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Glass manufacturing process is a complex and non-linear process. The
quality of the nal glass product depends on temperature pro le of the molten
glass in glass melting furnace. Improper variations in the molten glass tempera-
ture a ects the physical properties (for example: viscosity) of the glass. In order
to maintain the quality of the product, the temperature of the molten glass in the
furnace needs to be monitored and controlled by a control system. The designing
and testing of a controller requires an appropriate process model that describes
the process dynamics with enough accuracy. In industry, a common and general
approach to obtain a process model is \identi cation”. In this thesis, a couple of
identi cation techniques are used to obtain state space models of the glass fur-
nace process. A comparative analysis of these models is carried out on the basis
of model tness, to suggest the best model for use of designing linear controllers.
Multiple control techniques such as optimal control, robust control, model pre-
dictive control, and adaptive control methods are applied to the identi ed glass

furnace model and their performances are analyzed and compared.
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Chapter 1

INTRODUCTION

1.1 Overview of Glass Furnace

Glass furnace is a key subsystem of glass industry as it is used for melting of glass
(the main task in glass manufacturing). A glass furnace along with annealing
ovens and forming machines represents the \hot end" (a place where the molten

glass is produced and processed to produce glass products) of glass industry.

A glass furnace can be considered as a chemical reactor (a rectangular tank)
where the raw materials are burnt in a con ned space surrounded by refractory,
at high temperatures of 1400 - 1600 C to produce molten glass. The melting
area of a glass furnace consists of a molten glass bath and a combustion cham-

ber. The walls, oor and the roof of the melting area are made up of refractory



(which is capable of handling high temperatures). The furnace operation in-
volves combustion, heat transfer, batch melting, glass ow patterns, etc. [1], [2].

Figure 1.1 shows the schematic of a glass furnace.

T
Fi Medting Tank

Figure 1.1: Schematic of a Glass Furnace

Glass is produced from various raw materials such as silica sand, soda ash,
limestone, recycled cullet and other additives. A mixture of these raw materials
is called as batch and it is stored and handled by a batch processing system.
The batch is fed into the furnace (from one of its ends) through a continuous or
intermittent feeding system and is heated to form a homogeneous melt of glass.
This molten glass is then discharged through the feeders (from the opposite end

of the furnace) for its further processing such as forming and polishing [3], [4],

[5].

The energy (heat/temperature) required to melt the raw materials is obtained



either through combustion of fossil fuels (natural gas or oil) or through electrical
resistance heating or sometimes through a combination of both fossil fuel and
electrical resistance [6]. The cost of melting and operation criticality determines
the type of heat source. Fossil fuel ames, directly heat the melt, mainly by
heat transfer through radiations. The mass inlet streams are composed of fuel,
combustion air and glass raw material. The outlet streams are ue gas and
molten glass (at high temperature). Normally, a regenerator is used to recover

heat from the ue gases and preheat the combustion air [1].

The glass melting process is a nonlinear, complex and slow process. The phys-
ical and chemical phenomena in this process occur at di erent time rates. For
example, for a step change in the fuel rate, the crown temperature responds
and reaches the steady state in 10 to 20 minutes while the bottom temperature
takes several hours to reach the steady state. In glass furnaces, the glass melt
temperatures, velocities and chemical species exhibit a slow dynamical behavior

and thereby constitute to the slow dynamics of the glass melting process [7], [8].

In glass industry, the quality of the nal product depends on the quality of the
molten glass in the glass melting furnace. The quality of molten glass in turn
depends upon the temperature of the molten glass. For example, the viscosity of
the molten glass gets a ected even with a temperature change of 50 to 100 C.
The change in physical properties of glass with respect to temperature creates
di culties in precise control of glass temperature. Thus, in order to maintain
the product quality the temperature of the molten glass in the furnace needs to

be monitored and controlled. The temperature of the molten glass is controlled



by adjusting the amount of fuel input to the furnace. A better control of the
glass temperature can be achieved through monitoring and integrated control of

multiple variables [2], [5].

The following variables are taken into account while modeling and control of

glass furnaces [8]:

Controlled Variables or Process Variables

Glass temperature / Bottom temperature
Crown temperature

Level of glass melt

Furnace pressure

Exhaust gas composition (e.g. NOx)) etc.

Manipulated Variables

Air-to-fuel ratio
Gas ow to the burners
Batch charging speed

Cooling air ow etc.

Measured Disturbances

Batch composition
Cullet ratio

Ambient temperature etc.



Unmeasured disturbances
Leaks

Pollution of batch

False air etc.

1.2 Thesis Objectives

The objectives of the thesis are:

To perform identi cation of the glass furnace (Philips Glass Furnace) us-
ing linear and nonlinear identi cation techniques, on the basis of its ex-
perimental input-output data, and to obtain a state-space model through

identi cation process.

