i

[image: image1.jpg]KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by HAMDI ALI AL-JAMIMI under the direction of his thesis advisor
and approved by his thesis committee, has been presented to and accepted by the Dean of
Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER OF
SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

A ik

Dr. Mohammad Alshayeg (Thesis Advisor)

Vel ag]

Dr. Sabri Mahmoud (Member)

Wils/L

Dr. Mahmoud Elish (Member)

KW Ca \gu__p

Dr. Kanaan A. Faisal
(Department Chairman)

Dr. Salam A. Zummo
(Dean of Graduate Studies)

S |#lio
Date

[image: image16.emf]

[image: image2.png]

Dedication
To my beloved family:
Namely, to the two candles lighting my course my dear parents,

 to my brothers (Ahmed and Mohammed),

to my lovely wife and my darling kid (Hussam-Aldeen)

Acknowledgement
First, and foremost, all praise and thanks are due to Almighty Allah (S.W.T.), the giver of knowledge, for giving me the health, courage and patience to carry out this research.

I acknowledge the support given by Dhamar University and by King Fahd University of Petroleum and Minerals (KFUPM) for all support extended during my graduate studies and during this research.
I sincerely and deeply acknowledge with unrestrained appreciation my thesis advisor Dr. Mohammad AlShayeb for his continuous support, unlimited help, valuable guidance, encouragement and advice. My gratitude is also due to the thesis committee members Dr. Sabri Mahmoud and Dr. Mahmoud Elish for their attention and enlightening comments.

Thanks to all colleagues and friends who supported me in many ways and who have been like a second family to me here in KFUPM.
Last, but not least, I owe a debt of gratitude to my dear parents, the gift of Allah to me. They have always been there for me in my good and difficult times. They have supported me in everything that I have endeavored. A prayer is the simplest means I can repay them - May Allah (S.W.T.) give them good health and give me ample opportunity to be of service to them throughout my life. I am also greatly indebted to my family members for their prayers, encouragement, and continuous support.
Table of contents
ivDedication

vAcknowledgement

viTable of contents

ixList of Tables

xiList of Figures

xiiiAbstract (English)

xivAbstract (Arabic)

1Chapter 1. Introduction

41.1
Problem Statement

51.2
Research Contributions

61.3
Thesis Organization

8Chapter 2. Background

92.1
Aspect Oriented Programming

102.1.1
Aspect-Oriented Programming Benefits

132.1.2
Aspect-Oriented Programming Methodology

152.1.3
Aspect-Oriented Language Terminology

172.2
Software Refactoring

172.2.1
Definition of Refactoring

182.2.2
Benefits of Refactoring

192.3
Aspect-Oriented Refactoring

212.4
Software Quality Attributes

222.4.1
Internal Software Quality Attributes

222.4.2
External Software Quality Attributes

242.4.3
Software Metrics

26Chapter 3. Literature Review

273.1
Refactoring experiences

293.2
Aspect-Oriented Programming Refactoring

303.3
Aspect-Oriented Programming Refactoring Catalogs

343.4
Aspect-Oriented Programming Refactoring Tools and Techniques

363.5
Aspect-Oriented Programming Effects on SW Quality Attributes

43Chapter 4. AOP vs. OOP

444.1
Assessment of OOP

454.2
Crosscutting concerns

474.3
Separation of Concerns

484.4
Communication between Modules

484.4.1
Explicit calls in OOP

494.4.2
Implicit Invocations in AOP

504.5
Unique Concepts and Mechanisms of AOP

514.5.1
AspectJ

514.5.2
Joinpoint

534.5.3
Aspect

564.5.4
Pointcut

584.5.5
Advice

604.5.6
Inter-type Declarations

614.5.7
Declare Clauses

634.6
Altering the behavior of a class

644.7
Weaving

67Chapter 5. Relating Internal Software Quality to External Software Quality

685. 1
Internal Software Quality Attributes under Study

715. 2
External Software Quality Attributes under Study

725. 3
External Quality Attributes Assessments Using Internal Quality Attributes

76Chapter 6. Aspect-Oriented Refactoring Methods

776.1
The Aspect-Oriented Refactoring Categories

786.1.1
Aspect-aware Object-Oriented Refactorings

816.1.2
Refactoring Object-Oriented code to Aspects

846.1.3
Specific Refactorings for Aspect-Oriented Constructs

856.2
The Aspect-Oriented Refactorings under study

866.2.1
Specific Refactorings within aspects

976.2.2
Specific Refactorings between Different Aspects

1086.3
Mapping the AOR Methods to the Aspect-Oriented Constructs

110Chapter 7. AOR Classification Based on Software Quality Attributes

1117.1
Source Code Examples

1117.2
Classification of AOR Methods based on Internal Quality Attributes

1307.3
Classification of AOR Methods based on External Quality Attributes

144Chapter 8. Empirical Validations

1458.1
Software Systems Background

1468.2
Data Collection

1508.2.1
Results from Prevayler

1558.2.2
Results from AJHotDraw

1608.2.3
Results from Aspecttetris

1648.2.4
Results from AJEFW

1688.2.5
Results from SpaceWar

1718.2.6
Results from Telecom

1758.3
Discussion of Results

183Chapter 9. Concluding Remarks

1849.1
Major Contributions

1859.2
Limitations and Threats to Validity

1869.3
Future work

188References

194Appendix A. AspectJ Joinpoint

197Appendix B. Pointcuts

199Appendix C. Source Code Examples

227Vita

List of Tables

42Table ‎3‑1 Summary of the related work

55Table ‎4‑1 Summary of the similarities and differences between the class and the aspect

57Table ‎4‑2 The logical operators for combining the pointcuts

66Table ‎4‑3 Summary of the main differences between the AO and the OO paradigms.

75Table ‎5‑1 Relation between Internal & External Quality attributes

78Table ‎6‑1 Overview of the different aspect-oriented refactoring categories

109Table ‎6‑2 Mapping between the AOR methods and the aspect-oriented constructs

114Table ‎7‑1 Measurement results for source code examples before and after applying AOR methods

128Table ‎7‑2 Aspect-Oriented Refactoring methods classification based on internal software quality attributes

134Table ‎7‑3 Aspect-Oriented Refactoring Methods classification based on External software quality attributes

137Table ‎7‑4 Aspect-OrientedRefactoring methods classification based on internal software quality attributes

139Table ‎7‑5 Aspect-OrientedRefactoring methods classification based on External software quality attributes

142Table ‎7‑6 Classification of the AOR methods within aspects based on their effects on the external quality attributes

143Table ‎7‑7 Classification of the AOR methods within aspects based on their effects on the external quality attributes

146Table ‎8‑1 The main characteristics of the studied software projects in the validation

149Table ‎8‑2 The AOR methods applied on each software project

151Table ‎8‑3 Measurements results for the affected aspects before and after applying AOR methods: Prevayler project

154Table ‎8‑4 Changes in the internal quality metrics caused by applying refactoring methods: Prevayler project

156Table ‎8‑5 Measurements results for the affected aspects before and after applying AOR methods: AJHotDraw project

159Table ‎8‑6 Changes in the internal quality metrics caused by applying refactoring methods: AJHotDraw project

161Table ‎8‑7 Measurements results for the affected aspects before and after applying AOR methods: Aspecttetris project

163Table ‎8‑8 Changes in the internal quality metrics caused by applying refactoring methods: Aspecttetris project

165Table ‎8‑9 Measurements results for the affected aspects before and after applying AOR methods: AJEFW project

167Table ‎8‑10 Changes in the internal quality metrics caused by applying refactoring methods: AJEFW project

169Table ‎8‑11 Measurements results for the affected aspects before and after applying AOR methods: SpaceWar project

170Table ‎8‑12 Changes in the internal quality metrics caused by applying refactoring methods: SpaceWar project

172Table ‎8‑13 Measurements results for the affected aspects before and after applying AOR methods: Telecom project

174Table ‎8‑14 Changes in the internal quality metrics caused by applying refactoring methods: Telecom project

176Table ‎8‑15 Classification of refactoring methods based on internal software quality attributes using empirical results

178Table ‎8‑16 Classification of refactoring methods based on external software quality attributes using empirical results

List of Figures

13Figure ‎2-1 shows improving the productivity with Aspect-Orientation

14Figure ‎2-2 The AOP development stages

23Figure ‎2-3 ISO 9126 software quality attributes

64Figure ‎4‑1 The compilation and weaving process

80Figure ‎6‑1 An object-oriented refactoring for renaming method: before and after

82Figure ‎6‑2 Extract method calls refactoring: Before Refactoring

83Figure ‎6‑3 Extract method calls refactoring: After Refactoring

86Figure ‎6‑4 Change Advice Kind from Around: Before and After

87Figure ‎6‑5 Extract Method from Advice: Before and After

88Figure ‎6‑6 Inline Method into Advice: Before and After

89Figure ‎6‑7 Merge Advice Bodies: Before and After

90Figure ‎6‑8 Generalize before or after Advice to around Advice: Before and After

91Figure ‎6‑9 Delete Unreachable Advice: Before and After

92Figure ‎6‑10 Change Advice kind from Before to After: Before and After

94Figure ‎6‑11 Separate Pointcuts: Before and After

94Figure ‎6‑12 Introduce Aspect Protection: Before and After

95Figure ‎6‑13 Replace Statement List in advice with Method call: Before and After

96Figure ‎6‑14 Delete Unreferenced Named Pointcut: Before and After

97Figure ‎6‑15 Pull Up Advice: Before and After

98Figure ‎6‑16 Push Down Advice: Before and After

99Figure ‎6‑17 Pull Up Declare Parents: Before and After

100Figure ‎6‑18 Push Down Declare Parents: Before and After

101Figure ‎6‑19 Pull Up Inter-type Declaration: Before and After

102Figure ‎6‑20 Push Down Inter-Type Declaration: Before and After

103Figure ‎6‑21 Pull Up Pointcut: Before and After

104Figure ‎6‑22 Push Down Pointcut: Before and After

105Figure ‎6‑23 Eliminating Borrowed Pointcut: Before and After [60]

106Figure ‎6‑24 Eliminating Duplicated Pointcut: Before and After [60]

107Figure ‎6‑25 Move Static Introduction: Before and After.

112Figure ‎7‑1 Coupling Dimensions on aspect-oriented systems [45]

148Figure ‎8‑1 The used methodology to collect the data

Abstract

	NAME:
	HAMDI ALI AHMED AL-JAMIMI

	TITLE:
	CLASSIFICATION OF REFACTORING METHODS FOR ASPECT ORIENTED PROGRAMMING BASED ON SOFTWARE QUALITY ATTRIBUTES

	MAJOR FIELD:
	COMPUTER SCIENCE

	DATE OF DEGREE:
	MARCH 2010.

Refactoring improves software quality by improving the design of existing code through changing its internal structure while preserving its behavior. Improving one quality attribute may affect negatively other quality attributes. A number of refactoring methods were proposed specifically for Aspect-Oriented systems. Aspect-oriented techniques are emerging to cope with the challenges of current software development and to address shortcomings of existing paradigms such as object-oriented and component-based software engineering. However, there are no guidelines to help Aspect-Oriented software designer decide which refactoring methods to apply in order to optimize a software system with regard to certain design goals. In this thesis, we propose a classification of refactoring methods for Aspect-Oriented systems based on their measurable effect on software quality attributes and then we empirically validate this classification using software applications.

ملخص الرسالة
	الاسم:
	حمدي علي الجميمي

	عنوان الرسالة:
	تصنيف أسليب إعادة الهيكلة الخاصة بالبرمجة الموجهة نحو الجانب بناء على صفات جودة البرمجيات

	التخصص:
	علوم الحاسوب

	تاريخ التخرج:
	مارس 2010

تعتبر إعادة الهيكلية واحدة من اكثر التقنيات المستخدمة لتحسين جودة البرامج. إعادة الهيكلية هي عملية تحسين تصميم البرامج عن طريق تغيير هيكلها الداخلي بدون التأثير على السلوك الخارجي. عند تطبيق أساليب إعادة الهيكلية الخاصة بالبرمجة الموجهة نحو الجانب فإن بعض صفات الجودة يمكن أن تتحسن والبعض الآخر يمكن أن يضعف. وهذا يعني أن تحسين صفة واحدة قد يؤثر سلباُ على نوعية اخرى من الصفات. ومع ذلك، لا توجد مبادئ توجيهية لمساعدة مصمم البرامج في إختيار بعض أساليب إعادة الهيكلية الخاصة بــالبرمجة الموجهة نحو الجانب لتطبيقها من أجل الإستفادة المثلى فيما يتعلق ببعض أهداف التصميم. في هذا البحث، نقترح تصنيف أساليب إعادة الهيكلية الخاصة بالبرمجة الموجهة نحو الجانب بناء على تأثيرهم على صفات جودة البرامج. بالإضافة الى ذلك, لقد تحققنا من صحة هذا التصنيف بإستخدام نظم برامج حقيقية. هذه الدراسة بدورها، تساعد مصمم البرامج، بناء على غاياته وأهدافه، في إختيار أساليب إعادة الهيكلية الخاصة بالبرمجة الموجهة نحو الجانب المناسبة والتي من شأنها أن تحسن من جودة التصميم. بالإضافة الى ذلك فإن هذه الدراسة تمكن مصمم البرامج من التنبؤ بجودة البرامج الناجمة عن إستخدام أساليب إعادة الهيكلية الخاصة بالبرمجة الموجهة نحو الجانب.
1. Chapter 1

Introduction

The software system’s purpose is to give some functionality to its users. However, the software system can not merely be concerned with its main purpose. In many cases, the system must also provide additional concerns, which are outside the main domain, to complement its main function, as well as to produce a successful, robust and complete system [1]. Adding like these secondary concerns and changing in requirements make the code a subject for modifications and improvements. Actually, the process of evolving the requirements and environments might be continuous and permanent. Naturally, when changes are achieved by extending the software system without simplifying its structure, the code distances from the original design. That results in duplicated code and lack of modularity. Hence, instead of cluttering up the structure the changes can be accomplished by applying another kind of changes, called refactorings, improving only the internal structure of the system without altering its behavior [2, 3]. Refactorings generally represent transformations that may be applied to code given with considering some restrictions. Those restrictions assist to guarantee that the refactoring maintains program consistency and preserves its behavior.

Ideally, the need for abstraction and modularization of software system functionality grow as long as the systems become increasingly complex [4]. The decomposition of a system into separate concerns would lead directly to an optimal structure of the intended system. Even though Object-Oriented Programming (OOP) provides effective means assisting to increase productivity and quality of the system, it does not provide enough composition mechanisms to enable the desired level of separation of concerns [5]. A concern is basically any issue in a system’s design deserving of the programmer’s attention at a given time during the design and development. Separation of concerns is the ability to keep each and every concern in its own unit of modularity, for the sake of its own consistency [6].

Aspect-Oriented Software Development (AOSD) [6] is an emerging paradigm that comes to complement object-orientation. AOSD helps developers to solve problems related to modularity that could not be properly addressed by object-orientation [5, 7]. Aspect-orientation focuses to enable the clean modularization of crosscutting concerns such as security, logging, exception handling and others in a more effective manner [6].
The application of refactoring during an aspect-oriented development process or migrating an object-oriented system to an aspect-oriented one includes improving the comprehensibility of the system and thereby improving its maintainability and extensibility [8]. Furthermore, applying both aspect-orientation as well as refactoring during a software development process permit to increase the modularity and comprehensibility of software [7, 9].
In general, refactoring reduces software complexity by improving its internal structure. Therefore, refactoring is assumed to improve the software quality attributes. Nevertheless, refactoring still has negative effect. That is, improving one quality attribute, by applying aspect-oriented refactoring, may affect negatively another one. Thus, we have to choose the appropriate aspect-oriented refactoring (AOR) methods to apply in order to improve certain software quality attributes and a particular aspect’s feature [10].

In this work we aim to propose a classification of AOR methods based on their measurable effect on software quality attributes. The purpose of the proposed classification is to help the designer and the developer to decide which refactoring methods to apply in order to optimize a software system with respect to certain aspect-oriented construct.

The remaining of this chapter presents the research problem statement, the main contributions of this thesis and finally, the organization of the thesis.

1.1
Problem Statement

Refactoring methods help software developers to safely and efficiently restructure their code in order to greatly improve its quality such as reliability, extensibility, modularity, reusability, complexity, efficiency and maintainability [10, 11].

There are many different refactoring techniques that have been proposed specifically for Aspect-Oriented Programming (AOP) [7, 9, 11-19]. Each refactoring method has a particular purpose and effect; besides, the effect of refactoring on software quality attributes may vary [10]. That is, some quality attributes can be improved and some others can be impaired according to the applied AOR method [20]. Therefore, improving one quality attribute may affect negatively other quality attributes. In addition, the designers usually have design objectives to achieve which may contradict with each other.

However, these techniques were not classified based on their measurable effect on aspect-oriented system, in other words, there are no guidelines to help the developer and designer to decide which AOR methods to apply in order to optimize a software system with regard to certain design goals and a particular construct of AO.

1.2
Research Contributions

The main goal of this thesis is to propose a classification of AOR methods. Fundamentally, those will be classified based on the measurable effect of AOR methods on internal and external software quality attributes. The aim of using the classification is to optimize a software system with regard to certain design goals, a specific aspect-oriented construct and to predict the quality emerged by using the AOR.

In order to accomplish this work, we set the following objectives to be performed:

1. Identify the differences between object-oriented and aspect-orientated paradigms.

2. Identify the object-oriented refactoring methods that can be used for AOP.

3. Identify the existing refactoring to aspects techniques.

4. Identify a set of aspect-oriented metrics that affect external software quality attributes based on available literature.
5. Empirically evaluate the effect of AOR methods on internal software quality metrics and external software quality attributes.
6. Propose a classification for AOR methods based on their measurable effect on internal and external software quality attributes.

7. Empirically validate the classification of the refactoring method for aspect-oriented programming by using real software projects.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides a brief overview of aspect-oriented predecessor used to achieve Separation of concerns focusing on the limitations and associated problems. Then it provides a background on AOP which effectively realized the hopes initially placed on crosscutting concerns separation. Next, it presents the refactoring and its benefits. Finally, it introduces a brief overview about the software quality attributes.

Chapter 3 presents an overview of the related work divided into five groups: (i) refactoring experiences, (ii) AOP refactoring, (iii) AOP refactoring catalogs, (iv) AOP refactoring tools and techniques and (v) AOP effects on software quality attributes.

Chapter 4 introduces a brief assessment of OOP. Then, it describes the main features of AOP. The chapter explains how the AOP adds some new features to extend OOP. It summarizes the issues that could be clear differences between the two paradigms.

Chapter 5 presents the internal and external software quality attributes that are used in our AOR classification. In addition, this chapter shows, based on the previous studies, how the internal software quality attributes can be used to assess the external quality attributes.

Chapter 6 categorizes the AOR methods by classifying them based on their applicability to AOP. It classifies the methods to (i) traditional object-oriented refactorings that can be applied to aspect-oriented code with adaptations, (ii) Refactorings of Crosscutting Concerns to refactor an existing object-oriented code to aspects and (iii) specific refactorings for AOP constructs. Then, the chapter presents a description for each AOR under study. Finally, it shows the mapping for those refactorings to the unique aspect-oriented constructs.

Chapter 7 classifies the specific AOR methods based on their measurable effects on software quality attributes. The chapter presents the measurements values for source code examples. Moreover, it describes the effect of each AOR on the studied software quality attributes.

Chapter 8 empirically validates the classification of AOR methods by using real software projects.

Chapter 9 concludes this thesis by summarizing the contributions, threats and surveys opportunities for future work.

2. Chapter 2

Background

This Chapter provides an overview of AOP and refactoring. Section 2.1 introduces AOP, its benefits, its methodology and its terminology. Section 2.2 presents refactoring. Aspect-oriented refactoring is discussed in section 2.3. Finally, section 2.4 presents the software quality attributes.

2.1 Aspect Oriented Programming

Several researchers believe that AOP and more generally aspect-oriented software development is very promising software engineering paradigm [5, 6]. AOP is rapidly evolving as a concept within software development. Recently, many articles on AOP have been published since aspects have emerged as a main programming paradigm for the modularization of crosscutting concerns [21]. It introduces an advanced modularization concept to explicitly specify the composition of program behavior on top of existing concepts, such as OOP [5].
OOP enables significant development in software engineering since it provides effective means that help to increase software quality. Nonetheless, it still fails to achieve a full separation of concerns [22, 23]. This is because that OOP introduces single decomposition criterion, the class decomposition unit. Thereby, concerns do not separate well with this decomposition; they tend to crosscut existing units of modularity, e.g. classes and methods. In a different way, AOP is able to provide a solution for the problem of localizing concerns, which do not fit naturally into a single program module or even several closely related program modules. This can be achieved through implementing aspects that address these crosscutting concerns and refer to a number of joinpoints in the base code [9, 18, 22, 24]. Actually, the goal of AOP is to modularize related code that would otherwise be spread throughout different modules in the program’s implementation. For instance, it is helpful to utilize AOP to represent independent concerns, like synchronization, resource sharing, distribution or debugging, they crosscut the system in a single module [6, 24].

