasted action happened.  

 

 

Fig.3.16 The total demand and supply in MG1, MG2, MG3 and MG4 respectively 
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Chapter 4  

SIMULATION AND RESULTS  

 

4.1. Introduction  

The MG gets its power from two main renewable resources: the wind and solar. The 

capacity of the wind farm or the solar power in each section is 25 MW. The average load 

of the whole system is 12.3 MW and the peak load is 20 MW. One year load data have 

been selected for usage, and the simulation runs have been performed over 20 years 

period. The energy rating of ESS is 20 MWh and the power rating is 4 MW. The initial 

stored energy in the energy storage is assumed to be 100% of the energy capacity of the 

storage. The reliability data of energy storage are shown in Table 4.1, while Table 4.2 

summarizes the reliability data of the wind turbines [76] and PV system [91].  

Table 4.1 Data of Energy Storage System 

 

 

 

 

 

 

 

 

 

 

Parameters of ESS Values 

Energy rating (MWh) 20 

Power rating (MW) 10 

Min SOC  50% 

Max SOC  100% 

Failure rate (f/year) 0.1 

Repair rate (r/year) 0.3 
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Table 4.2 Data of WT, PV System 

Parameters Wind Turbine  PV system 

Number 5 1 

Capacity 10  MW 50 MW 

Cut in speed 4 m/s - 

Rated speed 15 m/s - 

Cut out speed 26 m/s - 

Mean failure rate 1.8 f/year 0.6 f/year 

Repair rate 0.2 r/year 0.2 r/year 

 

The simulation has been performed under four different cases as illustrated in Table 4.3. 

In each case, the system simulates the RBTS data with the source power hour by hour 

and computes the reliability indices. 

 

Table 4.3 Simulation Cases 

Case Energy storage Uncertainty 

Case 1 Excluded Excluded 

Case 2 Excluded Included 

Case 3 Included Excluded 

Case 4 Included Included 

 

The reliability data of the IEEE-RBTS system has been used in all the cases. These data 

are summarized in Table 4.4 and Table 4.5. 
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Table 4.4 Reliability Data of Transformers 

Component Failure Rate (f/y) Repair Rate (r/y) 
Replacing Rate 

(r/y) 

Tr. 11/0.415 kv 0.015 43.8 876 

 

Table 4.5 Reliability Data of the Distribution Lines in the RBTS System 

Line number Failure rate (f/y) Repair rate (r/y) 

2, 6, 10, 14, 17, 21, 25, 

28, 30, 34 
0.039 1752 

1, 4, 7, 9, 12, 16, 19, 

22, 24, 27, 29, 32, 35 
0.04875 1752 

3, 5, 8, 11, 13, 15, 18, 

20, 23, 26, 31, 33, 36 
0.052 1752 

 

 

4.2. Simulation of Solar and Wind Power 

4.2.1. Simulation of Solar Power 

Fig. 4.1 shows the first 100 hours of the forecasted time series by the use of the three 

exponential smoothing models for a prediction horizon of one hour. Table 4.6 

summarizes the results of the statistical coefficients for the three exponential models for 

prediction horizon of 1 hour. It can be seen that the coefficients confirm that triple 

exponential smoothing is the best model.  



55 
 

 

Fig.4.1 1st 100 hrs. From the Original and the Forecasted Time Series by the Three Exponential Smoothing Models, 

(Forecast horizon of 1 hrs.). 

 

 

Table 4.6 Comparison of the Three Exponential Smoothing Models 

Coefficient Single smoothing Double smoothing Triple smoothing 

ὶ  0.9278 0.9815 0.9939 

RMSE 0.1270 0.0687 0.0482 

MAE 0.0863 0.0439 0.0300 

MAPE 0.3155 0.1603 0.1095 

 

Fig. 4.2 shows the entire original time series and the forecasted time series by the use of 

triple exponential smoothing model for a horizon of one hour. The forecast of solar 

power is used to give a perspective about the solar power values.  
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Fig.4.2 The original and the forecasted time series by triple exponential smoothing model. 

Forecast horizon of 1 hr. 

The assessment results of aforementioned statistical coefficients for the triple exponential 

smoothing are summarized in Table 4.7. This table has been achieved from forecasting 

results for prediction horizons of 1, 2 and 3 hours. It is noted from Table 4.7, when the 

horizon of prediction increases, all indexes get worse. This shows that long-term 

forecasting of solar power cannot be accomplished by the triple exponential smoothing 

because of the error introduced with longer time steps.  

Table 4.7 Model Assessment Triple Exponential Smoothing 

Forecasting 

Horizon 
1 hr. 2 hr. 3 hr. 

ὶ  0.9939 0.9397 0.7947 

RMSE 0.0482 0.1558 0.2916 

MAE 0.0300 0.1033 0.1973 

MAPE 0.1095 0.3777 0.7214 
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The forecasting horizon of 1 hour, 2 hours and 3 hours for 100 hours period are shown in 

Fig. 4.3. As shown in Fig. 4.3, these curves certify the noted remark in table 4.7, the 

accuracy decreases as the forecasting horizon increases. The reason in that the solar 

power data has nonlinear and time-varying nature due to the meteorological conditions 

and night time, which increases the complexity in predicting its values in the long-term 

predictions. The solution for this problem is by using the historical data and physical data 

such as the humidity, temperature distributions, the percentage of cloud in the sky across 

the yearé 

 

Fig.4.3 1st 100 hrs. from the original and the forecasted time series by triple exponential smoothing model,      

(Forecast horizon of 1, 2 and 3 hrs.). 

 

 

4.2.2. Simulation of Wind Power 

In this thesis, ARMA method is selected to model the wind speed data. When ARMA is 

used, first step is to decide which ARMA model that best fits the time-series behavior. 

Therefore, the autocorrelation and partial autocorrelation functions are used and plotted 

in Fig. 4.6.  The wind speed data in this thesis is a 6 years historical wind speed from 

[70]. 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (hour)

S
o

la
r 

p
o

w
e

r 
(p

u
)

 

 

Original

1 hour

2 hours

3 hours



58 
 

The autocorrelation coefficient in Fig. 4.4 decreases slowly when the time-lag increases. 

It indicates that an autoregressive model may fit the time series. The partial 

autocorrelation graph confirms that the autoregressive model will best fit the time series. 

Because the partial autocorrelation starts decay from the second lag, it establishes an 

autoregressive model of order 2, ARMA(2,0). 

 

Fig.4.4 Original time series, and the autocorrelation functions 

 

Fig. 4.5 shows the autocorrelation and partial autocorrelation coefficients of the first-

derivative time-series. The autocorrelation graph confirms that the autoregressive 

integrated moving average ARIMA (0,1,1) model is possible, since the autocorrelation 

function begins decaying from the first time lag.  








































