To apply the following control techniques to the identi ed state space

model of the glass furnace.

. Linear Quadratic Regulator (LQR) Control

Linear Quadratic Gaussian Regulator (LQGR) Control
H, Optimal Control

H, Optimal Control

Model Predictive Control (MPC)

o a0 & w0 b -

Adaptive Control



To evaluate the performance of each of the aforementioned control tech-
niques for the given glass furnace model and to carry out a comparative
analysis of the closed-loop responses of the glass furnace system when it

is controlled by these techniques.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter-1 gives an overview of glass furnace and glass manufacturing process.
In Chapter-2, the past work related to modeling, identi cation, and control of
glass furnace is presented. In Chapter-3, identi cation of glass furnace based
upon the input-output data of a real-time glass furnace system is presented.
Chapter-4 gives an overview of optimal control and robust control techniques and
their application to the identi ed glass furnace model. Chapter-5 presents two
control techniques - model predictive control (MPC) and a new adaptive control
technique, for control of glass furnace. The thesis is concluded by Chapter-6 in

which conclusions and recommendations for future work are provided.



Chapter 2

LITERATURE SURVEY

2.1 Modeling and Identi cation

Broadly, there are two types of modeling techniques that have been applied so

far for modeling of glass manufacturing processes [8]. They are:

1. Empirical modeling

2. First principles based modeling



2.1.1 Empirical Modeling OR Black-Box Modeling

In empirical modeling, a model of the process is developed based upon the
observed behavior of the process in response to the test signals applied to the
process i.e., a mathematical model of the system is developed from the input-
output data of the system. This kind of modeling is also termed as black-box
modeling or identi cation of the system. Based on the estimation methods,
the identi cation techniques can be categorized into two: parametric estimation
methods prediction error method (PEM) & subspace identi cation methods

(CVA, N4SID, MOESP algorithms) and non-parametric estimation methods.

In [9] Dablemont and Gevers identify the dynamics of an industrial oat glass

furnace melter using a joint input output identi cation method.

Haber et al. [10] developed a black-box model of a continuously operating tank
furnace by performing system identi cation on the furnace. For identi cation
purpose, experiments were designed based on the analysis of normal operating
records of the furnace. The identi cation was carried out without interrupting
the normal production. Parameter estimation (second extended matrix method)
was utilized for identi cation of the model and a proper model structure was

obtained through repeated estimation of the parameters for di erent structures.

A glass furnace of end-port type was modeled through ARMAX modeling tech-
nique by Wertz and Demeuse in [11]. Several ARMAX models were identi ed

from a record of 830 samples, representing 70 days of operation of the furnace,



with an o -line maximum likelihood algorithm. One of these models was se-
lected based on the minimization of (Final Prediction Error) FPE criterion of

Akaike and whiteness of residuals test.

Kang-Mo and Kang-Suk in [12] proposed a decision support system using Arti-

cial Neural Networks (ANN) for a glass furnace, in which an ANN was used to
identify the model. This system does not require a priori knowledge of a glass
furnace process and it can be used to identify the model directly from input-
output data of the process. The principle of Back-Error Propagation (BEP)
was utilized in model identi cation and the output value was predicted from the

time-lag property of a glass furnace process.

In [13] Moon and Lee developed a mathematical model of a Television (TV)
glass furnace through an identi cation technique whose principle was based on
minimizing the error between the real plant output and the model output. The
structure of the model was assumed as a First-Order-Plus-Dead-Time (FOPDT)
system and the parameters of the model were estimated using the root mean

squares method.

Zhang et al. in [14] identi ed the dynamic model of a continuous large kinescope
glass furnace by means of grey-box modeling technique without interrupting
the normal production process. The model parameters were identi ed through
recursive least squares method and the model was developed after repeated

experiments and loss function check.
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2.1.2 First Principles based Modeling

In this type of modeling, a mathematical model is derived by applying basic mass
and conservation laws to the system being modeled. These models are derived
from the physical knowledge of a system. First principles based modeling of

glass furnace can be found in the following works: [15] - [22].

Andrea R. Holladay in her thesis work [15] developed a mathematical model for
a small glass furnace. For simpli cation of the modeling it was assumed that
the glass is well stirred and the temperature of the glass melt and refractory
is homogeneous. The modeling was carried out by applying energy balance us-
ing thermodynamic and energy conservation laws and a state-space model was
derived from the energy balance equations. Based on this model two types of
observer designs were proposed to estimate the glass temperature from the mea-
sured combustion gas temperature. One observer was designed using only the
combustion gas temperature. The other observer was designed using the refrac-
tory temperatures ( oor and wall temperatures) in addition to the combustion
gas temperature. The observer model was validated with a Simulink model
created using the parameters developed during the formation of a state-space

model from energy balance equations.