AOP builds on previous technologies, including procedural programming and OOP, which have already made considerable improvements in software modularity. Thus, AOP is an additional technique, not a replacement for OOP, so it is not a standalone programming paradigm like the latter. AOP must be used together with other programming paradigms [22, 24, 25]. AOP differs from OOP in managing crosscutting concerns. AOP modularizes the individual aspects and makes core modules oblivious to the presence of aspects that intercept their execution and/or modify their structure. As a result, the implementation of each individual concern evolves independently [26].

By separating crosscutting concerns, AOP supports implementation that isolates functional from non-functional requirements. As a consequence, the poor separation of crosscutting concerns can lead to: inconsistency when modifying the code, less readable code, poorer maintainability and inflexible code as the system is changed over time [27].
2.1.1 Aspect-Oriented Programming Benefits

AOP tends to contribute to solve the problems of OOP. This section presents how AOP can help and support system development. Thus, the benefits of AOP actually are more important than the perceived costs. In the following, we introduce some of these benefits:

· AOP gives the developer the opportunity to move non-functional requirements away from the primary code. That is, functionality that cut across modules can be gathered at a single location in an aspect. Thus, the module is no longer responsible for other crosscutting concerns [24].
· In AOP, there is no risk for inconsistency since a modification of the aspect code will be applied everywhere the aspect is used [28]. As mentioned previously, AOP counteracts scattering by gathering the code in one aspect which enables system wide changes to be made in one location.

· AOP addresses each concern separately, so each module is more loosely coupled than equivalent conventional implementations. That is the key to greater code reuse because of the more loosely coupled implementation [29].

· AOP reduces the need to make couplings across the architecture when making changes to the system. Code becomes more flexible as coupling between system-components are lowered because of the use of aspects [30].

· Maintainability is improved as changes only have to be performed in one place and it is easier to maintain an overview of the effects of changing a particular part of the code [28].

· AOP modularizes the individual aspects and makes core components oblivious to the aspects [26]. This makes the evolution of the system easier.

· The error handling can be left to aspects instead of disordering the code. Exceptions can be overridden, for instance by translating them into other kinds of exceptions [28].
· The collection of code in aspects minimizes the risk of redundancy and it will improve the reuse of code [24]. Aspects that handle testing and logging, as well as performance measurements and exception handling, can in many instances be reused in later projects with minor modifications.

· AOP can be used for performance optimization [31]. That is, the using of aspects may remove the possible problems, occurred when using OOP such as redundancy in computation, excess memory turnover and inefficient data cache usage.
· AOP is well suited for security since aspects make for an easy location to place for instance log in-tasks and encryption [32]. AOP can allow security concerns to be specified modularly and applied to the main program in a uniform way.

Figure 2.1 shows the power of the aspect concept such that the modifications to the system can be accomplished in easy manner.

[image: image4.emf]

Figure ‎2-1 shows improving the productivity with Aspect-Orientation
Figure 2.1 shows that productivity can be improved during the development phase and that change management is easier after deployment when you use Aspect-orientation. (a) Shows the original system. (b) Introduces two ways for adding new concerns to the system. In conventional way, the new concerns are added into the original modules, while the new concerns will be separated in unique unit by using aspects way. (c) Demonstrates that no changes affect the original system when using Aspects way.

2.1.2 Aspect-Oriented Programming Methodology

In general, developing a system using AOP is similar to developing a system using other methodologies: identify the concerns, implement them and form the final system by combining them. These three steps, as shown in figure 2.2, can be typically defined in aspect-orientation way as follows: Aspectual Decomposition, Concern Implementation and Aspectual Recomposition [24].

[image: image5.jpg]o
A
o

Yeloteiole o 921 e o el e 9 el e el el e el et

%\

Y.
1

A P P B P o P P P e P A

CLASSIFICATION OF
REFACTORING METHODS FOR
ASPECT ORIENTED PROGRAMMING
BASED ON
SOFTWARE QUALITY ATTRIBUTES

BY
HAMDI ALI AL-JAMIMI
A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER SCIENCE

MARCH 2010

|
|

el e o ol e e ol e o o o e o o o e o e e o o o o e o e e e il

?
A

&

S S S S T S S S e SRS RS e S e

Figure ‎2-2 The AOP development stages
Figure 2.2, illustrates the aspect-oriented paradigm development stages. Firstly, the system requirements are decomposed into individual concerns. Secondly, they are implemented independently either in aspects or in classes and interfaces. Finally, the weaver takes these implementations and combines them together produce a woven-source code that can be compiled by using a standard compiler to form the final system.
The fundamental change that AOP brings is the preservation of the independence of the individual concerns when they are implemented. The implementation can then be easily mapped back to the corresponding concerns, resulting in a system that is simpler to understand, easier to implement and more adaptable to change.

2.1.3 Aspect-Oriented Language Terminology

One of the programming languages and tools that have been developed to support AOSD is AspectJ [33]. AspectJ is an extension of the Java language. AspectJ is the most mature aspect-oriented language currently available. It includes mechanisms to support the concepts of AOP. AspectJ uses extensions, several new concepts, to the Java programming language to specify the weaving rules for the dynamic and static crosscutting. AspectJ offers aspects which are new units of modularity to encapsulate the implementation of crosscutting concerns. The aspects might have pointcuts, advices and introductions. Those constructs can be related to joinpoints in the base code. While we introduce them briefly in this section, each construct will be discussed in depth in section 4.5.

Joinpoint- is a special well-defined location within the primary code where a concern will crosscut the application [24]. The Joinpoint could be method call, method execution, object instantiation, constructor execution, field reference or handler execution. Actually, AspectJ defines 11 types of such joinpoints that can be recognized by the compiler [22]. For example, the execution of the credit(..) method and the access to the _balance instance member can be considered the possible joinpoints in the following fragment of code.

public class Account {

...

void credit(float amount) {

_balance += amount;

}

}

Pointcut- is a means of referring to a joinpoint or a collection of joinpoints [24]. Pointcut is used in the definition of an advice. For instance, to capture the execution of the credit(..) method in the Account class shown earlier, the following pointcut can be used.

pointcut captureMethod():

execution(void Account.credit(float));

Advice- is used to define additional code that should be executed at a joinpoint selected by a pointcut. The Advice can execute before, after or around the joinpoint. It can be the actual implementation of a concern [22]. For example, to print a message before the execution of the credit(..) method in the Account class, we can use the following advice:

before() : captureMethod(){

 System.out.println ("About performing credit operation");

}

Introduction- is a static crosscutting instruction affects the static type signature of the base program [24]. It makes static changes by adding method or fields to the modules without affecting their behavior directly. For example, the following introduction declares new variable to Account class:

public float Account._amount;
Aspect- is a well modularized implementation of a crosscutting concern. While a class is the central unit in Java, the aspect is the central unit of AspectJ. The aspect may include pointcut, advice, introduction as well as other kinds of declarations permitted in class declarations. All the pervious code fragments, in this section, can be combined together in an aspect ExampleAspect as follows:

public aspect ExampleAspect {

 pointcut captureMethod():

 execution(void Account.credit(float));

 before() : captureMethod {

 System.out.println("About performing credit operation");

 }

 public float Account._amount;

}

2.2 Software Refactoring

Software refactoring is one of the techniques that deal with changing software systems in a controlled way. Refactoring is a widely accepted approach that facilitates the continuous change of source code, enabling it to evolve inline with changes in environments and requirements [9, 34].

Most refactoring methods increase the modularity of code and eliminate redundancy [7, 9, 10]. In today’s software engineering, refactoring can be seen as one of the key factors in software evolution [18].

2.2.1 Definition of Refactoring

Refactoring is a technique that aims to improve the internal structure of a software system without changing its external observable behavior [3].

The application of refactoring methods during an object-oriented development process improves the design and thereby the quality of software. Therefore, refactoring can improve the design inherent in the existing code while preserving its behavior. The refactored code is intended to be better organized and easier to maintain, adapt and extend while providing the same functionality. Each refactoring describes a disciplined way to change code for achieving a particular design modification, without producing bugs, compiler errors, or affecting the external behavior of the system [9, 10].

In practice, refactorings are usually achieved through decomposing them into several small steps to avoid introducing defects or bugs. There are also tests performed frequently in between those steps [3]. For instance, given restructurings in [3, 12, 35] are performed carefully with a sequence of small refactorings rather than a few large ones, as large restructurings increase the possibility of introducing errors. In practice, larger refactorings are usually decomposed into several small ones. Indeed, sometimes applying a given refactoring may require several others to be made first.

2.2.2 Benefits of Refactoring

Refactoring can be used for several purposes. Among these purposes are:

· Refactoring improves the design of software system. When the code is poorly designed it leads to many fragments of code to do the same thing in several places. Thus an important aspect of improving design is to eliminate duplicate code [3].

· Refactoring makes software easier to understand. It can be utilized to comprehend the intent of unfamiliar code. This property assists to express the purpose of the code, as well as to review the code for the programmer [3].

· Refactoring helps to find bugs. The mean that assists in understanding the structure of the code also helps to mark bugs [3].

· Refactoring helps to develop software more rapidly. Refactoring stops the design of the system from decaying. Moreover, it can even improve a design. A good design is essential for maintaining speed in software development. Differently, a poor design starts to slow the software development down, since more time is spent to find and fix bugs instead of adding new functions [3].

· Refactoring can assist to enhance the modularity of the system’s units. One of the interests of programmers is to place all concerns in a software system in their own units of modularity. In practice, the programmers are not capable to achieve this perfectly from the first time. As a result, the system’s source code should be modified to get an equivalent to the desired modularity [9].

· Refactoring can be utilized to reduce the tangled code in the different modules. The process of continuous evolving requirements and environments may lead to changes in the system’s existing units. Consequently, that leads the existing units to contain code related to more than one concern (tangled code). Thus, whenever changes need to be made to one of the concerns, it is necessary to change all the relevant units again [9].
2.3 Aspect-Oriented Refactoring

While refactoring aims to improve the design of existing code, AOP provides new modularization of software systems by encapsulating crosscutting concerns. Based on these two techniques AOR restructures crosscutting elements in separate units of code. That is by enabling developers to extract code that cuts across an application into an aspect [7, 11, 36]. With AOP, besides the ability to apply object-oriented refactoring methods within the program’s base code and aspects, developers have the opportunities to restructure new aspect-oriented artifacts, as well as tidy up the aspect’s internal structure [18, 37, 38].

The search for candidate aspects in existing object-oriented systems and separate them from the systems into independently aspects is called aspect mining and refactoring. In general, when extracting aspects from the base program, AOR methods includes two main steps. First, aspect mining represents identification of aspect candidates in the base code. Second, aspect refactoring is considered semantic-preserving transformation to migrate the aspect candidate code to aspect-oriented code [8, 39]. Once the concerns are identified, they can be used for refactoring purposes or to understand the program. Furthermore, aspect mining increases the understanding of crosscutting concerns by thinking about the circumstances under which a concern should be implemented as an aspect.

The most observable advantage of AOR comes when there are multiple crosscutting locations in the base code. Furthermore, AOR is helpful even in single location cases to encapsulate non-core functionalities. For instance, in traditional refactoring, the understandability of the code can be improved by extracting a method even when there is only one place that is making a call to that method. Afterward, in many cases, a call to the extracted method is required at several places. In the same way, in AOR, the joinpoints may be used to keep expanding of the functionality, i.e. more code could crosscut the base program through the predefined joinpoints [17].

In general, most refactoring methods increase the modularity of code and eliminates redundancies. The same improvements are gained by AOSD, so it is normally to apply refactoring and AOP within the same development process.

The advantages of using both approaches are threefold. Firstly, refactoring can be applied to wave some of the base program to aspects. The understandability of the base program will be increased without the need to understand the woven aspects. Secondly, applying the refactorings to the aspect-oriented constructs may increase their understandability and modularity. Finally, refactoring can help to restructure object-oriented code in an aspect-oriented manner, which allows migrating from object-oriented to aspect-orientated software [7].

2.4 Software Quality Attributes

Software engineering, in general, can be defined as the production of quality software [4]. Defining software quality is not trivial. Often it means different things to different people. There are many definitions for software quality as follows; it can be defined as the degree to which a system, component, or process meets specified requirements. According to ISO 9126 standard definition [40], software quality is “the totality of features and attributes of a software product that bear on its ability to satisfy stated or implied needs.” That is, “the set of attributes of a software product by which its quality is described and evaluated,” called software quality attributes.

The factors that have effects on the software quality attributes can be categorized into two different groups: internal software quality attributes and external software quality attributes.

2.4.1 Internal Software Quality Attributes

The attributes that can be measured directly in terms of the product, process and resource itself are called the internal attributes of the product, process and resource respectively [41]. The most understandable and useful attribute is the size of a software system which is internal product attribute; it can be measured directly by counting number of lines of code of a program (LOC).

2.4.2 External Software Quality Attributes

The quality of software can be seen as multidimensional in the way quality factors are connected to other quality factors. The ISO 9126 standard [40] provides a framework for evaluating software quality.

According to the ISO 9126 standard, software product quality should be evaluated using a defined quality model. However, it is not practically possible to measure all internal and external subcharacteristics for all parts of a large software product [40].

The ISO 9126 standard consists of six main quality attributes that are generally important for software which are divided into subcharacteristics. These attributes and their sub-characteristics are shown briefly in Figure 2.3.

[image: image6.bmp]

Figure ‎2-3 ISO 9126 software quality attributes

· Functionality- is defined as a set of attributes that bear on the existence of a set of functions and their specified properties.

· Reliability- is defined as a set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a stated period of time.

· Usability- is a set of attributes that bear on the effort needed for use and on the individual assessment of such use by a stated or implied set of users.

· Efficiency- is defined as a set of attributes that bear on the relationship between the level of performance of the software and the amount of resources used under stated conditions.
· Maintainability- is a set of attributes that bear on the effort needed to make specified modified modifications. Additionally, it can be defined as the ease with which a software system or component can be modified to correct faults, improve performance or other attributes or adapt to a changed environment.

· Portability- is defined as a set of attributes that bear on the ability of software to be transferred from on environment to another. In other words, it is the effort required to transfer a program from one computing environment or platform to another.

2.4.3 Software Metrics

Measurement is needed for assessing the status of any project, product, process, or resource. Software metrics can greatly improve the understanding of how individual modules inside an application work and the relationships between these modules. Through software metrics engineers are able to evaluate a software application in terms of complexity, adaptability, maintainability and other quality factors [4].

Essentially, a software metric is a measure of some property of a piece of software or its specifications. Examples of common software metrics include: source lines of code, cyclomatic complexity, function point analysis, cohesion and coupling.

Software metrics can be used as internal quality attribute of the software product, process, or resource. They can be utilized to extract measurable and useful information about the structure of a software system [41].

In fact, there are many metrics suites that can be used to measure object-oriented software systems and evaluate their quality. Chidamber & Kemerer (C&K) [42, 43] metrics are the most popular metrics suite for object-oriented systems. Aspect-oriented metrics based on those widely used metrics with object-oriented software. Some extensions of the object-oriented metrics, like C& K metrics, to AOP are available in the literature [29, 44-47]. That is, the object-oriented metrics can be adapted to AOP software, by unifying classes and aspects as well as methods and advices [41, 46].

3. Chapter 3

 Literature Review

This chapter presents the literature review of the related work. It can be organized in five groups: refactoring experiences, AOP refactoring, catalogs of AOR methods, AOP refactoring tools and techniques and AOP effects on quality attributes.

3.1
Refactoring experiences

Refactorings are typically performed through small steps, often with tests performed in between, to prevent the eventual introduction of defects. Researchers have studied when and how to apply refactoring. Martin Fowler [3] defined a catalog of object-oriented refactoring methods. The catalog presents seventy-two named refactorings meant to be performed in a manual but disciplined way. Additionally, he defined a number of bad programming or design practices called “bad smells”, which indicate that something is being mishandled in the software. Fowler links the bad smells to the presented refactorings. If bad smells are detected then the code should be refactored. The entities where the bad smells are detected are the place where the suitable refactoring should be applied.

Wake in his book [48] identified and categorized the smells into two main categories: smells within classes and smells between classes. He also pointed out practices to recognize the most important smells and how to apply the most important refactoring techniques.

J. Kerievsky in his book introduced the theory and practice of pattern-directed refactorings [35]. His catalog documents twenty-seven pattern-directed refactorings to introduce and sometimes to remove, design patterns in existing code. Kerievsky tried to offer insights into pattern differences and how to implement patterns in the simplest possible ways. Moreover, the catalog contains descriptions of twelve design smells that indicate the need for the presented refactorings.

Automating the refactoring process has been also investigated. Schulz et al. [49] presented a new approach to the tool-based reorganization of object-oriented software using design patterns. Jeon et al. [50] proposed an automated approach to refactoring based on the design patterns in Java programs. For each design pattern, they developed a pair: inference rule and refactoring strategy. The inference rule is defined to automatically identify a set of candidate spots, while the refactoring strategy is defined to transform one of the set of candidate spots into the desired design pattern structure. A candidate spot may be a class or a set of classes to which the design patterns can be applied.
Simon et al. [34] presented a generic approach to generate visualizations supporting the developer to identify candidates for refactorings. They showed how metrics can support the subjective perceptions of bad smells in code. Therefore, those metrics can be used as effective and efficient way to get support for the decision where to apply a particular refactoring.

Applying a refactoring method to enhance one software quality attributes may affect negatively another quality attributes [20]. K. Elish [51] proposed a classification of refactoring methods including refactoring to patterns based on their measurable effect on software quality attributes. This classification can help the software designer, based on his design goals and objectives, to choose the appropriate refactorings that will improve the quality of his design.

3.2
Aspect-Oriented Programming Refactoring

In the last years, aspect-oriented have emerged as the main programming paradigm for the modularization of crosscutting concerns. As a consequence, several researches have been conducted in two areas that are critical in this new technology: aspect mining [8, 52-54] and aspects refactoring [12-15, 17, 19].

The purpose of aspect mining techniques is to identify crosscutting concerns in legacy and non-aspect-oriented code. Once they are located in the target program, AOR methods can be applied to modularize such concerns into equivalent aspects. In other words, aspect-mining techniques help to identify crosscutting structure that could potentially be modularized through AOR. Many different aspect-mining tools have been proposed in the literature. Ceccato et al. [53] compared three aspect mining techniques that were developed independently by different research teams: fan-in analysis, identifier analysis and dynamic analysis. The authors discussed strengths, weaknesses and underlying assumptions of each technique. Consequently, they concluded that the three techniques can be combined in different ways to achieve a better overall aspect-mining technique.

Kellens et al. [54] introduced an initial comparative framework for distinguishing aspect mining techniques and assessed known techniques against this framework. The obtained results may serve as a roadmap to help potential users of aspect mining techniques in selecting an appropriate technique.

Zhang and Jacobsen [52] proposed the use of random-walk based aspect mining algorithm to approximate the process for distinguishing between core elements and crosscutting concerns without the need to know the application semantics. The resulting aspect mining algorithm, which was evaluated on numerous Java applications, was proven to be effective in helping domain experts identify latent crosscutting concerns.

Hannemann et al. [37, 38] divided the refactoring support for AOP into three categories. First, aspect-aware object-oriented refactorings (the concept originally proposed by Hanenberg et al. [7]). Second, refactorings for AOP constructs i.e., refactorings that specifically target AOP constructs, such as those under study in this work. Third, refactorings of crosscutting concerns, i.e., transforming non-modularized crosscutting concerns into aspects instead of handling each of them separately.

3.3
Aspect-Oriented Programming Refactoring Catalogs

Refactoring catalogs for AOP have also been proposed. Monteiro proposed a catalog of refactoring for AspectJ [12] . Monteiro’s catalog has been divided into three categories: (i) refactorings for extraction of crosscutting concerns, (ii) refactorings for restructuring the internals of aspects and (iii) refactorings to deal with generalization.

Monteiro and Fernandes [13-15] presented a collection of aspect-oriented refactorings covering both the extraction of aspects from object-oriented legacy code and the subsequent tidying up of the resulting aspects. In [14] the authors reviewed existing object-oriented code smells [3] in the light of AOP. They investigated that Divergent Change can be a sign of code tangling while both Shotgun Surgery and Solution Sprawl can be signs of code scattering. Moreover, they proposed AOP specific code smells, both for detecting crosscutting concerns in existing object-oriented code and for improving the structure of extracted aspects – Double Personality, Abstract Classes and Aspect Laziness. Monteiro et al. [15] presented a collection of refactorings for aspect-oriented source code. The collection comprises refactorings: to enable extraction of crosscutting concerns to aspects from object-oriented legacy code and to tide the extracted aspects and factor out the common code from similar aspects to super-aspects. Moreover, to detect the presence of crosscutting concerns they proposed some new aspect-oriented code smells, as well as a reinterpretation of some of the traditional object-oriented code smells in the light of aspect-orientation. All the introduced refactorings are specific to the programming language AspectJ.