Morris in his thesis [16] extended the work of Holladay [15] by eliminating the
assumptions (homogeneous temperature of glass and refractory) made by Holla-
day, to obtain a more accurate model. A state-space model of an end- red small

glass furnace was developed based on nite element analysis (advanced mod-
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eling technique) in which subsystems are created within a system (the furnace
was divided longitudinally into two zones). Overall, the furnace is divided into
24 volumes and the temperature of each volume is considered as a state vari-
able while developing the state-space model. A set of assumptions was made
while developing the model; one of the assumptions being \uniform temperature
within each volume of glass, refractory and gas" to obtain simple heat transfer
equations. The developed model was simulated and validated using the real

furnace data of a similar small tank furnace at Fenton Art Glass Company.

Liu and Larry in their work [17] developed a state-space model of a small ber-
glass furnace through energy balance approach by dividing the furnace into six

zones and by considering few assumptions.

CFD Modeling

In this type of modeling, a mathematical model is developed from the rst-
principles (i.e. basic physical laws) by utilizing Computational Fluid Dynamics

(CFD) techniques. This type of model is known as CFD model.

The advantages of the basic rst principles based modeling (CFD modeling)
are: a system can be modeled over its wide operating ranges without the need
of any experimental tests on the system being modeled; these models are accu-
rate and they provide a direct physical insight of the system. But, they have

certain drawbacks: they are complicated and they consume a lot of CPU time
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to simulate the dynamics of the system with su cient accuracy. Due to this,
such models cannot be used in applications which require short computation
time (for example model-based control). An accurate CFD model is obtained at
the expense of complexity of the model (i.e., complexity of the model directly

depends on the accuracy of modeling).

These drawbacks are eliminated by simplifying the rst principles based model-

ing.

A simpli ed rst principles modeling of glass furnace for control and real time
simulation was developed by Olivier Auchet et al. in [18]. This method is
based on zonal approach and it overcomes the drawbacks of black-box modeling
and classical CFD modeling. In zonal approach, the whole system is spatially
decomposed into macroscopic zones where coarse uniformity assumptions are
made and then these zones are modeled using the simple mass and energy bal-

ance equations.

An alternative of obtaining simpli ed rst principles based models is to reduce
the complicated CFD models by using proper orthogonal decomposition (POD)
[18]. This type of modeling technique has been proposed by Backx et al. in [19].
In this modeling technique, initially, the CFD model of the glass furnace process
was obtained and then this initial model was reduced to a relatively low order
state space model by using POD-based techniques. With this technique the
glass melting process can be modeled over wide operating ranges with limited

testing.
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A similar kind of modeling was also proposed by Leendert Huisman [7], Schobben
[20] and Wattamwar [21] to obtain a fast and reduced simulation model for
estimation and control of glass melt temperatures in glass melting tanks and
glass melt feeders. In these works, fast reduced simulation model of a glass
furnace was derived from detailed rst principles model (CFD model) by using

POD technique in combination with system identi cation.

The simpli ed rst principles modeling reduces the computation time and devel-
ops rapid models which predict the dynamic behavior of the system faster than
real time prediction. These reduced models are computationally faster than the
basic CFD models and are capable of providing su ciently accurate estimates
of glass melt temperature pro les for model based control applications where a
rapid model is desired for the implementation of control. An application of sim-
pli ed rst principles model of combustion chamber of a glass furnace in model
predictive control (MPC) of glass furnace has been reported by Auchet et al. in

[22].

Fuzzy logic approach of modeling glass furnaces has been discussed in the fol-

lowing works:

Moon and Lee in [2] proposed a modeling technique for a glass furnace, in
which the linear part of the furnace dynamics was modeled by a First-Order-
Plus-Dead-Time (FOPDT) system and the nonlinear part of the furnace was
modeled by fuzzy logic system. Hadjili et al. in [23] presented nonlinear iden-

ti cation through fuzzy logic system (Takagi-Sugeno fuzzy system approach) to
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model a glass furnace process between the gas input and the throat temperature
output. An architecture for the operation of a recuperative-type glass furnace
is presented in [24]. This architecture involves process optimization along with

process modeling where the modeling is carried out by fuzzy learning system.

2.2 Control Techniques

In previous works, various control techniques have been proposed for various
glass furnace models and some of these control techniques have been successfully

implemented on industrial glass furnaces. Let us take an overlook of these works.

A conventional multi-loop control method based on an identi ed model of First
Order Plus Dead Time (FOPDT) structure was proposed by Moon and Lee in
[13] to control the temperature of a television (T.V.) glass furnace. This control
method was practically applied to a 150 ton/day hour glass melting furnace in

Samsung-Coming Company in Suwon, Korea.

In [15], Holladay presented an observer based controller to control the glass tem-
perature of a small glass furnace. In this work the observer was designed using
the state space model developed from basic conservation laws. The purpose
of designing an observer was to estimate the glass temperature and use it as
a feedback to the controller. Such a controller provides excellent temperature

control and set point tracking.



15

Normally, predicted glass temperature is used as a feedback to the furnace con-
troller. Parameters other than predicted glass temperature such as combustion
gas temperature, crown temperature and refractory oor temperature can also
be used as a feedback for the controller. Morris [16] presented a simple feed-
back control scheme for a state space model of an end- red small glass furnace,
and carried out the simulations of feedback control separately for each of the
four feedback parameters (temperatures) discussed above and compared their
responses. It was found that the feedback controller with oor temperature as
a feedback showed a better performance than the feedback controllers based on

other temperatures as feedback parameters.

An estimator-based LQR control was proposed by Liu and Larry in [17] to
control the bottom glass temperature of a continuous small ber-glass furnace.
A reduced order observer/estimator was designed based on state space model
of the furnace and measurement of the combustion gas temperature and the
bushing plate temperature, to estimate the temperature of the molten glass at
di erent depths in the furnace. The estimated temperature is then used as
feedback to the LQR controller which controls the bottom glass temperature to
desired set-points by regulating the input fuel ow rate ( ring rate of burner).
Huisman in [7] designed a LQG controller based on the reduced model to track
a reference temperature, and to examine the relation between POD basis order

and closed loop performance.

Model Predictive Control (MPC) of glass furnaces have been reported in [7],

[19], [20], [22] to control the crown temperature and bottom temperature of the
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glass furnace. All these applications of MPC are based on reduced CFD models.
In [20] MPC was designed to control the glass temperature around a nominal
operating point of furnace even if the furnace is under the in uence of measured

and unmeasured disturbances.

Haber et al. in [10] proposed an adaptive control technique to control the glass
level in a continuously operating tank furnace. This control law was implemented
using the identi ed model. Wertz and Demeuse [11] developed a control law
(weighted minimum variance control with feed-forward compensation) based
on a linear ARMAX model to control the bottom temperature of the glass
furnace. This control algorithm was combined with an online identi cation
method to form an adaptive controller. In [17] a compound adaptive control was
proposed and applied on an identi ed model of a continuous large kinescope glass
furnace. This compound adaptive control scheme included self-tuning control
and modi ed PID control with compensator. Hill et al. [25] reported adaptive
control of an industrial oat glass process in which Extended Horizon Adaptive
Controller (EHAC) in combination with PID controller is used to stabilize the
crown temperature and minimize the gas variations. In [26] a new adaptive
control scheme known as model-free adaptive (MFA) control is proposed for
the control of temperature of a glass furnace. This method does not require
any process model and it utilizes the arti cial neural network (ANN) for the
control strategy. Based on the error between the set-point and the measured
process variable the neural network algorithm updates the weighting factors and

provides it to the controller so that the controller takes a new action to minimize
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the error.

A neural network (NN) control scheme based on hierarchically uni ed neural
network (HUNN) architecture (integration of recurrent NN and feed-forward
NN) was applied to a T.V. glass-bulb melting furnace to control its operation

in [4].

Moon and Lee [2] developed a hybrid control algorithm comprising conventional
PID control and fuzzy logic control to control the glass temperature (i.e. bot-
tom temperature) of a glass melting furnace. In this work, the linear part of
the furnace dynamics is modeled by a First-Order-Plus-Dead-Time (FOPDT)
System and a PI controller is applied to control this linear model. The nonlinear
part of the furnace is modeled and controlled by the fuzzy logic system. This
hybrid control technique was successfully implemented on an actual furnace in

Samsung-Corning Company in Suwon Korea.

In [24] an expert controller is applied to a fuzzy model of recuperative-type glass
furnace for process optimization in which genetic algorithm is used to solve a

multi objective optimization problem.



Chapter 3

SYSTEM IDENTIFICATION

3.1 Introduction

System Identi cation is the science that deals with developing mathematical
models of physical systems from observations and measurements (experimental
data) of parameters of the system. Hence, system identi cation can be regarded
as an experimental approach to determine the dynamic model of a system. Ba-
sically, there are two types of identi cation techniques to identify/estimate the
dynamical model of a system. They are: (i) parametric methods & (ii) non-
parametric methods. Based on the method used for identi cation, the identi ed

models are classi ed as parametric models and non-parametric models.