Laddad [17] presented a well-known collection of aspect-oriented refactorings with a significant utility value. Additionally, Laddad prescribed several guidelines to ensure AOP refactorings for concern extraction are applied in a safe way. The introduced refactorings vary widely in both level and scope of applicability. They are including generally applicable refactorings like Extract Interface Implementation, Extract Method Calls and Replace Override with Advice, but also concern-specific refactorings such as Extract Concurrency Control and Extract Contract Enforcemement. Laddad’s refactorings could be more useful if they were presented in the same format as used by Fowler et al. [3] and Kerievsky [35] and which Monteiro used as well [12].

Hanenberg et al. [7] proposed aspect-aware refactorings taking into account the presence of aspects and preserve behavior by updating any pointcuts affected by the transformation. Additionally, they proposed a set of enabling conditions to preserve the observable behavior. The authors restricted these conditions to be automatically verified by an aspect-aware tool. Actually, they extended the refactoring constraints to preserve the number and positions of captured joinpoints and the information provided at each joinpoint for every pointcut. Hanenberg et al. [7] proposed three new refactorings specific for AOP– Extract Advice, Extract Introduction and Separate Pointcut.

S. Rura [16] reconsidered a set of low-level refactorings introduced by Opdyke [55], in the context of AOP. He defined a new set of low-level and composite refactorings that operate on aspect-oriented software. Additionally, the author introduced high-level refactorings that intend to aid in the extraction of crosscutting concerns. Moreover, Rura and Lerner [36] presented a framework for judging whether a program transformation is a refactoring in AspectJ. They identified preconditions under which object-oriented refactorings can be applied with the presence of aspects and consider how aspects impact those refactorings.

Iwamoto et al. [11] proposed a systemic approach to refactoring aspect-oriented programs. Firstly, they investigated the impact of existing object-oriented refactorings, proposed by Fowler, on aspect-oriented programs. Then they proposed some new aspect-oriented refactorings that are unique to aspect-oriented programs. Finally, they discussed tool support for automatic refactoring of aspect-oriented programs.

However, it is not always possible to directly extract concerns to aspects. In other words, it is not always expected that crosscutting code is located precisely before, around or after joinpoints, as required by AspectJ. Therefore, after the aspect-mining and before the refactoring task, programmers usually need to transform the base code to associate crosscutting statements together. That is, to be captured straightforwardly by the pointcuts declared in an aspect-oriented language. Several studies [56, 57] showed the importance of enabling such transformations as preparing steps.

In the same way, Malta et al. [21] presented a catalog of object-oriented transformations and demonstrated the importance of such transformations. They documented an in-depth investigation about transformations that must be applied to the base code of object-oriented systems. Such transformations should be applied after the identification of crosscutting concerns and before the encapsulation of such concerns in aspects. The authors introduced twenty-four transformations, including statement re-orderings and method extractions. Those transformations were applied to object-oriented code in order to enable joinpoints to be captured easily by the corresponding pointcut.

Cole and Borba [58, 59] presented AOP laws that are useful for deriving refactorings for AspectJ. In [59] they introduced AspectJ programming laws that can be used to derive or create behavior preserving transformations (refactorings) for a subset of AspectJ. By applying and composing those laws, one can show that some transformation involving AspectJ is a refactoring. They evaluated the proposed laws by showing how they can be used to derive several refactoring methods proposed by Laddad [17]. The laws help developers to verify if the transformations they define preserve behavior. That is, they help to more precisely specify the preconditions and code changes associated with the refactoring methods.

Srivisut et al. [60] proposed a definition of new aspect-oriented bad smells and presented appropriate AOR methods for eliminating each bad smell. The authors proposed a set of bad-smell metrics [61] to use as indicators to verify if a particular fraction of aspect-oriented code contains bad smells. They defined eight bad smells in aspect-oriented programs. To detect the bad smells they proposed fifteen metrics consisting of six pointcut-level metrics, eight aspect-level metrics and one class-level metric. These metrics were validated and threshold values to indicate the bad smells were also specified.

3.4
Aspect-Oriented Programming Refactoring Tools and Techniques

Obvious descriptions and automatic refactoring tools aid software developers to apply refactorings with fewer errors and better speed. In the literature, many approaches have been proposed to refactor the aspect-oriented code automatically.

Hannemann et al. presented a role-based refactoring approach and tool for extracting crosscutting concerns into aspects [38]. The tool helps developers to restructure the crosscutting concerns implementation using AOP. Actually, the roles allow the abstract description of the crosscutting concerns. Without this abstraction, each time a similar scattered implementation of a crosscutting concern appears in the code for a system, a refactoring would have to be built from scratch.

Binkley et al. [56] introduced a semi-automated approach to support the migration from OOP code to AOP code. The approach supports the extraction of class members and statements into aspects. It is an iterative process of four steps: discovery, enabling, selection and refactoring. After discovering potentially applicable refactorings, the enabling step transforms the code to improve refactorability. During the selection phase the appropriate refactorings to apply are chosen. Finally, in the refactoring phase the selected code is transformed into a new aspect. The approach was evaluated using a medium size case study program, JHotDraw. Furthermore, Binkley et al. [57] presented another automated approach for migrating from OOP code to AOP code. They defined a simple set of six refactoring methods, implemented in the AOP-Migrator tool. The authors presented the results of four case studies and used the approach to migrate selected crosscutting concerns from medium-sized Java programs into equivalent programs in AspectJ.

Wloka et al. [62] presented a new approach to the refactoring of aspect-oriented programs. This approach introduces aspect awareness to standard object-oriented refactorings, providing a meta-model for pointcut representations. That is, the used model decomposes pointcuts into simpler expressions as the base for deriving the change impact on pointcuts. Based on that, affected or even broken pointcuts can be detected as well as suitable pointcut adjustments can be derived. The presented approach guides the developer in deciding whether the change effects on existing pointcuts invalidate them and how pointcuts can be adjusted to restore the original program behavior.

Anbalagan and Xie [39] proposed an automated approach that identifies aspect candidates in code and infers pointcut expressions for these aspects. The automated framework, called Clamp, was used to address the problem of clustering the joinpoint candidates and inferring a pointcut expression for each cluster. Actually, the proposed framework complements the existing aspect mining techniques, serving as a post-processor of the results produced by these aspect mining techniques.

3.5
Aspect-Oriented Programming Effects on SW Quality Attributes

There are many studies that investigated the effects of AOP. Zakaria et al. [47] discussed the effects of aspects on C&K metrics suite. They found that all the metrics in the suite might be affected in some way. Because the crosscutting functionality is moved into aspects, Weighted Methods per Class (WMC) might be reduced. Subclasses implementing special crosscutting behaviors might be moved into aspects, where that reduce the depth, in turn, effecting Depth of Inheritance Tree (DIT) and Number of Children (NOC). For Lack of Cohesion in Methods (LCOM), aspects filter out crosscutting behaviors, thus increasing cohesion. Due to the needs of the classes to communicate with aspects, Response For a Class (RFC) is likely to increase. Coupling Between Objects (CBO) is likely to decrease between core classes, yet increasing coupling between core classes and aspects.

Anders Kvale et al. [63] studied how AOP ease the adding and replacement of components in COTS-based development. They re-engineered an existing OOP application using AOP and compared the LOC and number of classes needed to be changed in order to add and replace COTS components. Results from their study showed that proper use of AOP in COTS component integration can help to increase the changeability of the system. Result also showed that detailed plan and design should be performed before the decision of using AOP in COTS-based development.

Lech Madeyski et al. [64] carried out an empirical study of a web-based system to examine aspect-oriented vs. object-oriented approach with regard to software development efficiency and design quality. Their study was based on C&K metrics suite, Distance from the Main Sequence metric, external code quality metric (defined as a number of acceptance tests passed) and programmers’ productivity metric. C&K metrics were adapted to new properties of aspect-oriented software. The study revealed that the AOP approach appears to be a full-fledged alternative to the pure object-oriented approach. However, the impact of AOP on software development efficiency and design quality was not confirmed. They concluded that using AOP may produce better results with systems that have larger number of subjects.

Many metrics have been proposed to measure the complexity of AOP. Zhao [65] proposed some metrics to measure the complexity of aspect-oriented software. These metrics were specifically designed to quantify the information flows in aspect-oriented programs. The metrics contain four module-level metrics, seven aspect-level metrics and four system-level metrics. The proposed metrics can be used to measure the complexity of aspect-oriented software from various different viewpoints. Pataki et al. [66] described a multi-paradigm metric, extended for aspect-oriented programs, to measure the complexity of object-oriented and aspect-related parts of programs implemented in AspectJ. Their results show that AOP implementations had lower values for complexity; however, AOP does not necessarily reduce the complexity on its own as it depends on the actual problem.

Jeremy Bradley [23] investigated the impact of using aspect-oriented software techniques on the qualities of software such as complexity, correctness and testability. The methods he followed to conduct his investigation were based on interviews with developers who have used aspect-oriented technology in real world projects. The author examined the problems that the developers encountered in their work and provided possible explanations as to the cause of these problems. From the perspective of the developers interviewed, he concluded AOP has the potential to increase the quality of software and improve on the method of software development.

Coupling and cohesion in AOP have been discussed in many studies. Zhao [67] proposed a coupling metric suite for assessing coupling in aspect-oriented systems. A coupling framework for aspect-oriented systems is presented which is especially designed to count the dependencies between aspects and classes in the systems. Bartolomei et al. [68] presented a unified framework for coupling measurements in AOP according to two sets of distinct aspect-oriented composition models. One is defined by AspectJ-like language and the other one supports feature oriented decomposition mechanisms, such as CaesarJ. They showed how the framework can be instantiated for Java, AspectJ and CaesarJ and demonstrated the applicability of the framework by using it to define an existing coupling metric. Gélinas et al. [25] proposed a new approach for aspect cohesion measurement based on dependencies between aspect members. They proposed metric measures the degree of relatedness of its modules. They also proposed new aspect cohesion metric and compared it, using several case studies, with few existing aspect cohesion metrics.

Ceccato and Tonella [46] stated that AOP languages introduce an implicit coupling between the aspects and the modules in the principal decomposition. Thus, the authors proposed a measurement method to investigate the trade-off between the advantages and disadvantages obtained by using the AOP approach. They revised and extended the C&K metrics suite to make it more applicable for the AOP software. In addition to the adapted C&K metrics, they measured the coupling on advice execution (CAE), coupling on intercepted modules (CIM), coupling on method call (CMC), coupling on field access (CFA) and crosscutting degree of an aspect (CDA).
Moreover, Tonella and Ceccato [69] conducted a study that focused on a specific kind of crosscutting concerns, the scattered implementation of methods declared by interfaces, called aspectizable interfaces, that do not belong to the principal decomposition. All the aspectizable interfaces identified within a large number of classes from the Java Standard Library and from three Java applications have been automatically migrated to aspects. To assess the effects of the migration on the internal and external quality attributes of these systems, the authors conducted an empirical study and collected a set of metrics. The authors focused on two internal attributes: size and modularity. To measure the size they used uncommented lines of code (UCLOC) and class operations (OP), while to measure the modularity they used operations cohesion (OCOH), attributes cohesion (ACOH) and interface coupling (ICOUPL). They performed some maintenance tasks on the two alternative versions (with and without aspects) of the same system. The results indicated that among the internal attributes, only those referred to the modularity had a significant change. The size was not significantly affected since the amount of code devoted to the implementation of the aspectizable interface methods is typically a small fraction of the overall size. For the external attributes, they concluded that the refactored code became easier to understand than the code that mixes such implementation with the primary class responsibilities. To some extent, it also became easier to maintain, although the small size of the affected code portion might have reduced the overall benefits on maintainability.

Kulesza et al. [70] presented a quantitative study that assesses the positive and negative effects of AOP on typical maintenance activities of a web information system. The study consisted of a systematic comparison, at the system level, between the object-oriented and aspect-oriented versions of the application. A suite of metrics for separation of concerns, coupling, cohesion and size were selected to evaluate the object-oriented and aspect-oriented implementations of the system. The aspect-oriented implementation exhibits better results for separation of concerns measures and many other metrics, such as: LOC, Number of Attributes (NOA) and the coupling metrics (CBC and DIT). On the other hand, the object-oriented implementation brings better results for the vocabulary size and cohesion metrics. Both aspect-oriented and object-oriented implementations present similar results for the Weighted Operations per Component (WOC) metric.

Sant’Anna et al. [71] presented a quantitative comparison between aspect-oriented and conventional Multiagent Systems (MAS) architectures. They quantitatively evaluated the degree to which aspect-oriented MAS architectures scale up to promote improved modularity when compared to MAS architectures based on conventional patterns, such as mediator-based and publisher-subscriber styles. For the evaluation they used two medium-sized MAS applications with similar driving modularity-related requirements from different domains based on distinct MAS platforms and frameworks and with distinct exploitation of typical MAS features. Their evaluation is based on architectural metrics, which are rooted at fundamental modularity principles, such as separation of concerns, narrow interfaces, low architectural coupling, high component cohesion and composition simplicity. The assessment is mainly concerned with the degree with which the modularity supports the adaptability and variability of MAS features.

Table 3.1 demonstrates a summary of the related work. Based on the overview of the related work and Table 3.1, we can observe the limitations of the existing research studies reviewed above. Only one study [69] investigated the effects of applying kind of aspect-oriented refactoring on the internal and external quality attributes. Furthermore, none of the existing research studies has classified aspect oriented refactoring methods based on their effects on the internal and external software quality attributes.
Therefore, the originality of this research focus on classifying aspect-oriented refactoring methods based on their measurable effect on a number of internal and external software quality attributes.
	Study
	Refactoring?
	Internal Quality
	External Quality
	AOR Classification?

	Zakaria and Hosny [47]
	No
	DIT, NOC, RFC,

CBO, LCOM, WMC
	-
	No

	Jeremy Bradley [23]
	No
	-
	Complexity,

Understandability,

Correctness and Testability.
	No

	Ceccato and Tonella [46]
	No
	WOM, DIT, NOC,

CAE, CIM, CMC,

CFA, RFM, LCO, CDA
	-
	No

	Anders Kvale et al. [63]
	No
	LOC changed,

of classes changed and
#of aspects changed
	Changeability of the COTS component-based system
	No

	Bartolomei et al. [68]
	No
	Coupling
	-
	No

	Lech Madeyski et al. [64]
	No
	DN metrics, CBM, RFM, LCO,

NCLOC, NOM, WOM, NATP,

NATP/T, NCLOC/T, TA and TP
	Efficiency,

.
	No

	Sant’Anna et al. [71]
	No
	architectural SoC, # of interfaces,

 LCC, Architectural Fan-in and
Architectural Fan-out
	Adaptability,

Modularity and

Variability
	No

	Tonella and Ceccato [69]
	Yes
	Modularity(OCOH, ACOH, ICOUPL),
Size (UCLOC, OP)
	Maintainability

Understandability.
	No

	Our Work *
	Yes
	DIT, NOC, CBC, RFC,

LCOO, WOC,

NOA, LOC
	Maintainability,

Reusability,

Testability,

Understandability,

Flexibility, and
Reliability
	Yes

[image: image7.jpg]

Table ‎3‑1 Summary of the related work

4. Chapter 4

AOP vs. OOP

Essentially, AOP is built on the preceding programming paradigms such as OOP. Thereby, it provides new mechanisms and features to overcome the well-known shortcomings in OOP. In this chapter, we provide a brief overview of the limitations of OOP. After that, we cover the essential issues that could be clear differences between AOP and OOP. In addition, we introduce in more details the aspect oriented constructs, with respect to AspectJ programming language.

4.1 Assessment of OOP

The need for quality software motivated the use of OOP which aims to provide higher levels of reuse and maintainability, support for requirement changes and increase in the development productivity. Therefore, OOP promotes code reusability, encapsulation of entities and their corresponding functionalities, improved modularity and maintainability [4]. Moreover, some software development tools are discussed in terms of object technology such as frameworks, components and design patterns [9]. Therefore, OOP is considered the current dominant programming paradigm. However, OOP will most likely not be the last software development methodology. As much as it excels where its predecessors, OOP is not without its own problems [1, 24].

The questions remain: how good can the OOP achieve modularity of software systems? Can OOP enable software developers and designers to separate the different concerns perfectly? Can OOP allow reusing code that implement crosscutting concerns in an effective and maintainable way? The answer is, unfortunately, no, since the current software development techniques do not provide a composition mechanism that is powerful enough to enable the desired level of separation of concerns. The object-oriented paradigm, by itself, cannot provide this kind of abstraction [1].

OOP presents a number of limitations, such as tangled and scattered code across different concerns [22, 24, 33]. Mainly, OOP addresses common concerns by capturing the attributes and behaviors common among related entities on the top of the class hierarchy [22]. However, it is not sufficient to do that for many crosscutting concerns, especially in complex applications. The addition of new crosscutting features and even certain modifications to the existing crosscutting functionality requires modifying the relevant core modules. That results in more coupling between the core and crosscutting concerns, which is undesirable. In contrast, AOP deals with unrelated items and tries to modularize their common attributes and behaviors in a software layer that spreads across classes regardless of domain, thus increasing modularity of the software [24]. In this chapter we discuss the different facets between OOP and AOP.

4.2 Crosscutting concerns

A concern in software engineering terms means a feature or a requirement necessary in the system that has been implemented in the code structure [33]. In fact, concerns crosscut if the methods related to those concerns intersect, either inside a class or over several classes. That is, a concern is crosscutting if it is tangled to other concerns in a single module or it is scattered over multiple system modules. A more formal definition of crosscutting concerns is given by Kiczales: “whenever two properties being programmed must compose differently and yet be coordinated, we say they crosscut each other” [5]. Such types of concerns cannot be cleanly and easily encapsulated into objects. Examples of such crosscutting concerns include error handling, synchronization, logging, security, performance optimizations and memory management [6].

In order to achieve reusable and maintainable realizations of crosscutting concerns, the programming paradigm must allow a modification of the behavior of the class, unknown to the class, by breaking its encapsulation. Although, OOP is the most common methodology employed today to manage core concerns, it is not sufficient for many crosscutting concerns [33]. The AOP methodology was developed to address that shortfall. AOP can take us further in achieving greater modularity by modularizing crosscutting concerns. In AOP, the crosscutting concerns are modularized by identifying a clear role for each concern in the system, then implementing each role in its own module and finally coupling each module to only a limited number of other modules [24].

AOP provide separate concerns by categorizing the different concerns into two disjoint types, core and crosscutting concerns [1]. Aspect-oriented techniques provide mechanisms that allow crosscutting concerns to be expressed as separate units from the main implementation. These units are referred to as aspects (see section 4.5.3) and they are the basic unit of modularization for crosscutting concerns in AOP. Nonetheless, AOP is a paradigm that keeps the features of OOP and aims at achieving a better separation of concerns [1, 72]. Aspect orientation differentiates between core and crosscutting concerns, while object-orientation does not. To sum up, it is clear that crosscutting concerns contradicts the separation of concerns principle [73].

4.3 Separation of Concerns

Separation of concerns is an important concept in software engineering and is a desired feature in software system modeling and design since it helps in managing the complexity of the system [73]. It is the ability to keep each and every concern in its own unit of modularity to guarantee its own consistency and to ease the human programmer’s task of reasoning with it. Separation of concerns focuses on breaking down the system into smaller distinct parts, called concerns, without much overlapping in functionality [72].

Both object-oriented and aspect-oriented modeling methods are based on the separation of concerns technique. In the case of object-oriented, concerns are separated into classes, attributes and methods [74]. OOP provides a good degree of separation of concerns principle where the software system can be decomposed into different modules, each addressing a well-defined concern. These modules work together to implement the complete solution for the problem being addressed. Nevertheless, OOP has limitations in encapsulating some concerns that do not fit naturally into a separate program module, or even several closely related program modules [73]. In other words, although OOP enables significant developments in software engineering, it still fails to achieve a full separation of concerns [72, 73].

On contrary, the AOP distinguishes between two kinds of concerns. The first kind is the core concerns of system functionality that are in the main domain of a software system. These concerns do not affect each other but can be affected by several aspects. The core concerns in AOP are implemented by the underlying paradigm, OOP, as they can be cleanly encapsulated [1]. The second kind of concern is the crosscutting concerns that spread over other concerns. These concerns, as discussed, cannot be easily decomposed into separate units since responsibilities may apply to many concerns. These concerns cannot be cleanly encapsulated by the underlying methodology, therefore, in AOP they are encapsulated as units called aspects [1]. The places where aspects affect base concerns are called joinpoints. To sum up, AOP is able to provide a solution for the poor separation of concerns problem that usually has a considerable negative impact whenever arises, by implementing aspects that encapsulate the crosscutting concerns perfectly [73, 74].