18
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1. Parametric Identi cation Methods are techniques that estimate pa-
rameters in given model structures. Basically it is a matter of nding (by
numerical search) those numerical values of the parameters that give the
best agreement between the model’s (simulated or predicted) output and
the measured output. The parametric methods are further classi ed as
prediction error method & subspace methods. The di erent types of para-
metric model structures are autoregressive with exogeneous input (ARX),
autoregressive moving average with exogeneous input (ARMAX), output

error (OE), Box-Jenkins (BJ), and state-space model structures.

2. Non-parametric ldenti cation Methods are techniques that esti-
mate model behavior without necessarily using a given parameterized
model set. Typical non-parametric methods include Correlation Analy-
sis, which estimates a system’s impulse response, and Spectral Analysis,

which estimates a system’s frequency response.

System Identi cation procedure involves the following four steps for parametric

identi cation [27]:

1. Acquisition of Input/Output Data
The input-output data of a process/system is obtained by carrying out
an experiment on the system under certain conditions and selection of
parameters to be measured. The experiment is designed in such a way
that the measured data provides maximum and useful information of the

properties of the system.
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2. Selection of a Model Structure (a set of models)
A set of candidate models is selected based on the properties of the mod-
els. This is the most important task of system identi cation because it
requires engineering intuition, a priori knowledge and insight along with

the mathematical properties of the models.

3. Determining the Best Model, and Estimation of Parameters
After obtaining the model set, a simplest model that best describes the
dynamics of the system is selected from this set of models. Then, the
parameters of the model are estimated based on the error criterion (loss
function); The criterion that is used most often is the sum of the squares
of some error signals (residuals). The values of the parameters are deter-

mined by minimizing the loss function.

4. Validation of the Identi ed Model
In this step, the identi ed model is validated by considering the following

factors:

the error percentage between the response of the identi ed model
(to the validation data) and the measured output (this factor is also

known as model tness)

the relation of the identi ed model to the a priori knowledge of the

system

whether the model is good enough for its intended use



21

3.2 State-Space ldenti cation

State-space models are common representations of dynamical models and most
of the industrial processes can be described accurately by discrete-time linear
time-invariant (LT1) state-space models. These models are very useful for de-
signing controllers because many control system design tools based on such type
of models are available. So, in this thesis, we obtain a state-space model of
the glass furnace from the experimental data by using parametric estimation

methods, so as to design various controllers for the glass furnace process.

State-space model describes the linear di erence relationship between the inputs
and the outputs of the system. The basic discrete-time state-space model in

innovations form is expressed by the following equations:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (3.1a)

y(k) = Cx(k) + Du(k) + e(k) (3.1b)

where x(k) 2 <" is the state vector of the process at discrete time instant k
and it contains the numerical values of n states, u(k) 2 <™ is the input vector
representing the values of m inputs at time instant k, y(k) 2 <" is the output
vector representing the values of | outputs at time instant k, e(k) 2 <' is the

noise vector.

A 2 <" " js the system matrix, describing the dynamics of the system; B 2
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<" ™M s the input matrix, describing how the next state is in uenced by the de-
terministic inputs; C 2 <' " is the output matrix, which represents the transfor-
mation of internal state to the outside world; D 2 <' ! is the direct feedthrough
matrix, representing the direct coupling between the input and the output (this
matrix will be zero for strictly proper models); and K 2 <" ! is the matrix

representing the noise/disturbance characteristics.

There are two basic methods for the estimation of state-space models:

1. Subspace Identi cation Method

2. Prediction Error Method (PEM)

3.2.1 Subspace Identi cation Method

The state-space matrices A, B, C, D, and K in (3.1a) & (3.1b) can be estimated
directly, without rst specifying any particular parameterization by e cient
subspace methods. The idea behind this can be explained as follows: if the
sequence of state vectors x(k) were known, together with y(k) and u(k), (3.1b)
would be a linear regression, and C and D could be estimated by the least
squares method. Then e(k) could be determined, and treated as a known signal
in (3.1b), which then would be another linear regression model for A, B and K.
Thus, once the states are known, the estimation of the state-space matrices is

easy.
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All states in representations like (3.1a) & (3.1b) can be formed as linear com-
binations of the k-step ahead predicted outputs (k = 1;2;:::;n). It is thus a
matter of nding these predictors, and then selecting a basis among them. The
subspace methods form an e cient and numerically reliable way of determining

the predictors by projections directly on the observed data sequences.

Numerical algorithms for Subspace State-Space System Identi cation
(N4SID):

It is a subspace-based identi cation method that does not use iterative search.
The N4SID algorithms are always convergent (non-iterative) and numerically
stable since they only make use of QR and Singular Value Decompositions. The
quality of the resulting estimates may signi cantly depend on an auxiliary order
(like a prediction horizon). It is easier to estimate state-space models directly

without specifying a particular structure. This is done using N4SID.