4.4 Communication between Modules

Aspect orientation has a different mechanism which is implicit invocation for communication between different modules. In the other hand, object-oriented paradigm uses explicit calls to communicate the modules.

4.4.1 Explicit calls in OOP

OOP seeks to enable the developer to concentrate on one concern of the system at a time using an encapsulated module with a well-defined interface to the rest of the other system parts. The communication between these modules is usually not affected by internal implementation changes. However, the communication between the modules must happen explicitly regardless of the implementation abstraction [1, 4]. In that way, the abstraction provided by the functional interface is not sufficient. That is, the encapsulated module (class) must contain a set of calls to another class' abstracted interface. The calling module (object) is oblivious to the implementation of the operation it is invoking; however, it must be aware of the usage of the module's interface. That is, it must have explicit knowledge about the operations to call, the order to call them in and the pre-conditions for the call. Even if these modules in OOP are considered encapsulated, complete encapsulation cannot be completely achieved since these modules are related [1, 57].

4.4.2 Implicit Invocations in AOP

Implicit invocation is desirable since it provides greater separation of concerns in the system creation process, not only in the structure of the system. Implicit invitation, sometimes is called obliviousness, is one of the most important characteristics that is distinguishing the aspect-oriented paradigm [26, 75]. Obliviousness refers to the fact that the affected modules do not contain any particular notation preparing them for this action. Since an aspect-oriented system is composed of a component program and an aspect program, the component programmer should be oblivious to the aspect code. This prevents the component programmer from changing the component code to adapt to the crosscutting concern [1, 26].

Unlike traditional modules, which must be referenced explicitly by the program, aspects add functionalities to the base code by intercepting the execution flow, without any need for the base code to mention the aspect code explicitly. AOP implicitly and obliviously alters the behavior of the base program. That is every time gets to a predefined point in code where concern needs to be addressed, an aspect is implicitly called. In other words, the base code remains oblivious to the functionality added by an aspect, moreover, the aspect is responsible to specify (quantify) the places in the base program affected by the new functionality.

In the presence of aspects, the behavior of a module at runtime cannot be determined by just looking at the module code. The actual behavior is determined by composing the base and aspect behaviors [24]. Aspect-oriented programs use joinpoint and advice to a semantically equivalent implicit invocation program. To sum up, the behavior of the separate concern must be implicitly invoked.

4.5 Unique Concepts and Mechanisms of AOP

AOP utilizes advantages of OOP since the former extends the latter with the concept of aspects. Current AOP languages, such as AspectJ, AspectWerkz, OT/J, CaeserJ, etc., provide various mechanisms for adapting the structure of implementation modules.

The most common aspect-oriented language and most mature aspect-oriented language currently available is AspectJ [22, 24, 33]. AspectJ is an extension of the Java language. The majority of aspect-oriented tools, recently appeared, is strongly influenced by the design of AspectJ. In order to modularize crosscutting concerns, an aspect language needs to have the means to identify particular points on a program and to specify semantics at such points. This ability is implemented through a joinpoint model. The primary concepts will be presented in the following subsections:

4.5.1 AspectJ

AspectJ is an aspect-oriented language based on Java. AspectJ is an extension to Java; every valid Java program is also a valid AspectJ program. An AspectJ compiler produces class files that conform to the Java byte-code specification, allowing any compliant Java virtual machine to execute those class files [33].

AspectJ supports two mechanisms in order to describe crosscutting features: static transformations, known as introduction; and dynamic invocation of code, known as advice. For neatly modularize the different parts of a crosscutting concern, AspectJ provides to Java the aspect construct, which functions like a class but may also contain other special constructs [36]. AspectJ programming language provides a mechanism called inter-type declarations. It allows introducing new members on classes or changing the inheritance relationships. AspectJ provides a behavioral composition mechanism to insert a particular behavior at a joinpoint in the execution of a program.
4.5.2 Joinpoint

The term joinpoint denotes the central concept for describing the interaction of aspects with other implementation modules. Joinpoints are the locations in the flow of a program which are affected by one or more crosscutting concerns. In these locations new actions can be introduced before or after executing the original code. Hence, the joinpoint can be considered the essential mechanism provided for composing an aspect with another class. Once a joinpoint is identified the specified behavior can be weaved in the correct place. In AspectJ, the joinpoint model can be implemented in pointcut and advice combination. Moreover, a collection of joinpoints even in multiple modules can be affected by a single pointcut [73]. This property is called quantification as introduced by Filman and Friedman [26, 75].

The quantification is one of the most characteristic distinguishing AOP for the other paradigms. It refers to the fact that the expression of a single aspect may affect multiple program modules. It can be classified as either static or dynamic quantification. The static quantification relates to the conditions that take place on the program source code, for instance the calling of a method. The dynamic quantification relates to runtime events, for example, when an exception being raised [73]. The kinds of quantifications that an aspect-oriented language supports are determined by its joinpoint model.

According to that, joinpoint is the novel concept that makes oblivious quantification possible. Furthermore, AspectJ can possibly detect and operate eleven kinds of joinpoints (See Appendix A). For instance, there are two types of joinpoints that AspectJ exposes for each method: execution and call joinpoints. The following code shows an example of the method execution joinpoint for the debit()method:

public class Account {

//...

[image: image8.png]Glassbox
Clent

.

MK Console

Web

somr
Glassbol Java
Troubleshooter Application
Glassbo AoP Java Virtual
Inspector Machine
N
N
Web Any Database

public void debit(float amount)

throws InsufficientBalanceException {

if (_balance < amount) {

throw new InsufficientBalanceException(

"Total balance not sufficient");

} else {

_balance -= amount;

}

}

}

In this code fragment, the joinpoint for the execution of the debit() method is the whole method body. This means that we can write advice for this joinpoint to be applied before, after and around the body. The method call joinpoint occurs at the places where this method is being invoked. The following code shows an example of the method call joinpoint for the debit() method:

[image: image9.bmp]

In this code, the call joinpoint is the call to the debit() method.

4.5.3 Aspect

AOP provides a new entity called aspect which isolates crosscutting concerns completely and clearly, allowing composition and reuse of modules in an aspect-oriented software system. In AspectJ, aspects are class-like modules that can hold state and behavior. The aspect has a well-defined interface; as well as it can be used at many points in the system development life cycle. Furthermore, the aspects are provided with novel mechanisms through which aspects compose their functionality to multiple scattered points of a given system [23, 24, 73].

As mentioned above, the aspect-oriented system has two different parts: the component program and the aspect program [73]. In general, the aspects work in conjunction with a base implementation represented with other constructs, such as classes or procedures. The aspects not only include the implementation of a concern but also the situation in which that concern should be realized; since they have access to the system at a global scope. In other words, an aspect defines how a concern cuts, or weaves, through the system [1].

The aspect program differs from the component program in that the component program is simply a program that uses OOP. It is called a component if the concern can be cleanly encapsulated in a generalized unit. It is responsible for identifying and implementing all of the non-crosscutting concerns of the software system. When the concern cannot be cleanly encapsulated in a generalized procedure, we can use an aspect to implement like this concern [73]. The composition of components and aspects is achieved by the use of a weaver (see section 4.7).

AspectJ also provides inheritance for aspects. An aspect may be abstract and define abstract pointcuts. In addition, another aspect may extend the abstract one and provide the concrete definition for abstract pointcuts. This feature allows the definition of reusable aspects. It is possible for an aspect to extend from a class or implement an interface, but the opposite is not allowed. The aspect can be embedded into classes and interfaces when the aspect’s implementation is intimately tied to its enclosing class or interface. Since the aspect resides in the same source file, this simplifies the modifications required for the aspect’s implementation when the enclosing entity changes.

Despite aspect and class similarities, mentioned above, aspect is not a class. That is, the aspect differs from the class in some ways. Aspects are not initialized like classes; AspectJ controls how aspects are instantiated. Aspects have just one instance exists in a virtual machine, by default, similarly to the Singleton design pattern [76]. All the entities inside the virtual machine then share the state of such an aspect. However, AspectJ provides mechanisms to change the instantiation rule as perthis, pertarget, percflow and percflowbelow. That is, the non-default association can be specified by modifying the aspect declaration that takes the following form:

aspect <AspectName> [<association-specifier>(<Pointcut>)] {

 //... aspect body

}

For instance, the perthis construct states that one instance of the aspect will be created for each executing object captured by a pointcut expression. In this case, there will be one instance of the aspect for every execution of a joinpoint.
Table ‎4‑1 Summary of the similarities and differences between the class and the aspect

	
	Aspect
	Class

	Reusable
	Y
	Y

	Inheritable
	Y
	Y

	Implement Interface
	Y
	Y

	Defined as abstract
	Y
	Y

	Extend from Class
	Y
	Y

	Extend from Aspect
	Y
	N

	Access modifiers
	Y
	Y

	Privileged modifier
	Y
	N

	Inherit form concrete
	N
	Y

	Initialized
	N
	Y

	Instances
	One only
	More than one

Another important AspectJ feature is the privileged modifier. That is, aspects can have an access specifier of privileged. This gives them access to the private members of the classes they are crosscutting. The privileged modifier does not affect the set of joinpoints captured by the aspect. It just enables the code inside advices to access private members of classes [59]. The privileged modifier appears in the aspect declaration as follows:

privileged public aspect PrivilegeTestAspect {

//...

}

Table 4-2 shows a summary of the similarities and differences between the class and the aspect.
4.5.4 Pointcut

The AspectJ programming language defines a syntactic construct to refer to specified joinpoints in the base code, called a pointcut designator, or simply, a pointcut. There is a fundamental difference between the joinpoint and the pointcut. The joinpoint is a concept, while the pointcut is an AspectJ’s language construct [22]. Therefore, the pointcut is part of aspect specification describes a set of joinpoints, possibly from more than one base concern into which the aspect will perform adaptations [9, 74]. The pointcut can be utilized to specify the places where you want to capture joinpoints. For example, in the following pointcut, we are capturing all the calls to the credit() method of the Account class:

pointcut creditOperations() : call(void Account.credit(float));

Actually, the pointcut, in AspectJ, can be either named or anonymous. The named pointcut is element that can be referenced from several places, making it reusable, like that presented above. The anonymous pointcut, like anonymous class, is defined at the place of its usage, e.g. a part of advice, or at the time of the definition of another pointcut. Since an anonymous pointcut cannot be referenced from any place other than where it is defined, you cannot reuse such a pointcut. Anonymous pointcuts can be specified as a part of advice, as follows:

advice-specification : pointcut-definition

One important characteristic of AOP is that joinpoint models are not restricted to elements exposed by the interface as declared by a class. For instance, if an AspectJ pointcut is defined to capture all the calls to methods whose name start with “set”, without specifying the visibility of the method (i.e. whether the method is public or private), it will capture all calls, regardless of visibility of the methods concerned. For instance, the following pointcut captures calls to all the methods in an Account class regardless of visibility, names, or parameters of the methods concerned:

 pointcut accountoperations() : call (* Account.* (..));
Table ‎4‑2 The logical operators for combining the pointcuts

	Logical Operator
	Description

	! PointcutX
	every joinpoint not picked out by PointcutX

	PointcutX && PointcutY
	each joinpoint picked out by both PointcutX and PointcutY

	PointcutX || PointcutY
	each joinpoint picked out by either PointcutX or PointcutY

	(PointcutX)
	each joinpoint picked out by PointcutX

AspectJ provides 17 primitive pointcuts collecting joinpoints based on names and properties [9, 33] (see Appendix B) . Pointcuts can be combined using logical operators shown in Table 4.2. These operators behave like the union, intersection and complement of pointcuts [77].
4.5.5 Advice

It is the construct that specify how the behavior of the base program can be affected. The advice is nameless method-like block, associated to a given pointcut and executes implicitly whenever one of the joinpoints, collected by the pointcut, is reached. Since the advice is never called explicitly, it does not need a name and it is not polymorphic. The advice can define and use its own temporary variables the same way as used in methods. In addition, the advice can use and modify whatever values are exposed by its signature; the same way method can use and modify values received as parameters. Relative to the execution of a joinpoint, there are different types of advice [9].
· before advice- the advice executes immediately before a specified joinpoint is “entered”. Moreover, it cannot prevent the joinpoint from executing (unless in abnormal situations, such as throwing an exception). In the following code fragment, the advice performs authentication prior to the execution of any method in the Account class. The pointcut accountOperations()declared above can be utilized in this advice.

before() : accountOperations() {

//... code to authenticate the user

}

The before advice is typically used for performing pre-operation tasks, such as policy enforcement, logging and authentication.

· after advice- the advice executes immediately after a predefined joinpoint has finished and therefore does not prevent it from executing. There are variants for joinpoints terminating normally and exiting by throwing an exception. The following code fragment shows the basic form for after advice:

after() : call(* Account.*(..)) {

//... log the return from operation

}

The previous advice will be executed after any call to any method in the Account class. It is often desirable to apply an advice only after a successful completion of captured joinpoints.

· around advice- this advice can execute some commands before and after a joinpoint, using or not using a call to proceed, which allows executing the joinpoint itself. This advice can emulate the other two kinds of advice, but it is also more complex to use. Unlike the other kinds of advice, the around advice may declare a return type, which must conform to the type of the joinpoint which triggered it. What is more, the original joinpoint is executed only if the advice explicitly calls it, using the proceed keyword. This way, the joinpoint can be completely overridden if proceed is not called [59]. In the following code fragment, the around advice declares anonymous pointcut. It also captures the context of the operation’s target object and argument.

void around(Account account, float amount)

: call(* Account.debit(float)){

// code to be executed before the joinpoint

proceed(account, amount);

// code to be executed after the joinpoint

}

4.5.6 Inter-type Declarations

[image: image10.emf]Inter-type declarations also are known as static introductions or simply introductions. Aspects often need to introduce data members and methods into the aspect classes. To achieve that, the mechanism of introduction is used to declare additional fields and methods into existing classes and interfaces in a crosscutting manner. The following code fragment introduces new field (_minimumBalance) and new method (getAvailableBalance())to the Account class.

private float Account._minimumBalance;

[image: image11.emf]
public float Account.getAvailableBalance() {

return getBalance() - _minimumBalance;

}

Another type of introduction is to change the inheritance hierarchies of the existing classes. One common use of this mechanism is to make a class implement additional interfaces. It is very useful and possible, to make classes implement interfaces declared within the aspect. Namely, the aspect is able to declare new interface, within it and make an existing class implements the declared interface [9, 24].

Accordingly, the inter-type declaration plays an important role in making AspectJ a powerful tool to be used to modularize crosscutting concerns [9]. It is considered a powerful use of AOP, since it can be used to change the behavior of components in an application, as well as to change the relationships between these components [23].

4.5.7 Declare Clauses

AspectJ provides a number of declare clauses that can be used to configure or extend the behavior of the compiler. Namely, AspectJ introduces declare warning and declare error clauses to instruct the compiler to issue additional warnings and errors respectively. Both clauses associate a pointcut with a warning or an error and a corresponding message [9].

The declare error construct provides a way to declare a compile-time error when the compiler detects the presence of a joinpoint matching a given pointcut. The compiler then issues an error, prints the given message for each detected usage and aborts the compilation process:

declare error : <pointcut> : <message>;

Similarly, the declare warning construct provides a way to declare a compile-time warning, but does not abort the compilation process:

declare warning : <pointcut> : <message>;

For instance, the following code fragment enforces the AspectJ compiler to produce a compile-time error if the joinpoint matching the callToUnsafeCode() pointcut is found anywhere in the code that is being compiled:

declare error : callToUnsafeCode()

: "This third-party code is known to result in crash";

The following code is similar, except it produces a compile-time warning instead of an error:

declare warning : callToBlockingOperations()

: "Please ensure you are not calling this from AWT thread";

The declare parents clause is also widely used but for a different purpose. With it, the inheritance hierarchy of existing classes can be modified to declare a super-class and interfaces of an existing class or interface as long as it does not violate Java inheritance rules. Since the declare parents provide new functionalities to the existing class, researchers often consider the declare parents clause as introduction [33]. The forms for such a declaration are:

declare parents : [ChildTypePattern] implements [InterfaceList];

and

declare parents : [ChildTypePattern] extends [Class];

For example, the following aspect declares that all classes and interfaces in the banking package are to implement the Identifiable interface:

declare parents : banking.* implements Identifiable;

As discussed earlier (in section 4.5.6), an aspect can declare a new interface and make an existing class implements this interface. The combination of inter-type declaration and declare parents is a powerful to introduce additional functionality to an existing objects and changes their behaviors. For clarification, an abstract aspect declares an interface, maybe within the aspect, to form an additional role for a set of objects. The aspect declares additional state and behavior on the interface. Concrete aspects use the declare parents clauses to specify what classes actually play the role in a particular program [9].

4.6 Altering the behavior of a class

As previously stated AOP works with the underlying paradigms to provide further abstraction of crosscutting concerns by encapsulating them into aspects. Nevertheless, each one of the existing methodologies attempts to deal with crosscutting concerns, just not particularly well. Therefore, there are certain facets of OOP that resemble some aspect-oriented concepts, especially, multiple inheritance.

In OOP, the inheritance mechanism can be viewed as a way to provide additional functionality to a class. In this way, a class can extend the functionality of its parent, if it chooses so. Furthermore, in the case of multiple inheritance, the class can inherit the functionality declared in multiple classes, even classes whose functionality are outside of its specific domain. Thereby, a class can use the inheritance mechanism to achieve behaviors that crosscut the system [1].

Certainly, AOP is capable to alter the behavior of an existing class. Moreover, AOP is able to provide a class with additional functionality that it did not have before. As discussed previously, such additional functionality may not map to a business requirement directly. For this reason, AOP abstracts the functionality well allowing the developers to focus on the business functionality and behavior of the class [1].

4.7 Weaving

Weaving is the process of composition of aspects with base concerns by following the weaving rules. In essence, the weaving rules determine the final form of the system. The weaving rules are defined in aspects which are separate entities from the individual core modules. This separation makes it possible to change the woven system simply by providing alternative weaving rules in the aspects [24]. Depending on the specific implementations, the weaving process can take place at compile-time, run-time or class load-time, or be performed by the virtual machine itself [9, 24].

[image: image12.emf]
Figure ‎4‑1 The compilation and weaving process
The aspect weaver is the actual processor that achieves the weaving. The weaver takes the component and the aspect programs as input, interprets the composition rules on the aspect program and weaves the aspect code into the right places on the right modules [24].
The implementation of the weaving rules

In AspectJ, the implementation of the weaving rules by the compiler is called crosscutting. The weaving rules cut across multiple modules in a systematic way in order to modularize the crosscutting concerns. AspectJ defines two types of crosscutting.

· Dynamic crosscutting which is the weaving of new behavior into the execution of a program. Dynamic crosscutting refers to the selective changes of the main abstraction at specific program points without affecting the static type signature of the program. AspectJ and other aspect-oriented languages use the concept of a joinpoint to facilitate the introduction of aspect code into the primary abstraction [23].

· Static crosscutting which is the weaving of modifications into the static structure, such as the classes, interfaces and aspects, of the system. It is the process by which aspects can modify the static structure of other elements in a program. That is, it does not modify the execution behavior of the system. The most common function of static crosscutting is to support the implementation of dynamic crosscutting. For instance, adding new data and methods to classes and interfaces in order to define class-specific states and behaviors that can be used in dynamic crosscutting actions. Declaring inter-type or compile-time warnings and errors across multiple modules, in the AspectJ language, can be considered another use of static crosscutting [24].

Table ‎4‑3 Summary of the main differences between the AO and the OO paradigms.

	The property
	AOP
	OOP

	Separation of concerns
	Individual modular
	Scattered and tangled code

	Crosscutting concerns
	High modularity
	Low modularity

	Communication between modules
	Implicit Invocation
(Obliviousness)
	Explicit Communication

	Unique Concepts and Mechanisms
	Joinpoint
Aspect

Pointcut

Advice

Inter-type Declarations
Declare Clauses
	

	Altering the behavior of a class
	Advice, Introduction
	Inheritance

	Compilation
	Weaving and Compilation
	Compilation

	Quantification
	Yes
	No

5. Chapter 5

Relating Internal Software Quality to External Software Quality

Software quality is defined as the totality of features and characteristics of a software product that bear on its ability to satisfy stated or implied needs. Normally, quality must be defined and measured if improvement is to be achieved [40]. In this chapter we present the internal and the external software quality attributes that have been used in our aspect-oriented refactoring classification. In addition, this chapter shows how the internal software quality attributes can be used to assess the external quality attributes.

5. 1 Internal Software Quality Attributes under Study

As stated in [41] software metrics can be used as internal quality attributes. Software metrics can be classified into three categories: product metrics, process metrics and resource metrics. Product metrics describe the characteristics of the product such as size, complexity, design features, performance and quality level. In this work, a suite of aspect-oriented metrics have been used in order to classify the AOR methods based on internal software quality attributes. More specifically, we consider the extended C&K metrics that were adapted to be applicable to the aspect-oriented software[46]. Those metrics include Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling between Components (CBC), Response for Component (RFC), Lack of Cohesion in Operations (LCOO) and Weighted Operations per Component (WOC). Additionally, two other metrics have been used to measure the module size such as Number of Attributes (NOA) and Lines of code (LOC). Since the proposed metrics apply both to classes and aspects, in the following the term “component” is used to indicate either of the two modularization units. Similarly, the term operation subsumes class methods and aspect advices/introductions.

The selection of those metrics was based on their wide acceptance among the software engineering community. Additionally, they have been used by several pervious empirical studies such as [27, 29, 44, 45] to investigate their correlation with external software quality attributes. The metrics we investigated are the following:

· Depth of Inheritance Tree (DIT): the length of the longest path from a given component to the class/aspect hierarchy root. The deeper a class/aspect is in the hierarchy, the greater the number of operations it might inherit, thus making it more complex to understand and change [46].

· Number Of Children (NOC): the number of immediate subclasses or sub-aspects of a given component. The number of children of a component indicates the proportion of components potentially dependent on properties inherited from the given one [46].

· Coupling between Components (CBC): the number of components or interfaces declaring methods or fields that are possibly called or accessed by a given component. This metric is an extension of the C&K metric for coupling between objects (CBO) [44, 45].

· Response For a Component (RFC): the number of methods and advices potentially executed in response to a message received by a given component [46]. Similarly to the related object-oriented metric, this metric measures the potential communication between the given component and the other ones. The main adaptation necessary to apply it to aspect-oriented software is associated with the implicit responses that are triggered whenever a pointcut intercepts an operation of the given component [46].

· Lack of Cohesion in Operations (LCOO): measures the lack of cohesion of class or an aspect in terms of the amount of operations pairs that do not assess the same instance variable [44]. This metric extends the C&K metric LCOM (Lack of Cohesion in Methods). We consider advices and methods of aspects in the same way that C&K considers methods of classes. LCOO is low if all operations in a class or an aspect shares a common data structure being manipulated or accessed [45, 46].

· Weighted Operations per Component (WOC): counts number of operations in a given component [46, 69]. This metric extends the WMC (Weighted Methods per a Class) metric from C&K metrics suite and captures the internal complexity of a module in terms of the number of implemented functions.

· Number of Attributes (NOA): counts the internal vocabulary and the number of attributes of each component i.e. class or aspect. The inherited attributes are not included in the count [45].

· Lines of Code (LOC): defined as the total source lines of code in a module excluding all blank and comment lines.

5. 2 External Software Quality Attributes under Study

To classify the aspect-oriented refactorings according to external software quality attributes, we identified a set of external software quality attributes as follows:

· Maintainability: is defined as the ease with which a software system or component can be modified to correct faults, improve performance or other attributes, or adapt to a changed environment [40].

· Reusability: is the ability and effort required to reuse a software program or part of a program in more than one computing program or software system [40].

· Flexibility: is the ease with which a system or component can be modified for use in applications or environments other than those for which it was specifically designed [78].

· Understandability: is defined as a set of attributes of software that bear on the users' effort for recognizing the logical concept and its applicability. Boehm defined it as the degree to which the purpose of the system or component is clear to the evaluator [40].

· Testability: is defined as the degree to which a system or component facilitates the establishment of test criteria and the performance of tests to determine whether those criteria have been met [78].

· Reliability: is the ability of an item to perform a required function under given conditions for a given time interval [40].

5. 3 External Quality Attributes Assessments Using Internal Quality Attributes

As explained previously, the internal software quality attributes can be used to assess the external ones. Software metrics can be used as indicators for external software quality attributes. Several empirical studies [27, 29, 44, 45] utilized aspect-oriented metrics as indicators to assess external quality attributes. In the following, based on available research studies, we demonstrate how the internal software quality attributes can be used as indicators for external software quality attributes.

Sant’Anna et al. [45] presented an assessment framework for reusability and maintainability of aspect-oriented systems. It is composed of two components: a suite of metrics and a quality model. The quality model is built using the Goal-Question-Metric methodology; it defines precisely how to measure reusability and maintainability based on a set of proposed metrics. The quality model emphasizes that similar factors are useful for the promotion of maintainability as well as reusability. The authors considered flexibility as one of the central factors for promoting reuse and maintainability. The proposed metrics, capturing information about the design and code, are grouped according to the attributes they measure: separation of concerns, coupling, cohesion and size. The suite reused and refined classical metrics, such as LOC and C&K metrics, for coupling, cohesion and size. Furthermore, the authors proposed some metrics for separation of concerns which refer to the ability to identify, encapsulate and manipulate parts of software that are relevant to a particular concern. The separation of concerns metrics include: Concern Diffusion over Components (CDC), Concern Diffusion over Operations (CDO), Concern Diffusion over LOC (CDLOC). The rest of the used metrics, for measuring coupling, cohesion and size consist of CBC, DIT, LCOO, WOC, NOA, LOC and Vocabulary Size (VS).

Their work was evaluated in the context of two different empirical studies with different characteristics such as diverse domains, varying control levels and different degree of complexity. The first case study was a semi-controlled experiment to compare the use of an object-oriented approach and an aspect-oriented approach to design and implement Portalware, a multi-agent system (MAS). The second study was to evaluate Java implementations and AspectJ implementations of GoF design patterns by applying the proposed framework. Coupling (CBC, DIT), size (NOA, LOC) and separation of concerns (CDC, CDO, CDLOC) metrics were found to be inversely proportional (negatively correlated) to maintainability, reusability and flexibility attributes. However, it was not possible to understand the interplay between cohesion (LCOO) metric and the external quality attributes.

Tsang et al. [29] constructed two systems that both implemented a real-time sentient traffic simulation: OOSim and AOSim. OOSim was implemented in RTJava while AOSim was implemented in AspectJ. The RTJava code, which appeared in OOSim, was enclosed in aspects for the AspectJ version. Then, the authors assessed whether the use of aspects resulted in improvements in system properties such as understandability and testability. They used the extended C&K metrics suite in the evaluation. To apply the adapted C&K metrics suite to AOP; aspects and advice blocks are counted as classes and methods respectively. Their results show that, there is a significant negative correlation between understandability and DIT, CBC, RFC and WOC metrics. In addition, they found a significant negative correlation between testability and DIT, NOC, CBC and RFC metrics.

Tabbasum et al. [44] presented a case-study in which they compared the reliability of aspect-oriented and object-oriented design of decentralized Agent Management System (AMS). The authors compared the two versions of the same application in order to explore what extent each implementation provides a reliable system. For measuring the reliability, they measured the internal attributes like coupling, cohesion and complexity of the system. To measure the internal attributes of the aspect-oriented system they used the refinement of C&K metrics that was used previously in [45]. They found from the computed metrics that the aspect-oriented system resulted into a loosely coupled, more cohesive and less complex system. More specifically, they found a negative correlation between coupling (CBC, DIT), cohesion (LCOO) and complexity (WOC, NOA and LOC) metrics and the reliability of the system.

Table 5.1 summarizes the relation between the internal software quality attributes and the studied external software quality attributes. The internal software quality attributes include inheritance (DIT and NOC), coupling (CBC and RFC), cohesion (LCOO) and size (WOC, NOA and LOC) metrics. The external software quality attributes encompass maintainability, reusability, flexibility, understandability, testability, and reliability. In Table 5.1, “-ve” symbol indicates that there is a negative correlation between an internal quality metric and the corresponding external quality attribute. On the other hand, “0” symbol indicates no correlation. The symbol “NA” is used to indicate that the mentioned study did not investigate the correlation between the internal and the external software quality attribute.

Table ‎5‑1 Relation between Internal & External Quality attributes

	External SW Quality Attributes
	Study
	Internal SW Quality Attributes

	
	
	Inheritance
	Coupling
	Cohesion
	Size & Complexity

	
	
	DIT
	NOC
	CBC
	RFC
	LCOO
	WOC
	NOA
	LOC

	Maintainability
	[45]
	-ve
	NA
	-ve
	NA
	0
	NA
	-ve
	-ve

	Reusability
	[45]
	-ve
	NA
	-ve
	NA
	0
	NA
	-ve
	-ve

	Flexibility
	[45]
	-ve
	NA
	-ve
	NA
	0
	NA
	-ve
	-ve

	Understandability
	[29]
	-ve
	0
	-ve
	-ve
	0
	-ve
	NA
	NA

	Testability
	[29]
	-ve
	-ve
	-ve
	-ve
	0
	0
	NA
	NA

	Reliability
	[44]
	-ve
	NA
	-ve
	NA
	-ve
	-ve
	-ve
	-ve

6. Chapter 6

Aspect-Oriented Refactoring Methods

Aspect-oriented refactoring methods differ from traditional refactorings in that they involve AOP constructs either as the targeted elements or in the resulting code. This chapter covers the aspect-oriented refactoring methods. Section 6.1 presents a general description of the three distinct types of aspect-oriented refactorings with illustrative examples. Section 6.2 introduces the aspect-oriented refactorings used in this work. Finally, section 6.3 presents the mapping of the investigated aspect-oriented refactorings to the aspect-oriented constructs.

6.1
The Aspect-Oriented Refactoring Categories

Aspect-oriented paradigm and refactoring share the high-level purpose of creating software systems that are easier to understand and maintain without requiring enormous upfront design effort. In that way, AOR assists in reorganizing code corresponding to crosscutting concerns. This leads to improve modularization and eliminates the usual problem symptoms: code tangling and scattering. Additionally, AOR offers another benefit that is the implementation of the same functionality with fewer lines of code [17].

Most of the aspect-oriented languages are based on existing popular object-oriented languages. Accordingly, there is an opportunity to use some of object-oriented refactorings in aspect-oriented languages. However, generally, the additional constructs of aspect-oriented languages make existing refactoring techniques inadequate to preserve program behavior [36]. That is, to make those refactorings applicable to aspect-oriented languages, they need little adaptations. In the literature, the aspect-oriented refactorings have been divided into different groups [37, 38]. Table 6.1 summarizes the properties and the differences between the AOR categories.

Table ‎6‑1 Overview of the different aspect-oriented refactoring categories

	
	Target
	Focus / Motivation
	Examples

	Aspect-aware object-oriented refactorings
	Object-oriented code and aspect-oriented constructs
	Ensuring traditional object-oriented refactoring update references in aspect-oriented code properly
	· Rename Method

· Inline Method

	Refactorings of crosscutting concerns
	Object-oriented code and aspect-oriented constructs
	Extracting the non-modularized crosscutting concerns from object-oriented to aspect-oriented code
	· Extract Feature into aspects

· Inline class within Aspect

	Specific Refactorings for aspect-oriented constructs
	Aspect-oriented constructs
	Providing new refactorings explicitly involving aspect-oriented constructs (within and between the aspects)
	· Introduce Aspect Protection

· Separate Pointcuts

In the following, we introduce the three different categories of AOR methods in more details. Additionally, we present explanation example for a selected refactoring from each category.

6.1.1 Aspect-aware Object-Oriented Refactorings

Aspect-aware refactorings are traditional object-oriented refactoring methods, e.g. Fowler [3], that are extended to ensure that they do not break aspect-oriented constructs. When applying the traditional refactorings, focusing on object-oriented code, to an aspect-oriented system, references in aspects code are not taken into account, as a result, this may introduce errors. The issue is how to make existing object-oriented refactorings behavior-preserving in the presence of aspects. For instance, most of object-oriented refactorings are not valid when applying to AspectJ code. Therefore, they have to be adapted to consider the impact that the modifications on the base code (i.e., Java code) may have on the corresponding aspect code. For that reason, any refactorings being applied to object-oriented code must consider such effect on the aspects within the same software system [11].
Those refactorings may lead to modifications of joinpoints to which aspects might be woven to. Hence, if the aspects are not aware of the occurred modifications and their joinpoints specification, the applied refactorings are no longer behavior preserving [7].

	// Before refactoring

public class Sample{

public static void main(String args[]) {

pm();

}

void pm() {

System.out.println(“ print method”);

}

}

public aspect AspectSample {

before(): call(* Sample.pm()){

System.out.println(“ to call a method”);

}

}

// After refactoring

public class Sample{

public static void main(String args[]) {

print_method();

}

void print_method() {

System.out.println(“ print method”);

}

}

public aspect AspectSample {

before(): call(* Sample.pm()){

System.out.println(“to call a method”);

}

}

Figure ‎6‑1 An object-oriented refactoring for renaming method: before and after

For instance, rename method, which is an object-oriented refactoring technique [3], can be applied in two situiations. First, when a method name is not chosen adequately in the first attempt. Second, when the name is no longer appropriate since the implementation changed. Figure 6-1 presents a code before and after applying rename method technique in a class Sample. Beside the class, containing main method and a pm method, the progam inculdes an aspect AspectSample in which a piece of before advice is declared. The advice can be applied to each joinpoint where a target object of type Sample receives a call to its method with signature call(* Sample.pm())[11].
By performing an object-oriented refactoring on method pm() to rename its name from pm to print_method. The places that pm()occurrs in class Sample can be changed simply by using an editor or a refactoring tool. However, after the refactroing, the program's behavior is also changed, which is not desired. The reason is that the before advice relies on the method call joinpoint that is related to method signature pm(), which does not exist in the class anymore. Therefore, such object-orinted refactoings should modify the pointcut to make it point to method print_method() as in the following fragment of code. Otherwise, the program may produce an unexpected result.

	public aspect AspectSample {

before(): call(* Sample. print_method()){

System.out.println(“to call a method”);

}

}

6.1.2 Refactoring Object-Oriented code to Aspects

Those refactorings are also called refactorings of crosscutting concerns to aspects. Refactorings of crosscutting concerns involve transforming scattered crosscutting concerns implementations into a modularized form, an aspect. For instance, if we have an object-oriented system that logs certain method calls. Consequently, in that system, the calls to the logging facilities may be scattered across multiple classes and methods. In that way, we could extract all of these non-modularized concerns from the object-oriented modules and represent them by an aspect [37]. Therefore, by utilizing such refactorings, instead of handling each program element (method call in the logging example) separately, the different elements that comprise the crosscutting concerns are handled together [38].

A number of refactorings object-oriented codes to aspects have been introduced such as Hanenberg [7], Zhao [11], Monteiro [12], Rura [16], Laddad [17], Feremans [19] and Hannemann [38]. Figure 6-2 presents an example of one of these methods "Extract method calls" [17]. The figure shows a simple class Account with a few methods as the refactoring target. For the permission checks, a method call to checkPermission() is spread into almost every method. Thus, there is a need to refractor the permission checks by inserting an empty aspect that will eventually implement the permission checks for the Account class.

Figure 6-3 shows the class Account and the new aspect PermissionCheckAspect. In the aspect, a pointcut was defined to capture joinpoints that need the refactored functionality. To minimize unwanted effects, the pointcut simply enumerates each of the required methods. The refactored code, repeated method calls, is placed into an advice body to be triggered when the flow execution reach to before the predefined joinpoints. Obviously, by applying Extract method calls refactoring method, the modularity is improved and the code scattering is eliminated [17].

	// Before Refactoring

import java.security.AccessController;
public class Account {

private int _accountNumber;

private float _balance;

public Account(int accountNumber) {

_accountNumber = accountNumber;

}

public int getAccountNumber() {

AccessController.checkPermission(

new BankingPermission("accountOperation"));

return _accountNumber;

}

public void credit(float amount) {

AccessController.checkPermission(

new BankingPermission("accountOperation"));

_balance = _balance + amount;

}

public void debit(float amount) throws

InsufficientBalanceException {

AccessController.checkPermission(

new BankingPermission("accountOperation"));

if (_balance < amount) {

throw new

InsufficientBalanceException("Insufficient total balance");

} else {

_balance = _balance - amount;

}

}

public float getBalance() {

AccessController.checkPermission(

new BankingPermission("accountOperation"));

return _balance;

}

public String toString() {

return "Account: " + _accountNumber;

}
}

Figure ‎6‑2 Extract method calls refactoring: Before Refactoring

	// After Refactoring

import java.security.AccessController;
public class Account {

private int _accountNumber;

private float _balance;

public Account(int accountNumber) {

_accountNumber = accountNumber;

}

public int getAccountNumber() {

return _accountNumber;

}

public void credit(float amount) {

_balance = _balance + amount;

}

public void debit(float amount) throws
InsufficientBalanceException {

if (_balance < amount) {

throw new

InsufficientBalanceException("Insufficient total balance");

} else {

_balance = _balance - amount;

}

}

public float getBalance() {

return _balance;

}

public String toString() {

return "Account: " + _accountNumber;

}
private static aspect PermissionCheckAspect {

private pointcut permissionCheckedExecution() :

(execution(public int Account.getAccountNumber())

|| execution(public void Account.credit(float))

|| execution(public void Account.debit(float)

throws InsufficientBalanceException)

|| execution(public float Account.getBalance()))

&& within(Account);

before() : permissionCheckedExecution() {

AccessController.checkPermission(

new BankingPermission("accountOperation"));

}
 }
}

Figure ‎6‑3 Extract method calls refactoring: After Refactoring

6.1.3 Specific Refactorings for Aspect-Oriented Constructs

AOP introduces some new kinds of program elements such as pointcut, advice and introduction that are different from methods in classes. Therefore, the existing methods for refactoring object-oriented programs cannot be directly applied to the AOP domain. Thus, refactorings that are appropriate for aspect oriented programs are required for improving the code quality for aspect-oriented software [11].

While the other refactorings target object-oriented constructs, this kind of refactorings explicitly involves AOP constructs. Examples of such refactorings include changing the kind of an advice, or separating pointcuts. Obviously, like these refactorings parallel object-oriented refactorings with respect to the kind of constructs that can be applied to them. That is, aspects can be compared to classes and advices to methods. The meaning of object-oriented refactorings like Extract Method or Add Parameter [3], when applied to advices, is not complicated to be imagined. In the same way, identical of Extract Super/Subclass [3] may be imagined for aspects, for instance as introduced by Monteiro et al. [12].

Furthermore, AOP constructs allow for a set of new particular refactorings, i.e. without object-oriented refactorings equivalents. For example, like the splitting or merging of pointcuts/advices. Several researchers have proposed new refactorings for AOP constructs [7, 12].

This kind of refactorings is our target in this study, i.e. all of the refactorings under study belong to this group, as described below.

6.2 The Aspect-Oriented Refactorings under study

Monteiro et al. [9, 12] introduced a collection of twenty-eight kinds of refactoring for the AspectJ programming language. Each one includes the motivation of why the refactoring should be performed and step-by-step description of how to carry out the refactoring. The collection is structured in four groups: (i) ten refactorings for the extraction of crosscutting concerns from Java code to aspects, (ii) six refactorings for improving the internals of aspects, (iii) eleven refactorings to deal with the extraction of common code between multiple aspects and (iv) one refactoring to deal with the separation of concerns in the signature of constructors that are part of published interfaces i.e. APIs that are used by clients outside the control of the developer.

In addition, many other refactorings have been proposed and used [7, 12, 16, 19, 60]. In our study, we divided the specific refactorings for aspect-oriented constructs into two different groups. The first group includes eleven different refactoring methods which can be applied within aspects. The second group comprises also eleven refactorings applied between different aspects. The following sections include descriptions and examples of the refactoring methods that belong to these two groups.

6.2.1 Specific Refactorings within aspects

· Change Advice Kind from Around [19]. It is used to change the type of advice form around to before and after types. It can be applied when there is a need to split one around advice into multiple advices or into a single less general advice. The motivation behind this separation is: (i) the divided advices can be reused independently from other advices and (ii) the divided advices allow more advanced advice precedence strategies.
Figure 6-4 shows an example of a code fragment before and after the application of Change Advice Kind from Around [19]. In this example, the code introduced by the around advice is composed of two code fragments before and after the instruction proceed(). After applying the refactoring, each fragment is put in a separate advice to be executed before and after a specific joinpoint.
	// Before Refactoring

public aspect AspectExample{

void around(){

// first fragment code to be triggered before
executing the specified joinpoint

proceed ();

// second fragment code to be triggered after executing the specified joinpoint

}

 }

// After Refactoring

public aspect AspectExample{

before(){

// first fragment code to be triggered before
executing the specified joinpoint

}

after(){

// second fragment code to be triggered after executing the specified joinpoint

}

 }

Figure ‎6‑4 Change Advice Kind from Around: Before and After

· Extract Method from Advice [19]. This refactoring method is applied if there is a code fragment in an advice body that can be grouped together. Its idea is to move the code fragment into its own method and choose a name for the method to explain its purpose. The mechanics and motivation behind this refactoring technique are similar to Extract Method [3] for object-oriented code. When an advice may be too long or it contains a code fragment that needs to be documented in order to be understood, there is a need to apply this kind of refactoring. Consequently, that fragment of code can be moved into its own method and the method is called in the advice.
Figure 6-5 shows an example of a code fragment before and after the application of Extract Method from Advice. In the example, the fragment code used to print information about an object extracted into a new method. Then the method is called from inside the advice. The extracted method can be used by other advices.
	// Before Refactoring
aspect AspectExample{

before(){

//…..