3.2.2 Prediction Error Method (PEM)

A common and general method of estimating the parameters is the prediction
error approach, where simply the parameters of the model are chosen so that
the di erence between the model’s (predicted) output and the measured output
is minimized. This method is available for all model structures. Except for the
ARX case, the estimation involves an iterative, numerical search for the best

t.
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PEM is a standard prediction error/maximum likelihood method, based on it-
erative minimization of a criterion. The iterations are started up at parameter
values that are computed from N4SID. The parametrization of the matrices A,

B, C, D, and K follows a default canonical form.

3.3 System ldenti cation of the Glass Furnace

In this thesis, a Philips glass furnace system is considered. This glass furnace
system is a multi-input multi-output (MIMO) system with three inputs and 6
outputs. The input/output experimental data of this glass furnace system is
taken from SISTA’s Identi cation Database [28]. This data consists of 1247
samples (of the respective inputs and outputs) with a sampling interval of 1

unit. The inputs and outputs of the system are listed below.

Inputs
u; : heating input
U, : cooling input

us : heating input

Outputs
Y1 - Ve - temperature measures (readings of temperature sensors positioned

in a cross section of the furnace).

The source from which this data is taken, provides neither the description of
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the inputs and outputs nor their measuring units, and the data is a normalized

data.

3.3.1 Data Analysis

The experimental data has been divided into two sets (one set for estimation of
the model and the other set for validation of the model). The samples 1-1100 are
used for estimation purpose, and the samples 601-1200 are used for validation
purpose. First, the input data and the output data is plotted with respect to
time as shown in gures 3.1, 3.2, & 3.3. From these plots it is observed that the
input signals and output signals are not a ected by an o set and hence there is

no need of de-trending the data.
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Figure 3.1: Plot of Output Data: y; - y3

The data has been analyzed further using the function \advice()" from System
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Identi cation Toolbox of MATLAB. On executing the command \advice(data)"
the analysis of the data is displayed in the MATLAB Command Window as

follows:

1. The system has a direct response from inputs u; and us at time instant k

to y(k). There may be two reasons for this:

There is direct feedback from y(k) to u(k) (like a P-regulator).
Solution: use nk > 0 for these inputs in state-space and input-output

models.

The system has a direct term (relative degree zero)

Solution: use nk = 0 for these inputs

2. There is a very strong indication of feedback in the data.
Solution: With feedback in data, it is recommended to use estimate a model

with large enough disturbance model.

Based on the analysis of the data represented above, it can be inferred that
there is direct feedthrough from inputs to outputs and hence the following is

considered while identifying the glass furnace model from this data:

Estimating the feedthrough from inputs u; and us to the outputs

i.e., estimate the matrix D with nk = [0 1 0]. This implies that D & 0.

Thus, identi cation procedure has been carried out for no direct feedthrough case

as well as for direct feedthrough case, and the models obtained in each of these



28

cases are analyzed and compared.

3.3.2 Linear and Nonlinear Identi cation

The following identi cation techniques are applied to the estimation data using

the System Identi cation Toolbox of MATLAB.

Linear Identi cation techniques

Subspace Identi cation Method: N4SID
Prediction Error Method (PEM)
MIMO ARX method

Non-Linear Identi cation techniques

Non-Linear MIMO ARX method

Non-Linear MIMO Hammerstein-Wiener method

Identi cation has been carried out with the identi cation techniques discussed
above for seven di erent sets of estimation data (i.e., 1-600, 1-700, 1-800, 1-900,
1-1000, 1-1100, 1-1200). Validation of these identi ed models (obtained in each
of the seven cases) has been done using the validation data set (601-1200). In
validation process, the simulated (estimated) model output is compared against
the validation data set and the comparison is represented in terms of the tness

% which is calculated as shown by (3.2) [54].
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kg yk
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100 (3.2)

where y is the actual or measured output, ¥ is the simulated output of the

estimated model, y = mean(y).

Upon validation and comparison of the validation data tness of the identi ed
models, it is observed that the tness of the models obtained through linear
identi cation is relatively better than the tness of the models obtained through

nonlinear identi cation as shown in gure 3.4.

® Model's Overall Fitness (%)

Non-Linear ARX

Hammerstein
Wiener

Figure 3.4: Fitness Comparison of Linear & Non-Linear Models

From gure 3.4, it is observed that among linear identi ed models, the validation

data tness of ARX model is less than the tness of the N4SID and PEM models.
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Besides, the ARX technique provides a polynomial model, whereas the N4SID
and PEM techniques provide a state space model of the system (which is useful
in designing controllers). So, we proceed with the N4SID model and PEM model

for further analysis.