System.out.println(“-----------“);

System.out.println(thisJointPointObject);

System.out.println(“-----------“);

//…….

}

}

//After Refactoring

aspect AspectExample{

before(){

//…..

printObject(thisJointPointObject);

//…….

}

void printObject(Object target){

System.out.println(“-----------“);

System.out.println(target);

System.out.println(“-----------“);

}

}

Figure ‎6‑5 Extract Method from Advice: Before and After

· Inline Method into Advice [19]. The exact inverse of the previous refactoring is inlining a method into an advice. Actually, this refactoring method is almost identical to Inline Method [3] for object-oriented programs. We can consider inlining the method into an advice when the method name is as clear as its body and when it is only called by the target advice.
Figure 6-6 shows an example of a code fragment before and after the application of Inline Method into Advice. In the example, the method, apply5PerecentDiscount, is called form the around advice. Consequently, by applying refactoring, the code inside the method can be moved to be inside the around advice. Then, the method is removed.
	// Before Refactoring

aspect AspectExample{

void around(){

integer price= proceed();

return apply5PerecentDiscount(price);

}

int apply5PerecentDiscount(integer price){

return new integer(price.getvalue()*0.95);

}

}

//After Refactoring

aspect AspectExample{

void around(){

integer price= proceed();

return new integer(price.getvalue()*0.95);

}

}

Figure ‎6‑6 Inline Method into Advice: Before and After

· Merge Advice Bodies [16]. It is used when two before or after advice bodies, with the same parameters, are woven to the same joinpoint. As a result, the two advices can be combined together by moving one’s body block into the other’s body block.
Figure 6-7 shows an example of a code fragment before and after the application of Merge Advice Bodies. In the following example, there are two advices triggered after reaching a particular joinpoint, in the base code, referred by the pointcut checkAuthority(). The two advices from the same advice kind ‘after’ and both of them use the same pointcut referring to a specific joinpoint. Accordingly, the two advices can be merged together to form a sole advice with identical sequence of the instructions before applying the refactoring.

	// Before Refactoring

public aspect AspectExample{

pointcut checkAuthority() :
 execution(public int Account.getAccountNumber());

after() : checkAuthority(){

// execute code X

}

after() : checkAuthority(){

// execute code Y

}

}

//After Refactoring

public aspect AspectExample{

pointcut checkAuthority() :
 execution(public int Account.getAccountNumber());

after() : checkAuthority(){

// execute code X

// execute code Y

}

}

Figure ‎6‑7 Merge Advice Bodies: Before and After

· Generalize before or after Advice to around Advice [16]. A similar method was proposed in [19] called Change Advice Kind to Around. In general, any kind of advice can be formulated as around advice. Firstly, change the advice type to around. Secondly, add a proceed() statement at the end of the advice body and in the case of before advice, while in the case of after advice, add a proceed()statement at the beginning of the advice body. Even two different before and after advices using the same pointcut can be combined into a single around advice. When two different types of advice (before and after) use the same pointcut. That means the two advices are woven to be executed before and after the same joinpoint. Accordingly, the two advices can be generalized together to form one around advice.
Figure 6-8 shows an example of a code fragment before and after the application of Generalize before or after Advice to around Advice. In the example, before refactoring, there are two introduced advices one implements before a particular joinpoint and the other implements after the same joinpoint. The two advices can be integrated into an around advice consisting of proceed() keyword that separates between the different code fragment and let the code that is related to the joinpoint to be executed. The code related to before advice is placed before proceed()instruction, while the code related to after advice is placed after proceed()instruction.

	// Before Refactoring

public aspect AspectExample{

pointcut checkAuthority() :
 execution(public int Account.getAccountNumber());

before() : checkAuthority(){

// execute code X

}

after() : checkAuthority(){

// execute code Y

}

}

//After Refactoring
public aspect AspectExample{

pointcut checkAuthority() :
 execution(public int Account.getAccountNumber());

void around() : checkAuthority(){

// execute code X

proceed();

// execute code Y

}

}

Figure ‎6‑8 Generalize before or after Advice to around Advice: Before and After
· Delete Unreachable Advice [16]. The motivation behind this kind of refactoring is to eliminate unused advices. Eliminating unused advices does not affect the program behavior and does not prevent the program from compiling. Thereby it is possible to apply this refactoring method to remove an advice declaration that can never be invoked since its pointcut contains no joinpoints that can occur. As a consequence, it is useful to eliminate the redundant and unused code.

Figure 6-9 shows an example of a code fragment before and after the application of Delete Unreachable Advice. In the example, there is an unreachable advice that has fragment of code may not be executed. Consequently, there is a need to remove the body of this advice since that code is redundant and useless.

	// Before Refactoring

public aspect AspectExample{

pointcut checkAuthority() :
 execution(public Account.new(..));

}

after() : checkAuthority(){

// statements of code to be executed

}

}

//After Refactoring
public aspect AspectExample{

pointcut checkAuthority() :
 execution(public Account.new(..));
}

Figure ‎6‑9 Delete Unreachable Advice: Before and After
· Change Advice kind from Before to After [19]. This refactoring method can be applied to change advice kind from before to after or vice versa. The reason of that, sometimes it is more natural to execute the advice before a particular joinpoint instead of after another. The transformation is done by changing the kind of advice to after instead of before and doing the needed changes for the pointcut to capture the appropriate joinpoint.
Figure 6-10 shows an example of a code fragment before and after the application of Change Advice kind from Before to After. In the example, the before advice is triggered before executing the code at a joinpoint (execution of method1) captured by the declared pointcut checkAuthority(). For some reason, it is more suitable to trigger the advice body after another joinpoint (execution of method2). Hence, by applying refactoring, the advice is changed to be triggered after the joinpoint.

	// Before Refactoring

public aspect AspectExample{

pointcut checkAuthority() :
 execution(public int Account.method1());

before() : checkAuthority(){

// execute code X

}

}

//After Refactoring

public aspect AspectExample{

pointcut checkAuthority () :
 execution(* Account.method2());

after() : checkAuthority(){

// execute code X

}

}

Figure ‎6‑10 Change Advice kind from Before to After: Before and After
· Separate Pointcuts [7]. It is better to separate pointcuts for facilitating the composition and adaptability of pointcuts in the case of future refactorings or program adaptations. This is also an enabling approach to the redefinition of existing pointcuts in sub-aspects. To do that, firstly: transform the anonymous into a named pointcut. This facilitates the overview if large and complex pointcut compositions are further extended. Secondly, separate the composite pointcut into its single logical independent component pointcuts. This kind of refactoring can be applied when more than one pointcut capture multi-joinpoints and at the same time some of the captured joinpoints are common in these pointcuts. Accordingly the common joinpoints can be captured by a new pointcut and removed form the existing pointcuts.

Figure 6-11, cited from [7], illustrates a partial redundant composite pointcut designators. The example shows two pointcuts x and y that use the same parameters and an advice that is triggered when reaching to the joinpoints captured by the two pointcuts. Hence, a new pointcut z can be created and then the parameters of the existing pointcuts x and y can be moved to the new pointcut. The advice is triggered when the execution flow reaches to the joinpoints are captured by the declared pointcuts that are referred by the advice itself.

	// Before Refactoring

public aspect AspectExample{

 pointcut x(C c, int a, int b):

 call (void C.foo(int, int))

&& target (c) && args (a, b);

 pointcut y(C c, int a, int b):

 call (void C,bar(.., int))

&& target(c) && args(a, b);

 after (C c, int a, int b):

 x(c, a, b)|| y(c, a, b){

 // code to be executed

 }

}

//After Refactoring

public aspect AspectExample{

 pointcut x():

 call (void C.foo(int, int));

 pointcut y():

 call (void C,bar(.., int));

 pointcut z(C c, int a, int b):

 target(c) && args(a, b);

 after (C c, int a, int b):

 x()|| y() || z(c, a, b){

 // code to be executed

 }

}

Figure ‎6‑11 Separate Pointcuts: Before and After

· Introduce Aspect Protection [12]. When we would like an inter-type member to be visible in an aspect and all its sub-aspects, but not outside the aspect inheritance chain. We can declare the inter-type member as public and place a declare warning preventing its use from outside the aspect inheritance chain.
Figure 6-12 shows an example of a code fragment before and after the application of Introduce Aspect Protection [12]. In GeneralPolicy aspect, an inter-type field _sensitiveData is introduced to the Participant class. There is a need to make the introduced field visible to its class and the GeneralPolicy aspect inheritance chain. So, we use declare warning to restrict the use of _sensitiveData field inside its class and the aspect.

	// Before Refactoring
abstract aspect GeneralPolicy {

protected interface Participant {}

public Data Participant._sensitiveData;

//...

}

aspect ConcretePolicy extends GeneralPolicy {

//code using Participant._sensitiveData

}

//After Refactoring

abstract aspect GeneralPolicy {

protected interface Participant {}

public Data Participant._sensitiveData;

declare warning:

 (set(public Data Participant+._sensitiveData) ||

 get(public Data Participant+._sensitiveData))

 && !within(GeneralPolicy+):

"field _sensitiveData is aspect protected. Not

visible here.";

}

Figure ‎6‑12 Introduce Aspect Protection: Before and After
· Replace Statement List in advice with Method call [16]. This kind of refactoring is used to replace a statements list in an advice with a method call for a method that already executes the exact statement list. This technique is useful to reduce the size of the aspect in terms of LOC and to eliminate the duplicated code.

Figure 6-13 shows an example of a code fragment before and after the application of Replace Statement List in Advice with Method call. The figure shows an aspect that contains an advice and a method. The statements executed in the method, method1, are identical to some statements declared in the advice. Hence, the list of statements (statment1, statment2) can be replaced by calling method1 and remove these statements.

	// Before Refactoring

 aspect AspectExample{

advice (){

statment1;

statment2;

statment3;

}

void method1 (){

Statment2;

Statment3;

}

}

//After Refactoring

aspect AspectExample{

advice (){

statment1;

method1();

}

void method1 (){

Statment2;

Statment3;

}

}

Figure ‎6‑13 Replace Statement List in advice with Method call: Before and After

· [image: image13.emf]Delete Unreferenced Named Pointcut [16]. This refactoring method is used to remove a named pointcut declaration that is not referenced. If the named pointcut is never referenced, it cannot affect the program behavior and removing its declaration will not prevent the program from compiling. Figure 6-14 shows an example of a code fragment before and after applying Delete Unreferenced Named Pointcut. In the figure, aspectA contains two pointcuts, one of them pointcutA2 holds multi joinpoints that are declared in classC and ClassD. In addition, pointcutA2 is referenced by adviceA1 and adviceA2 in the same aspect. On the other hand, pointcutA1 does not hold any joinpoint and it is not referenced by an advice. In the following figures, the dashed arrows show a reference from advice to pointcut, where the dotted arrows show a crosscutting from aspect to class.

Figure ‎6‑14 Delete Unreferenced Named Pointcut: Before and After

6.2.2 Specific Refactorings between Different Aspects

· [image: image14.emf]Pull Up Advice [12]. When all sub-aspects use the same advice acting on a pointcut declared in the super-aspect, we can move the advice to the super-aspect. Figure 6-16 shows an example of a code fragment before and after the application of Pull Up Advice. In the figure, in aspectB and aspectC, there is an advice called adviceB1 which is the same in the two aspects. Thus, this advice can be pulled up to the super aspect aspectA and removed from the sub-aspects.
Figure ‎6‑15 Pull Up Advice: Before and After

· [image: image15.png]1)

o

[’

Push Down Advice [12]. When there is a piece of advice is used by only some sub-aspects, or each sub-aspect requires a different advice. Consequently, we can move the advice to the sub-aspects that use it. As explained in [12], Figure 6-17 shows an example for aspects before and after the application of Push Down Advice. In aspectA, there is an advice adviceA that is used only by aspectB, so there is no need to be inherited by aspectC. Thus, adviceA1 can be pushed down to aspectB and removed from aspectA.

Figure ‎6‑16 Push Down Advice: Before and After
· Pull Up Declare Parents [12]. When all sub-aspects use the same declare parents, we can move the declare parents to the super-aspect. Figure 6-18 shows an example of a code fragment before and after the application of Pull Up Declare Parents. In the figure, aspect inheritance chain is appeared. The sub-aspects aspectB and aspectC contain an identical declare parents clause, declareParentsB1, that is used to declare an interface to be implemented by a particular class. This clause can be pulled up to the super-aspect aspectA and removed from the sub-aspects.

Figure ‎6‑17 Pull Up Declare Parents: Before and After

· Push Down Declare Parents [12]. When a declare parents in a super-aspect is not relevant to all the sub-aspects. Then, we can move the declare parents to the sub-aspects where it is relevant. Figure 6-19 shows an example before and after the application of Push Down Declare Parents. The super-aspect aspectA contains a declare parents clause declareParentsA1 which is relevant to the sub-aspect aspectB. That is, declareParentsA1 is relevant only to the concern implemented by aspectB. Consequently, we can push down declareParentsA1 from the super-aspect aspectA to the sub-aspect aspectB as it just relevant to that aspect.

Figure ‎6‑18 Push Down Declare Parents: Before and After

· Pull Up Inter-type Declaration [12]. If we have an inter-type declaration that would be best placed in the super-aspect, then we could move the inter-type declaration to the super-aspect. Figure 6-20 shows an example of aspect inheritance chain before and after the application of Pull Up Inter-type Declaration. The sub-aspect aspectB introduces inter-type method, methodD2, to the base code ClassD. It is better to place the introduced method in the super-aspect aspectA. Accordingly, by applying refactoring, methodD2 can be pulled up to aspectA and removed form aspectB.
Figure ‎6‑19 Pull Up Inter-type Declaration: Before and After

· Push Down Inter-type Declaration [12]. If there is an inter-type declaration would be best placed in a sub-aspect, then, we can move the inter-type declaration to the sub-aspect where it is relevant. Figure 6-21 shows an example of a code fragment before and after the application of Push Down Inter-type Declaration. The super-aspect aspectA introduces methodC3 as introduction to ClassC. Since methodC3 is related to the concern implemented by aspectB, we can push down that inter-type declared method to the sub-aspect aspectB.
Figure ‎6‑20 Push Down Inter-Type Declaration: Before and After

· Pull Up Pointcut [12]. If all sub-aspects declare identical pointcuts, then we can move the pointcuts to the super-aspect. Figure 6-22 shows an example of the aspect inheritance chain and classes before and after the application of Pull Up Pointcut. The sub-aspects aspectB and aspectC contain similar pointcut, pointcutA1, holding the same joinpoint in the base code and are referred by different advices. The identical pointcut in the two aspects can be pulled up to the super-aspect aspectA and removed from the sub-aspects.
Figure ‎6‑21 Pull Up Pointcut: Before and After
· Push Down Pointcut [12]. If there is a pointcut in the super-aspect that is not used by some sub-aspects inheriting it. Then we can move the pointcut to those sub-aspects that use it. Figure 6-23 shows an example of aspects before and after the application of “Push Down Pointcut”. The super-aspect aspectA declare a pointcut pointcutA1 holding particular joinpoint. As appeared in the figure, pointcutA1 is referred by only advice called adviceB1 included in the sub-aspect aspectB. Consequently, pointcutA1 can be pushed down to be placed in aspectB and removed from the super aspect since it is not used by either the super-aspect or the other aspects.

Figure ‎6‑22 Push Down Pointcut: Before and After

· Eliminating Borrowed Pointcut [60]. When a pointcut is referred by advices of the aspects that are not subaspects. As explained in [60], Figure 6-24 shows an example of aspects before and after the application of Eliminating Borrowed Pointcut. In the Figure, the advices adviceB2 and adviceC1 refer to pointcut pointcutA1 in aspect aspectA; however aspect aspectA is not the superaspect of the other aspects. Hence, pointcut pointcutA1 is considered to be the borrowed pointcut. In [60] the authors consider a situation like this as a bad smell that should be eliminated. Thus, a new aspect aspectD is created to be a specific for the common used pointcut and then pointcutA1 is moved from aspectA to the new aspect. As a result, all the aspects contain advices referring to pointcutA1 will refer to the new aspect.

Figure ‎6‑23 Eliminating Borrowed Pointcut: Before and After [60]
· Eliminating Duplicated Pointcut [60]. When pointcuts collect the same set of joinpoints in base code, we can apply this refactoring method to eliminate the duplications. As explained in [60], Figure 6-25 shows an example of aspects and classes before and after the application of Eliminating Duplicated Pointcut. In Figure 6-25, the pointcuts pointcutA1 and pointcutB1, which are differently defined, are intercepting to the same set of joinpoints in both classes. Hence, the pointcuts pointcutA1 and pointcutB1 are considered to be duplicated pointcuts. Therefore, a new aspect aspectE is created and the identical pointcut is moved to it.

Figure ‎6‑24 Eliminating Duplicated Pointcut: Before and After [60]
· Move Static Introduction [16]. To move a static inter-type member introduction to a different aspect, we can inline (localize) it from the original aspect into its target types and then extract it into the desired target aspect. Figure 6-26 shows an example of aspects and classes before and after the application of Move Static Introduction. In Figure 6-26, aspectA introduces inter-type method methodD2 to the class ClassD. However, aspectB implements a concern that is relevant to ClassD and it introduces the needed attributes to the target class. Thus, the declared methodD2 can be moved from aspectA to aspectB since it is relevant to the concern of aspectB.

Figure ‎6‑25 Move Static Introduction: Before and After.

6.3 Mapping the Aspect-Oriented Refactorings to the Aspect-Oriented Constructs
This section introduces a mapping between the aspect-oriented constructs and the AOR methods used in this work. Table 6.2 maps the used AOR methods to aspect-oriented constructs based on the possible effect of the AOR methods on each construct.

From Table 6.2, we can observe that only one of the investigated AOR methods affects the joinpoint. This is because our focus is on the refactorings specific to the aspects, where the joinpoints are special locations in the classes.
Table ‎6‑2 Mapping between the AOR methods and the aspect-oriented constructs
	
	Aspect-Oriented Refactoring Method
	Aspect-Oriented Constructs

	
	
	Advice
	Pointcut
	Joinpoint
	Inter-Type Declaration
	Declare Clause

	AOR Methods Within Aspect
	Change Advice Kind from Around
	(
	
	
	
	

	
	Extract Method from Advice
	(
	
	
	
	

	
	Inline Method into Advice
	(
	
	
	
	

	
	Merge Advice Bodies
	(
	
	
	
	

	
	Generalize before or after Advice to around Advice
	(
	
	
	
	

	
	Delete Unreachable Advice
	(
	
	
	
	

	
	Change Advice kind from Before to After
	(
	
	(
	
	

	
	Separate Pointcuts
	
	(
	
	
	

	
	Delete Unreferenced Named Pointcut
	
	(
	
	
	

	
	Introduce Aspect Protection
	
	
	
	
	(

	
	Replace Statement List in Advice with Method call
	(
	
	
	
	

	AOR Methods Between Aspects
	Pull Up Advice
	(
	
	
	
	

	
	Push Down Advice
	(
	
	
	
	

	
	Pull Up Declare Parents
	
	
	
	
	(

	
	Push Down Declare Parents
	
	
	
	
	(

	
	Pull Up Pointcut
	
	(
	
	
	

	
	Push Down Pointcut
	
	(
	
	
	

	
	Pull Up Inter-Type Declaration
	
	
	
	(
	

	
	Push Down Inter-Type Declaration
	
	
	
	(
	

	
	Eliminating Borrowed Pointcuts
	
	(
	
	
	

	
	Eliminating Duplicated Pointcuts
	
	(
	
	
	

	
	Move Static Introduction
	
	
	
	(
	

	

7. Chapter 7

Aspect-Oriented Refactoring Classification Based on Software Quality Attributes

As discussed, previously, there is a need for guidelines to help the software designers and developers decide which AOR methods can be used to optimize a certain software quality attribute. Thus, this chapter introduces a study for the effects of AOR methods on the internal and external software quality attributes. Then, it presents a classification for the AOR methods based on their effects on internal and external software quality attributes.

7.1 Source Code Examples

The source code examples for the selected AOR methods are introduced in appendix C. Those examples are used to classify the investigated AOR methods as presented in the following sections. The source code examples are obtained from Laddad’s book [24], the illustrative code examples used by Monteiro [13] and the AspectJ compiler example package [77].

7.2 Classification of Aspect Oriented Refactoring Methods based on Internal Quality Attributes

In this section, we propose a classification of refactoring methods for AOP based on their measurable effect on the internal software quality attributes described in chapter 5. Unfortunately, there is a lack in the tools that can be used to collect the aspect-oriented metrics. Therefore, the coupling and cohesion metrics for an aspect were collected manually. In order to measure the CBC of the aspect we consider the number of components to which the aspect is coupled [45]. CBC accesses aspect methods and attributes defined by introduction and the relationships between aspects and classes or other aspects defined in the pointcuts. Actually, this metric encompasses six coupling dimensions (C1 to C6) as demonstrated in Figure 7-1 [45].

Figure ‎7‑1 Coupling Dimensions on aspect-oriented systems [45]
In the same way, to measure the cohesion of an aspect, we utilize the metric proposed by Sant’ Anna [45]. The metric, called LCOO, is an extension of the well-known LCOM metric developed by Chidamber and Kemerer [79]. Advices and methods of aspects are regarded in the same way that C&K regards methods of classes. It measures the amount of method/advice pairs that do not access to the same instance variables. This metric measures the lack of cohesion of a component. According to their approach, if a component Ci has n operations (methods and advice) Oi,…,On then [image: image3.emf] can be defined as the set of instance variables used by operation Oj. Let |P| be the number of null intersections between instance variables sets. Let |Q| be the number of non-empty intersections between instance variables sets. Then, the lack of cohesion in operations is defined as follows: if |P| > |Q| then LCOO = |P| – |Q|, otherwise LCOO = 0. On the other hand, we collected the other internal quality metrics by utilizing the AJATO tool [80].

All the internal quality metrics values for the source code examples are collected before and after applying AOR methods. In Table 7.1, we present the measurement results for the source code examples before and after applying the investigated refactoring methods. The investigated refactoring methods between aspects have an effect on more than one aspect. Accordingly, to explain the regarded aspect’s measurements results we highlight the results for the considered aspect before and after applying the refactoring method. For instance, from Table 7.1, Pull Up Advice technique affects three aspects (servingRelationships.java, ObservingOpen.java and ObservingClose.java). For this technique, we are concerned with the occurred changes in the sub-aspects since they are the old aspects used to apply the refactoring. Thereby, we consider the aspect ObservingOpen.java to focus on its changes and highlight its measurements results before and after applying the AOR method.

Table ‎7‑1 Measurement results for source code examples before and after applying AOR methods

In the following we explain why the internal quality metric increases or decreases as a result of applying a particular AOR method. That is, we need to analyze the effect of each AOR method on the internal quality metrics individually.

· Change Advice Kind from Around- Obviously this refactoring method does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, CBC metric is not affected as (i) this AOR does not use additional methods or attributes of other aspects and (ii) it does not modify any additional joinpoint in the base program (classes). However, it increases the values of LOC metric since it separates a single advice into two advices and each of the new advices needs its own signature. Furthermore, it increases the value of RFC, LCOO and WOC metrics since it adds new advice to the aspect. In summary, Change Advice Kind from Around increases the size of the aspect in terms of number of operations and source code statements (RFC, WOC and LOC). Additionally, it makes the aspect less cohesive as it assigns more responsibilities to it.

· Extract Method from Advice- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. Moreover, it does not use additional methods or attributes of other aspects and it does not affect any additional joinpoints in the classes. Consequently, this kind of refactoring does not have an effect on CBC metric. However, it increases the values of RFC, LCOO, WOC and LOC metrics since it extracts group of statements from an advice into a new method. In summary, Extract Method from Advice increases the size of the aspect in terms of number of methods and source code statements (RFC, WOC and LOC), as well as it makes the aspect less cohesive as it assigns more responsibilities to it.

· Inline Method into Advice- Clearly this refactoring method does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, CBC metric is not affected as (i) this AOR does not use additional methods or attributes of other aspects and (ii) it does not affect any additional joinpoints in the class. However, it reduces the values of LOC metric since a newly defined method is added to the advice and the body of the original method is removed. Furthermore, it decreases the value of RFC, LCOO and WOC metrics because it removes a method from the aspect. In summary, Inline Method into Advice decreases the size of the aspect in terms of number of operations and source code statements (RFC, WOC and LOC metrics). In addition, it makes the aspect more cohesive as it decreases the assigned responsibilities to the aspect.

· Merge Advice Bodies- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, CBC metric is not affected since any additional methods or attributes of other aspects are used, as well as no additional joinpoints in the classes are affected. However, it decreases the values of RFC, WOC and LOC metrics since it merges two separate advices, each has its own signature, into a single advice. In summary, Merge Advice Bodies reduces the size of the aspect in terms of number of methods and source code statements (RFC, WOC and LOC).

· Generalize before or after Advice to around Advice- Noticeably this refactoring method does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, it does not use additional methods or attributes of other aspects and it does not affect any additional joinpoints in the base program. As a result, this AOR does not have an effect on CBC metric. Nevertheless, it reduces the values of RFC, WOC and LOC metrics since it converts two different advices to an around advice with a single signature. In summary, Generalize before or after Advice to around Advice decreases the size of the aspect in terms of number of methods and source code statements (RFC, WOC and LOC metrics).

· Delete Unreachable Advice- This refactoring technique does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, CBC metric is not affected as this AOR does not use additional methods or attributes of other aspects and it does not change any additional joinpoints in the base program. However, it decreases the values of RFC, LCOO, WOC and LOC metrics since it removes an advice from the aspect. In summary, Delete Unreachable Advice decreases the size of the aspect in terms of number of methods and source code statements (RFC, WOC and LOC metrics). Additionally, it makes the aspect more cohesive as it decreases the assigned responsibilities to the aspect.

· Change Advice kind from Before to After- It replaces the keyword after in the advice signature by keyword before. Consequently, only the joinpoint that is referenced by the related pointcut is changed. Therefore, this aspect-oriented refactoring does not affect any of the investigated internal quality metrics for the aspect.

· Separate Pointcuts- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, CBC metric is not affected since no additional methods or attributes of other aspects are used and no additional joinpoints in the classes are influenced. Furthermore, it does not affect the values of RFC, WOC and LCOO metrics. However, it increases the values of NOA and LOC metrics since it adds an additional pointcut to the aspect. In summary, Separate Pointcuts increases the size of the aspect in terms of number of pointcuts and source code statements.

· Introduce Aspect Protection- Clearly it does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. Moreover, it does not use additional methods or attributes of other aspects and it does not modify any additional joinpoints in the classes. Consequently, this aspect-oriented refactoring does not have an effect on CBC metric. Additionally, it does not affect the values of RFC, WOC and LCOO metrics. However, it increases the values of NOA and LOC metrics since it adds group of statements into a declare clause. In summary, Introduce Aspect Protection increases the size of the aspect in terms of NOA and LOC metrics.

· Replace Statement List in an Advice with Method call- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. Moreover, it does not use additional operations of other aspects and it does not affect any additional joinpoints in the classes. Consequently, this aspect-oriented refactoring does not have effect on CBC metric. Additionally, it does not have an effect on FRM, WOC and NOA metrics. However, the value of LOC metric is decreased because some code statements in the advice body are replaced by a method call. In summary, Replace Statement List in an Advice with Method call decreases does not affect any of the investigated internal quality metrics except LOC metric.

· Delete Unreferenced Named Pointcut- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. In addition, CBC, RFC, LCOO and WOC metrics are not affected by applying this aspect-oriented refactoring. Furthermore, this refactoring decreases the values of NOA and LOC metrics since it removes a pointcut from the aspect. In summary, Delete Unreferenced Named Pointcut decreases the size of the aspect in terms of number of attributes and source code statements.

· Pull Up Advice- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. In addition, it does not affect CBC metric. However, it decreases the values of RFC, LCOO, WOC and LOC metrics of the sub-aspects since it moves an advice from the sub-aspects into the super-aspect. In summary, Pull Up Advice makes the sub-aspect more cohesive since it reduces the assigned responsibilities to it. Furthermore, it decreases the size of the sub-aspects in terms of number of methods and source code statements (RFC, WOC and LOC metrics).

· Push Down Advice- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. In addition, it does not affect CBC metric. However, it decreases the values of RFC, LCOO, WOC and LOC metrics of the super-aspect since it moves an advice from the super-aspect into the sub-aspect. In summary, Push Down Advice decreases the size of the super-aspect in terms of number of methods and source code statements (RFC, WOC and LOC metrics). Additionally, it makes the super-aspect more cohesive since it reduces the assigned responsibilities to it

· Pull Up Declare Parents- Obviously this refactoring technique does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. In addition, the values of WOC and RFC metrics are not affected. However, it decreases the values of CBC, NOA and LOC metrics of the sub-aspects since it moves a declare clause from the sub-aspects into the super-aspect. In summary, Pull Up Declare Parents decreases the coupling CBC metric and the size of the sub-aspects in terms of number of attributes and source code statements (NOA and LOC metrics).

· Push Down Declare Parents- Clearly it does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. In addition, the values of WOC and RFC metrics are not affected. However, it decreases the values of CBC, NOA and LOC metrics of the super-aspect since it moves a declare clause from the super-aspect into the sub-aspect. In summary, Push Down Declare Parents decreases the coupling CBC metric, as well as the size of the super-aspect in terms of number of attributes and source code statements (NOA and LOC metrics).

· Pull Up Inter-type Declaration- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. However, it decreases the values of CBC, RFC, LCOO, WOC and LOC metrics of the sub-aspects since it moves an inter-type declaration from the sub-aspects into the super-aspect. In summary, Pull Up Inter-type Declaration decreases the coupling CBC metric and the size of the sub-aspects in terms of number of methods and source code statements (RFC, WOC and LOC). Additionally, it makes the sub-aspect more cohesive since it reduces the assigned responsibilities to it

· Push Down Inter-type Declaration- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. However, it decreases the values of CBC, LCOO, RFC, WOC and LOC metrics of the super-aspect since it moves an intertype declaration from the super-aspect into the sub-aspect. In summary, Push Down Inter-type Declaration decreases the coupling CBC metric and the size of the super-aspect in terms of number of methods and source code statements (RFC, WOC and LOC). Furthermore, it makes the super-aspect more cohesive since it reduces the assigned responsibilities to it.
· Pull Up Pointcut- This refactoring technique does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. Additionally, it does not affect the values of CBC, RFC, LCOO and WOC metrics. On the other hand, it decreases the values of NOA and LOC metrics of the sub-aspects since it moves a pointcut from the sub-aspects into the super-aspect. In summary, Pull Up Pointcut decreases the size of the sub-aspect in terms of NOA and LOC metrics.

· Push Down Pointcut- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates subaspects. Additionally, it does not affect the values of CBC, RFC, LCOO and WOC metrics. However, it decreases the values of NOA and LOC metrics of the super-aspect since it moves a pointcut from the super-aspect into the sub-aspect. In summary, Push Down Pointcut decreases the size of the super-aspect in terms of number of pointcuts and source code statements.
· Eliminating Borrowed Pointcut- Noticeably it does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. Additionally, the values of RFC, WOC and LCOO metrics are not affected. However, the value of CBC metric is decreased since new aspect is created and the existing aspects use the pointcut moved to the new aspect. In addition, the values of NOA and LOC metrics of the old aspect are decreased since a pointcut is moved to a new aspect. In summary, Eliminating Borrowed Pointcut decreases the coupling of the old aspect; also it decreases the size of the source aspect in terms of number of pointcuts and source code statements. Furthermore, this kind of refactoring increases the number of the aspects in the system.
· Eliminating Duplicated Pointcut- It does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. Moreover, the values of CBC, RFC, WOC and LCOO metrics are not affected. In addition, the values of NOA and LOC metrics of the existing aspects are decreased since new aspect is created and all the duplicated pointcuts in the existing aspects are moved to the new aspect. In summary, Eliminating Duplicated Pointcut decreases the size of the source aspect in terms of number of attributes and source code statements (NOA and LOC). Furthermore, this refactoring method increases the number of the aspects in the system.
Move Static Introduction- Obviously does not affect DIT and NOC metrics since it neither inherits an aspect nor creates sub-aspects. However, it decreases the values of CBC, RFC, LCOO, WOC and LOC metrics of the aspect since it moves an introduction from an aspect to the target aspect. In summary, Move Static Introduction decreases the coupling CBC metric and the size of the aspect in terms of number of operations and source code statements (RFC, WOC and LOC). Moreover, it makes the aspect more cohesive since it reduces the assigned responsibilities to the aspect.
In the following, Table 7-2 demonstrates a classification of the investigated AOR methods based on their effects on the internal quality metrics. We consider the changes occurred in the old aspect, for instance, when applying Pull Up Advice we consider the changes occurred in the sub-aspect. In another way, when applying Push Down Advice, we consider the changes occurred in the super-aspect since the refactoring method is applied on the super-aspect. As shown in Table 7-2 the AOR methods are categorized firstly based on their relation to the aspect-oriented constructs. In the table, we use three different symbols to represent the changes as follows:

1. “(” symbol represents an increase in the internal software quality attribute,

2. “(” symbol represents a decrease in the internal software quality attribute and

3. “-” symbol represents no change in internal software quality attribute.

Table ‎7‑2 Aspect-Oriented Refactoring methods classification based on internal software quality attributes

Table 7-2 Continued

7.3 Classification of Aspect Oriented Refactoring Methods based on External Quality Attributes

This section presents the proposed classification of AOR methods based on the external quality attributes. As discussed in Chapter 5, the external software quality attributes (maintainability, reusability, understandability, flexibility, testability, and reliability) can be assessed using internal quality metrics. Actually, for classifying the AOR methods according to the external quality attributes, we rely on the findings of the existing research studies that show a correlation between the external quality attributes and the internal quality metrics as demonstrated in Table 5.1. More specifically, we rely on the following studies which are discussed previously in details in chapter 5:

· S. Tsang et al. [29] to assess understandability and testability of aspect- oriented software system.

· Sant’Anna et al. [45] to assess maintainability, reusability and flexibility of aspect-oriented system.

· Tabbasum et al. [44] to assess the reliability of aspect-oriented software system.

As a result, the classification is accomplished by mapping the changes in the internal quality metrics, presented in Table 7-2, to the investigated external software quality attributes based on these research studies.

In the following we explain why the external quality attribute is improved or impaired as a result of applying a particular AOR method. The purpose of this discussion is to explain how we could judge if a particular AOR method improves or impairs external software quality attribute. The AOR methods are categorized based on their relation to the aspect-oriented constructs, so we discuss the effects of the AOR related to each aspect-oriented construct individually.

Advice- we can notice from Table 7.2 that AOR methods related to the Advice construct can be categorized into five categories based on their effects on the internal quality metrics. For instance, the refactorings included in the first category increase the values of RFC, LCOO, WOC and LOC metrics as a result of adding a method or an advice to the aspect. When mapping the effects on the internal quality metrics to the external quality attributes, as shown in Table 5.1, the first category impairs all the external quality attributes. On the other hand, the second and third category, form Table 7.2; improve the external quality attributes as shown in Table 7.3. That is, when applying these refactorings the values of RFC, LCOO, WOC and LOC metrics are decreased as a result of decreasing the number of methods or advices in the aspect. The refactoring technique included in the fourth category decreases the value of LOC metric, as a result it improve the external quality attributes except testability and understandability as demonstrated in Table 7.3. The last category related to the Advice construct does not affect the external quality attributes as it does not have any effect on the internal quality metrics as demonstrated in Table 7.2.

Pointcut- as demonstrated in Table 7.2, the AOR methods related to pointcut construct are categorized into three categories. The first category includes only one refactoring technique that increases the values of NOA and LOC metrics, consequently it impairs the external quality attributes except testability and understandability as presented in Table 7.3. In a different way, the AOR methods included in the second category decrease the values of NOA and LOC metrics due to removing a pointcut form the aspect. Hence, the external quality attributes are improved except testability and understandability since there is no correlation between them and the affected metrics (see Table 5.1). The third category decreases the values of CBC, NOA and LOC metrics as demonstrated in Table 7.2, as a result it improves all the investigated external quality attributes as shown in Table 7.3.

Inter-Type Declaration- when applying the AOR methods related to this construct, inter-type declaration is moved from the old aspect to another one. That is, all the AOR methods related to this construct, decreases the values of CBC, RFC, LCOO, WOC and LOC metrics as shown in Table 7.2. Accordingly, these refactorings improve all the external quality attributes, as presented in Table 7.3, based on the negative correlation in the literature [27, 29, 44, 45] between the internal metrics and the external quality attributes.

Declare Clause- we can notice that, from Table 7.2, there are three refactorings related to the Declare Clause construct. Two of these refactorings, related to the Declare Parents clause, decrease the values of CBC, NOA and LOC metrics. For that reason, these refactorings improve all the external quality attributes as shown in Table 7.3. On the other hand, the third refactoring increases the values of NOA and LOC metrics, hence it impairs all the external quality attributes except testability and understandability as presented in Table 7.3.

Table 7-3 presents a classification of the investigated AOR methods based on the external software quality attributes. As shown in Table 7-3 the AOR methods are categorized firstly based on their relation to the aspect-oriented constructs. In the following table, we use three different symbols to represent the changes as follows:

1. “(” symbol represents an improvement in the external software quality attribute,

2. “(” symbol represents an impairment in the external software quality attribute,

3. “-” symbol represents no change in external software quality attribute.

Table ‎7‑3 Aspect-Oriented Refactoring Methods classification based on External software quality attributes

Table 7-3 Continued

Table 7-4 presents a classification for the AOR methods based on their effects on the internal quality attributes regardless of their relations to the aspect-oriented constructs. That is, the AOR methods are classified with respect to their similar effects on the internal quality metrics. Similarly, Table 7-5 presents a classification for the AOR methods based on their effects on the external quality attributes.

Table ‎7‑4 Aspect-OrientedRefactoring methods classification based on internal software quality attributes

Table 7-4 Continued

Table ‎7‑5 Aspect-OrientedRefactoring methods classification based on External software quality attributes

Table 7-5 Continued

In Chapter 6 we divided the investigated AOR methods into two distinct groups: (i) AOR methods within aspects and (ii) AOR methods between aspects. In the following we present a separate classification for each group. Table 7.6 demonstrates a classification of the AOR methods within aspects based on their effects on the external quality attributes. Table 7.7 shows a classification of the AOR methods between aspects based on their effects on the external quality attributes.

We can observe from Table 7.6 that only six AOR methods out of the eleven positively affect the investigated external quality attributes. Four out of these six refactorings have positive effects on all the external quality attributes, where the other two refactorings do not affect the understandability and testability. On the other hand, Table 7.7 demonstrates that all the investigated refactorings between aspects improve the external quality attributes. Eight AOP methods out of them positively affect all the external quality attributes, where three other refactorings do not have effects on the understandability and testability. For the last AOP method, it obviously improves the investigated external quality attributes except the testability since we could not judge if this refactoring method improves it or impairs it.
Table ‎7‑6 Classification of the AOR methods within aspects based on their effects on the external quality attributes

Table ‎7‑7 Classification of the AOR methods within aspects based on their effects on the external quality attributes

8. Chapter 8

Empirical Validations

In the previous chapters, we presented a classification for AOR methods based on the internal and the external software quality attributes. In this chapter, we empirically validate the proposed classification by using six open-source software systems. Section 8.1 presents a brief background of the software systems used for validation. Section 8.2 introduces the methodology followed to collect data from the subject systems. Then, we report the results of the validation for the classification of the investigated AOR methods by using the software systems. At the end, we discuss the validation results of the proposed classification.

8.1 Software Systems Background

For the empirical validation, we used six open-source projects. These projects have been used for different purposes related to aspect oriented programming. The open source projects are: Telecom [81], AspectTetris [82], AJEFW [83], AJHotDraw [84], Prevayler [85] and SapceWar [81]. This group of projects has been widely used by other researchers to evaluate their work [56, 60]. Summary of the main characteristics of the used software projects in this validation is presented in Table 8-1.

Table ‎8‑1 The main characteristics of the studied software projects in the validation

	Project
	Language
	# of classes
	# of aspects
	Total of Modules
	Description

	Prevayler
	Java & AspectJ
	90
	55
	145
	Main memory database system. It is an open-source application was produced by the Apache Software Foundation.

	AJHotDraw
	Java & AspectJ
	290
	31
	321
	An open-source drawing application, that was developed as model application to show good use of design patterns in Java.

	Aspecttetris
	Java & AspectJ
	7
	8
	15
	A game called Tetris. It was developed at Blekinge Institute of Technology.

	AJEFW
	Java & AspectJ
	18
	4
	22
	AspectJ Exception FrameWork (AJEFW) provides a central point and code reuse on the treatment of different kinds of exceptions presents in an application.

	SpaceWar
	Java & AspectJ
	15
	4
	19
	A simple game. It was introduced in the AspectJ examples.

	Telecom
	Java & AspectJ
	10
	3
	13
	A simple communication program which was introduced in the AspectJ examples.

8.2 Data Collection

In this section, we introduce a lengthy description for the methodology followed to collect data from the subject systems. The used methodology comprises nine steps explained in the following:

1. Look for opportunity to apply an AOR method on the aspects included in the system. No need to apply the AOR techniques in a specific order since we are concerned about the changes that may occur to the aspect as an effect of the applied AOR technique regardless of the system version i.e. either on the original system or after applying other refactorings.
2. Collect the internal quality metrics (described in Chapter 5) for the aspects of the system before applying the AOR method.
3. Perform the AOR method with the help of Eclipse AspectJ Development Tools (AJDT) [81].