3.3.3 ldenti cation using PEM and N4SID Methods

The state-space model estimated through PEM and N4SID identi cation tech-

niques is in innovations form as follows:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (3.3a)

y(K) = Cx(k) + Du(k) + e(k) (3.3b)

where x(k), u(k), y(k), e(k) are state, input, output and disturbance vectors
respectively. A is the state matrix, B is the input matrix, C is the output
matrix, D is the feedthrough matrix and K is the matrix representing Kalman
gain. The state space identi cation techniques estimate the following parameters
of the state space model: matrices A, B, C, K, and the initial state vector X.

(Note: By default, the matrix D is not estimated)
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Case: Without Direct Feedthrough Term (D =0)

The validation data tness of the N4SID and PEM models (with D = 0) for

seven di erent sets of estimation data is presented in gure 3.5.

= PEM
u N4SID

Figure 3.5: Fitness Comparison of N4SID Models and PEM Models (with D = 0)

It can be observed from gure 3.5 that the tness of PEM model is better

than the the tness of N4SID model. Hence, from here onwards, the results

of PEM identi cation method will be discussed. Among the PEM models, the
model with best tness is achieved through the estimation data set 1-1200, as

illustrated in table 3.1. Figure 3.6 represents the tness of the outputs of PEM
model for this case.
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Fitness (%)
Estimation Data : 1-1200

) ¥ PEM (D=0)
20 -+

10+ S
0 -

Figure 3.6: Fitness of PEM Model (with D = 0)

3.3.4 Simulation Results of Identi cation through PEM

From gure 3.6, it can be observed that the tness level of the PEM model for
the fourth output y, is very low. To improve this tness, various trial and error
cases based on the order of the system and estimation data were carried out but
there was no improvement in the tness. At last, considering the outcome of
the foregoing data analysis, the identi cation is performed again, this time, by

taking into account the presence of direct feedthrough from inputs.
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Case: With Direct Feedthrough Term (D & 0)

Carrying out the identi cation process with the above considerations (with di-
rect feedthrough from inputs u; and us, i.e., D & 0), produced a model in
which the tness of the fourth output increased to a great extent, as well as the
overall tness of the model also increased. Figure 3.7 illustrates the comparison
of tness of PEM model without feedthrough (D = 0) and PEM model with

feedthrough (D & 0). It is observed that the model with D & 0 has better
tness than the model with D = 0.

m PEM model (D=0)
W PEM model (Dz0)

50~1'7

40

/' PEM model (D=0)

/
v Bl e // PEM model (D=0)

Figure 3.7: Fitness Comparison of PEM Models (D = 0 case, and D & 0 case)

The details (validation data tness, loss function, nal prediction error (FPE),
stability of the identi ed model, and order of the model) of the PEM models

obtained through the seven estimation data sets are illustrated in table 3.1.
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Table 3.1: Comparison of PEM Models

: . PEM model
Case | Estimation Data Fitness | Loss Function FPE Stability | Order
1. 1-600 51 1:87 10 ¥ |2:.09 10 4 Stable 5
2. 1-700 50 1:70 10 ® 187 10° Stable 6
3. 1-800 68 3:19 10 ¥ [3:553 10 Stable 7
4. 1-900 72 261 10 ¥ | 2:85 10 Stable 7
5. 1-1000 71 6:29 10 ¥ |6:74 10 1 | Unstable 6
6. 1-1100 74 9:58 10 ' |1:.04 10 *° Stable 7
7. 1-1200 78 352 10 ® | 377 10 6 Stable 7

From table 3.1, it is observed that the PEM model estimated using the data set
1-1200 is best. In this case, a 7™ order, stable, state-space model with lowest

loss function value (3:52 10 %) and FPE value (3:77 10 %) is obtained.

The open-loop responses of the PEM model without direct feedthrough D = 0
and with direct feedthrough D & 0 are illustrated in gures 3.8 and 3.9 which
clearly indicate that the response with direct feedthrough is better than the

response without feedthrough.

3.4 Summary

The data analysis of glass furnace’s input-output data indicated the presence of
direct feedthrough from inputs to outputs. From the simulation results of system
identi cation of the glass furnace through various identi cation techniques, it is

observed that linear identi cation provides models with good tness. Also, the




State

State

x,, OL Response

X,, OL Response

X, OL Response

X,, OL Response

State

State

State

200 400 600
Time

Xs’ OL Response

200 400 600
Time

XB, OL Response

State

State

200 400 600
Time

0 200 400 600
Time

35
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PEM technique outperforms the N4SID technique in terms of model tness. The
state-space model of the glass furnace, obtained through PEM method is used
for the design of various controllers such as optimal regulators (LQR, LQGR),
robust controllers (H, and H4 controllers), model predictive controller, and

adaptive controller, that are presented in chapter-4 and chapter-5.



Chapter 4

OPTIMAL CONTROL &
ROBUST CONTROL

4.1 Introduction to Optimal Control

The theory of optimal control deals with the problem of nding a control law
(for a given system) that helps in achieving a particular optimality criterion (in
other words, the optimal control operates the system at minimum cost). This
problem includes a cost functional (performance index) which is a function of
state and control variables. An optimal control is a set of di erential equations
describing the paths of the control variables that minimize the cost functional.
An optimal control problem in which the dynamics of the system are represented

by a set of linear di erential equations and the cost functional is represented by

37
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a quadratic functional, is called as Linear Quadratic (LQ) optimal control prob-

lem.

4.2 Linear Quadratic Regulator (LOQR)

Given a linear time-invariant (LTI) discrete-time system in state space form by

the following equations:

x(k + 1) = Ax(K) + Bu(k)
y(k) = Cx(k) + Du(k) (4.1)

2(k) = Gx(K) + Hu(k)

where,
X(k) 2 <" is the state vector

u(k) 2 <™ is the input vector
y(k) 2 <P is the measured output vector

z(k) 2 <9 is the controlled output vector

Optimal LQR Control Problem can be de ned as: \ nding a control law
u(k) that minimizes the cost function (performance index) given by (4.2)" [29].
> h i

Jior = 2" (K)Qz(k) + u' (K)Ru(k) (4.2)
k=0
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where,

Q2<499 R2<™ ™are symmetric positive-de nite matrices
IS a positive constant
the term )
> h i
2" (k)Qz(k)
k=0
corresponds to the energy of the controlled output
the term )
> h i
u’ (K)Ru(k)

k=0

corresponds to the energy of the control signal

The most general form for the quadratic criteria is given by

S h i
J= X (KOx(K) + uT (K)Ru(k) + 2x" (K)N u(k) (4.3)

k=0

substituting \z(k) = Gx(k) + Hu(k)" in (4.2) it can be seen that (4.2) is a

special case of (4.3) with

Q=G"QG; R=H'QH+ R; N =G'QH (4.4)

LQR control utilizing state-feedback, is based on the assumption that all the
states are measurable and thereby available for control. In state-feedback LQR

problem, the control law is given as:
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uk) =  Kx(k) (4.5)

where, K 2 <™ " js the feedback gain matrix given by
h i

K=R !B'TP+NT (4.6)

P is the unique, symmetric, positive-de nite solution to the following algebraic
Riccati equation (ARE)
h i h i

PA+A'TP PB+N R!B™P+NT +Q=0 4.7)

In a special case of (4.3) where N 0, the optimal gain and the associated

ARE are given as

K=R IB™TP (4.8)

PA+A'P PBR 'B'"P+Q=0 (4.9)
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4.2.1 Simulation Results

The dynamics of the glass furnace system without disturbances is represented

by the state-space model as

x(k +1) = Ax(k) + Bu(k)
(4.10)
y(k) = Cx(k) + Du(k)

where x(k) 2 <’, u(k) 2 <3, and y(k) 2 <5, are state, control input and
measured output vectors respectively. The matrices A 2 <’ 7, B 2 <’ 3,
C 2 <®7 D 2 <5 3 describe the dynamics of the glass furnace system. The

simulation results are provided for the case without direct feedthrough.

Case: Without Direct Feedthrough Term (i.e., D =0)

LQR controller based on state feedback approach is designed for the glass furnace
system, in MATLAB environment using the discrete-time function \dlgr(A, B,
Q, R)". The following two sets of simulations are carried out through various
combinations of Q and R to investigate the performance of the controller in

response to the weighting factors on states and inputs.

R is kept constant and Q is varied: R=13 3, Q= I, -

Q is kept constant and R is varied: Q=1; ;, R= I3 3
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R=133 Q= 17 7

In this set of simulations, ve di erent cases of weighting matrix Q are consid-
ered. The LQR gain Ky, and its norm obtained in each of these cases is shown

in table 4.1.

Table 4.1: Norm of LQR gain for di erent values of Q

Case Q= 1; ; Kigr
1. 1 l; ; 4.2616
2. 10 10 1, 4 15.9638
3. 100 100 1, + 53.0740
4, 1000 1000 I; - 170.3677
5. 10000 | 10000 1, ; | 502.5511

The closed-loop system controlled by LQR is simulated for the cases illustrated
in table 4.1, and its responses are plotted. The state trajectories of the regulated
closed-loop system are shown in gures 4.1 and 4.2. From the gures it is
observed that more weight on the states leads to a response with less oscillations
and less settling time. The case with Q = 1000 1; ; & R = I3 3 gives the best
result but at the expense of high LQR gain K4 as it can be seen in the table

above.

Q=1l;7 R= Iz 3

In this set of simulations, ve di erent cases of weighting matrix R are consid-
ered. The LQR gain Ky, and its norm obtained in each of these cases is shown

in the table below.






















































































































































































































