4. Compile the source code in order to make sure the system works correctly as before applying the refactoring.

5. Collect the internal quality metrics (described in Chapter 5) for the aspects of the system after applying the AOR method.
6. Report the occurred changes in the internal quality metrics for each aspect in the system.

7. Map the occurred changes in the internal quality metrics to the investigated external quality attributes, as discussed in details in Chapter 5.

8. Repeat steps 1 to 7 for all the selected AOR methods.

9. Stop when there is no opportunity to apply any of the investigated AOR methods.

Figure ‎8‑1 The used methodology to collect the data
Table 8-2 shows the investigated AOR techniques and to which open-source system they have been applied during the empirical validation.

Table ‎8‑2 The AOR methods applied on each software project

	AOR Method
	Prevayler
	AJhotDraw
	Aspecttetris
	AJFEW
	SpaceWar
	Telecom

	Change Advice Kind from Around
	-
	(
	(
	-
	-
	-

	Extract Method from Advice
	(
	(
	(
	-
	(
	(

	Inline Method into Advice
	(
	(
	(
	-
	-
	-

	Merge Advice Bodies
	-
	(
	
	-
	-
	-

	Generalize before or after Advice to around Advice
	(
	-
	(
	-
	-
	-

	Delete Unreachable Advice
	(
	(
	(
	-
	-
	(

	Change Advice kind from Before to After
	-
	-
	(
	-
	(
	-

	Separate Pointcuts
	-
	(
	-
	-
	-
	-

	Delete Unreferenced Named Pointcut
	(
	(
	(
	-
	-
	-

	Introduce Aspect Protection
	(
	-
	(
	-
	-
	(

	Replace Statement List in Advice with Method call
	-
	-
	-
	-
	(
	(

	Pull Up Advice
	-
	(
	-
	(
	-
	-

	Push Down Advice
	(
	-
	-
	(
	-
	-

	Pull Up Declare Parents
	(
	-
	-
	(
	-
	-

	Push Down Declare Parents
	-
	(
	-
	(
	-
	-

	Pull Up Pointcut
	-
	(
	(
	-
	-
	-

	Push Down Pointcut
	(
	-
	-
	(
	-
	-

	Pull Up Inter-Type Declaration
	(
	-
	-
	-
	-
	(

	Push Down Inter-Type Declaration
	(
	-
	-
	(
	-
	-

	Eliminating Borrowed Pointcuts
	-
	-
	-
	-
	-
	(

	Eliminating Duplicated Pointcuts
	-
	-
	(
	-
	-
	-

	Move Static Introduction
	(
	(
	-
	-
	-
	-

8.2.1 Results from Prevayler

This section presents the results of applying AOR methods on Prevayler project. Table 8-11 presents the measurement results for the affected aspects before and after applying the AOR methods. The values of the metrics for each aspect, before applying aspect oriented refactoring, can be noticed through the first appearance of the target aspect in Table 8-11. The occurred changes in the internal quality metrics caused by applying the refactoring methods are shown in Table 8-12. In the table, we used three different symbols, where “(” symbol represents an increase in a metric value, “(” symbol represents a decrease in a metric value and “-” symbol represents no change in a metric value.

Table ‎8‑3 Measurements results for the affected aspects before and after applying AOR methods: Prevayler project

Table 8-3 Continued

Table 8-3 Continued

Table ‎8‑4 Changes in the internal quality metrics caused by applying refactoring methods: Prevayler project

8.2.2 Results from AJHotDraw

This section presents the results of applying AOR methods on AJHotDraw project. Table 8-9 presents the measurement results for the affected aspects before and after applying the AOR methods. The values of the metrics for each aspect, before applying aspect oriented refactoring, can be noticed through the first appearance of the target aspect in Table 8-9. The occurred changes in the internal quality metrics caused by applying the refactoring methods are shown in Table 8-10. In the table, we used three different symbols, where “(” symbol represents an increase in a metric value, “(” symbol represents a decrease in a metric value and “-” symbol represents no change in a metric value.

Table ‎8‑5 Measurements results for the affected aspects before and after applying AOR methods: AJHotDraw project

Table 8-5 Continued

Table 8-5 Continued

Table ‎8‑6 Changes in the internal quality metrics caused by applying refactoring methods: AJHotDraw project

8.2.3 Results from Aspecttetris

This section presents the results of applying some of the AOR methods on the Aspecttetris project. Table 8-3 presents the measurement results for the affected aspects before and after applying the AOR methods. The values of metrics for each aspect, before applying the aspect oriented refactoring, can be noticed through the first appearance of the aspect in Table 8-3. Table 8-4 shows the changes in the internal quality metrics caused by applying the appropriate refactoring methods, where “(” symbol represents an increase in a metric value, “(” symbol represents a decrease in a metric value and “-” symbol represents no change in a metric value.

Table ‎8‑7 Measurements results for the affected aspects before and after applying AOR methods: Aspecttetris project

Table ‎8‑8 Changes in the internal quality metrics caused by applying refactoring methods: Aspecttetris project

8.2.4 Results from AJEFW

This section presents the results of applying some AOR methods on the AJEFW project. Table 8-7 presents the measurement results for the affected aspects before and after applying the AOR methods. The values of the metrics for each aspect, before applying aspect oriented refactoring, can be noticed through the first appearance of the target aspect in Table 8-7. Table 8-8 shows the changes occurred in the internal quality metrics caused by applying the appropriate refactoring method, where “(” symbol represents an increase in a metric value, “(” symbol represents a decrease in a metric value and “-“ symbol represents no change in a metric value.

Table ‎8‑9 Measurements results for the affected aspects before and after applying AOR methods: AJEFW project

Table ‎8‑9 Continued

Table ‎8‑10 Changes in the internal quality metrics caused by applying refactoring methods: AJEFW project

8.2.5 Results from SpaceWar

This section presents the results of applying AOR methods on SpaceWar project. Table 8-13 presents the measurement results for the affected aspects before and after applying the AOR methods. The values of the metrics for each aspect, before applying aspect oriented refactoring, can be noticed through the first appearance of the target aspect in Table 8-13. The occurred changes in the internal quality metrics caused by applying the refactoring methods are shown in Table 8-14. In the table, we used three different symbols, where “(” symbol represents an increase in a metric value, “(” symbol represents a decrease in a metric value and “-” symbol represents no change in a metric value.

Table ‎8‑11 Measurements results for the affected aspects before and after applying AOR methods: SpaceWar project

Table ‎8‑12 Changes in the internal quality metrics caused by applying refactoring methods: SpaceWar project

8.2.6 Results from Telecom

This section presents the results of applying AOR methods on the Telecom project. Table 8-5 presents the measurement results for the affected aspects before and after applying the AOR methods. The values of metrics for each aspect, before applying the aspect oriented refactoring, can be noticed through the first appearance of the aspect in Table 8-5. Table 8-6 shows the changes in the internal quality metrics caused by applying the appropriate refactoring methods, where “(” symbol represents an increase in a metric value, “(” symbol represents a decrease in a metric value and “-“ symbol represents no change in a metric value.

Table ‎8‑13 Measurements results for the affected aspects before and after applying AOR methods: Telecom project

Table ‎8‑13 Continued

Table ‎8‑14 Changes in the internal quality metrics caused by applying refactoring methods: Telecom project

8.3 Discussion of Results

Table 8-3, Table 8-5, Table 8-7, Table 8-9, Table 8-11 and Table 8-13 present the changes in the internal quality metrics of the studied software projects. Based on these results, we validate the proposed classification of AOR methods based on their measurable effects on the internal quality metrics. After that, we classify the investigated AOR methods according to the external quality attributes. That is, by mapping the changes in the internal quality metrics to the external quality attributes as described in Chapter 5.

Table 8-15 presents the classification of the investigated AOR methods, based on the internal quality metrics. The classification, presented in Table 8-15, is accomplished by using the obtained empirical results from the software systems. Table 8-15 contains three different symbols: (i) “(” symbol represents an increase in a metric value, (ii) “(” symbol represents a decrease in a metric value and (iii)“-” symbol represents no change in a metric value.

The classification of the investigated AOR methods, based on the external quality attributes, is presented in Table 8-16. This classification is accomplished by using the obtained empirical results from the studied software projects. Table 8-16 contains three different symbols: (i) “(” symbol represents improvement in external quality attribute, (ii) “(” symbol represents impairment in external quality attribute and (iii) “-” symbol represents no change in external quality attribute.

Table ‎8‑15 Classification of refactoring methods based on internal software quality attributes using empirical results

Table ‎8‑15 Continued

Table ‎8‑16 Classification of refactoring methods based on external software quality attributes using empirical results

Table ‎8‑16 Continued

For further analysis of the effect of the investigated AOR methods on the internal quality metrics, see section 7.2. Certainly, the results obtained from the six software systems provide a number of interesting points that can be discussed in the following:

· The empirical results presented in Table 8-4, which are provided by the Aspecttetris project, confirm the classification of the investigated AOR based on internal software quality presented in Table ‎7-2 for the AOR applied to this system.

· The empirical results presented in Table ‎8-6, which are provided by the Telecom project, confirm the classification of the investigated AOR based on internal software quality presented in Table ‎7-2 for the AOR applied to this system.

· The empirical results presented in Table 8-8, which are provided by the AJEFW project, confirm the classification of the investigated AOR based on internal software quality presented in Table ‎7-2 for the AOR applied to this system.

· The empirical results presented in Table 8-10, which are provided by the AJHotDraw project, confirm the classification of the investigated AOR based on internal software quality presented in Table ‎7-2 for the AOR applied to this system.

· The empirical results presented in Table 8-12, which are provided by the Prevayler project, confirm the classification of the investigated AOR based on internal software quality presented in Table ‎7-2 for the AOR applied to this system. We can notice that in Table 8-11 when applying Delete Unreachable Advice the value of cohesion metric did not change. As a result, in Table 8-12 showing the occurred changes for the internal metrics only RFC, WOC, LOC metrics values have been affected when applying Delete Unreachable Advice. Such results are not similar to that shown in Table 7-2 where RFC, LCOO, WOC and LOC metrics were affected by applying this refactoring. The explanation for that is, in Table 8-11 before applying Delete Unreachable Advice the original value of LCOO metric for POBOXClock aspect equals zero. Thus, after applying the refactoring even the cohesion increases, normally, the LCOO metric value remains zero.
· The empirical results presented in Table 8-14, which are provided by the SpaceWar project, confirm the classification of the investigated AOR based on internal software quality presented in Table ‎7-2 for the AOR applied to this system.

· The empirical results presented in Table 8-15 which are provided by the six open-source projects, confirm the classification of the investigated refactoring methods based on internal software quality presented in Table ‎7-2.

· The empirical results presented in Table 8-16 which are provided by the six software systems, confirm the classification of the investigated refactoring methods based on external quality attributes presented in Table ‎7-3.

· The empirical results presented in Table 8-3 and Table 8-5 support the earlier explanation in Chapter 7 that some of the investigated AOR methods increase the number of aspects in the system. These refactorings include Eliminating Borrowed Pointcuts and Eliminating Duplicated Pointcuts.

· We can observe from Table 8-4, Table 8-6, Table 8-10, Table 8-12 and Table 8-14 that Extract Method from Advice and Change Advice kind form Around increase the aspect size in terms of WOC and LOC metrics since they introduce new methods. On the other hand, Inline Method into Advice, Generalize before or after Advice to around Advice and Merge Advice Bodies reduce the aspect size in terms of WOC and LOC metrics. Furthermore, we can observe from Table 8-4, Table 8-10 and Table 8-12 that some AOR methods are inverse to each other i.e. have inverse effect on the internal and the external quality attributes. Examples of that:

1. “Extract Method form Advice” and “Inline Method into Advice”,

2. “Change Advice kind from Around” and “Generalize before or after Advice to around Advice”

9. Chapter 9

Concluding Remarks

This chapter presents our conclusions and contributions, then it discusses the limitations of this work and finally it presents the future work.

9.1 Major Contributions

In this thesis, we classified a set of AOR methods based on internal and external software quality attributes. The contributions of this work are:

1. Introduced the main differences between AOP and OOP.

2. Identified a set of aspect-oriented metrics that affect external software quality attributes based on available literature.

3. Identified a set of AOR methods that are specific to aspect-oriented constructs and divide them into groups: AOR within aspects and AOR between aspects.

4. Defined the impact of the selected AOR methods on internal software quality metrics (inheritance, coupling, cohesion and size) by observing the changes in the internal quality metrics caused by applying the refactorings.

5. Defined the impact of the selected AOR methods on external software quality attributes by relating internal software quality metrics to external software quality attributes.

6. Proposed a classification of AOR methods based on their measurable effect on internal and external software quality attributes.

7. Conducted an empirical validation to validate the AOR methods classification in the context of real software projects.

9.2 Limitations and Threats to Validity
There are some limitations to the extent to which these results can be generalized. The following are possible reservations:

All metrics in this research were collected automatically by software tools except the coupling and cohesion metrics were collected manually because of the unavailability of tools. However, these two metrics were collected more than one time to verify their values.

So far there is no universal aspect-oriented refactoring catalog like that available for object-oriented refactoring [3, 35]. Accordingly, we collected the investigated AOR methods from several sources. Moreover, we encountered many AOR methods that have been introduced in different studies without enough descriptions or examples.

Another possible limitation is that, the size of the used software systems in this work is relatively small. Actually, this is a critical issue if the study investigates the effects of AOR at the system-level. However, we investigated the effects of AOR at the aspect-level not at the system-level. Therefore, in this study the system size is not vital factor since it does affect the results.

Our methodology to investigate the effects of refactoring techniques on external quality attributes is based on mapping the changes in the internal quality metrics to the external quality attributes. This mapping was done based on available research studies that show correlations between internal quality metrics and external quality attributes in the aspect-oriented systems. Moreover, the relations between the internal quality metrics and the external quality attributes is based on these research studies without validation on our behalf of their findings regarding the correlations.

9.3 Future work

Additional research directions that can be explored in future work include:

· Investigate the effect of AOR methods on different set of internal software quality metrics such as separation of concerns metrics. Then use the appropriate metrics (such as, CDC, CDO and CDLOC) to classify the AOR methods.

· Investigate the effect of AOR methods on other external software quality attributes such as performance, stability and portability. Then use these attributes to classify the AOR methods.

· Classify a more extended set of AOR methods based on software quality attributes to form a large classification catalog.

· Additional empirical validations and case studies are also needed to further support the findings of this research.

· Some AOR methods have inverse (conflict) effect on software quality attributes. Therefore, another area of research is to form large groups of AOR methods that have conflict effect on software quality attributes and then study their impact on software quality attributes.

· This work focused on the refactoring specific to AOP and it concerned with studying the effects of these AOR on the aspect-level. It is interesting to study the side effects of AOR (including Aspect-aware object-oriented refactorings and refactoring object-oriented code to aspects) on the overall system quality.

References
[1]
R. Khatchadourian, "Aspects of AOP: An Exploration of the Aspect-Oriented Paradigm," 2006.

[2]
F. M. n. Bravo, "A Logic Meta-Programming Framework for Supporting the Refactoring Process," in Master Thesis Belgium: Vrije Universiteit Brussel, 2003.

[3]
M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing Code: Addison Wesley 2000.

[4]
B. Meyer, Object-Oriented Software Construction: Prentice Hall PTR, 1997.

[5]
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin, "Aspect-Oriented Programming," in in proceedings of the European Conference on Object-Oriented Programming (ECOOP),, Finland, 1997.

[6]
R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-Oriented Software Development: Addison Wesley Professional 2004.

[7]
S. Hanenberg, C. Oberschulte, and R. Unland, "Refactoring of Aspect-Oriented Software," in Proceedings of the 4th Annual International Conference on Object-Oriented and Internet-based Technologies, 2004, pp. 19-35.

[8]
A. v. Deursen, M. Marin, and L. Moonen, "Aspect Mining and Refactoring," in Proc. First Int’l Workshop Refactoring: Achievements, Challenges, Effects (REFACE), with WCRE, 2004.

[9]
M. J. T. P. MONTEIRO, "Refactorings to Evolve Object-Oriented Systems with Aspect-Oriented Concepts," in Ph.D. Thesis Portugal: Universidade of Minho, 2005.

[10]
T. Mens and T. Tourw´, "A Survey of Software Refactoring," IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 30, pp. 126-139, 2004.

[11]
M. Iwamoto and J. Zhao, "Refactoring Aspect-Oriented Programs," in Proceedings of the 4th AOSD Modeling With UML Workshop, San Francisco, California, USA, 2003.

[12]
M. P. Monteiro, "Catalogue of Refactorings for AspectJ," TECHNICAL REPORT UM-DI-GECSD-200402 2004.

[13]
M. P. Monteiro and J. M. Fernandes, "Refactoring a Java Code Base to AspectJ: An Illustrative Example," in Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05), 2005.

[14]
M. P. Monteiro and J. M. Fernandes, "Towards a Catalog of Aspect-Oriented Refactorings," in Proceedings of the 4th international conference on Aspect-oriented software development, AOSD 05 Chicago Illinois USA, 2005, pp. 111 - 122.

[15]
M. P. Monteiro and J. M. Fernandes, "Towards a Catalogue of Refactorings and Code Smells for AspectJ," Springer-Verlag Berlin Heidelberg, p. 45, 2006.

[16]
S. Rura, "Refactoring Aspect-Oriented Software," in Undergraduate Thesis in Computer Science: Williamstown, Massachusetts: Williams College, 2003.

[17]
R. Laddad, Aspect-Oriented Refactoring Series, Part1 and Part2: The Server Side, 2003.

[18]
J. Wloka, "Aspect-aware Refactoring tool support," 2005.

[19]
L. Feremans, "Aspect-Oriented Refactoring," in MS Thesis: Vrije Universiteit Brussel, 2005.

[20]
M. Alshayeb, "Empirical Investigation of Refactoring Effect on Software Quality," Information and Software Technology Journal, vol. 51, pp. 1319-1326, 2009.

[21]
M. N. Malta and M. T. d. O. Valente, "Object-oriented transformations for extracting aspects," Information and Software Technology vol. 51, pp. 138–149, 2009.

[22]
I. Kiselev, Aspect-Oriented Programming with AspectJ: SAMS, 2003.

[23]
J. T. Bradley, "An Examination of Aspect-Oriented Programming in Industry," Colorado State University, Colorado, USA 2003.

[24]
R. Laddad, AspectJ in Action – Practical Aspect-Oriented Programming: Manning, 2003.

[25]
J.-F. Gélinas, M. Badri, and L. Badri, "A Cohesion Measure for Aspects," Journal of Object Technology, vol. 5, pp. 97 – 114, 2006.

[26]
R. E. Filman and D. P. Friedman, "Aspect-Oriented Programming is Quantification and Obliviousness," in Workshop on Advanced Separation of Concerns at OOPSLA 2000, Minneapolis, USA, 2000.

[27]
E. Rønningen and T. Steinmoen, "Increasing readability with Aspect-Oriented Programming: Restructuring an object-oriented system with aspects," Department of Computer and Information Science (IDI), Norwegian University of Science and Technology (NTNU) 2003.

[28]
M. Voelter, "Aspect-Oriented Programming in Java. ," JavaReport issue 12/99, SIGS Publications. 2000.

[29]
S. L. Tsang, S. Clarke, and E. Baniassad, "An Evaluation of Aspect-Oriented Programming for Java-based Real-time Systems Development," in Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04), 2004.

[30]
C. Zhang and H.-A. Jacobsen, "Quantifying Aspects in Middleware Platforms," in AOSD 2003 Boston, MA USA, 2003.

[31]
A. Mendhekar, G. Kiczales, and J. Lamping, "RG: A Case-Study for Aspect-Oriented Programming," 1997.

[32]
J. Viega, J. T. Bloch, and P. Chandra, "Applying Aspect-Oriented Programming to Security," Cutter IT-Journal, vol. 14, 2001.

[33]
J. D. Gradecki and N. Lesiecki, Mastering AspectJ- Aspect-Oriented Programming in Java: Wiley Publishing, Inc., 2003.

[34]
F. Simon, F. Steinbrückner, and C. Lewerentz, "Metrics based Refactoring," in Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, 2001, pp. 30-39.

[35]
J. Kerievsky, Refactoring to Patterns: Addison Wesley, 2004.

[36]
S. Rura and B. Lerner, "A Basis for AspectJ Refactoring," 2004.

[37]
J. Hannemann, "Aspect-Oriented Refactoring: Classification and Challenges," in Workshop on Linking Aspect Technology and Evolution (LATE'06). 5th International Conference on Aspect-Oriented Software Development (AOSD’06). , Bonn, Germany, 2006.

[38]
J. Hannemann, G. C. Murphy, and G. Kiczales, "Role-Based Refactoring of Crosscutting Concerns," in Proceedings of the Fourth International Conference on Aspect-Oriented Software Development (AOSD '05), Chicago Illinois USA, 2005, pp. 135–146.

[39]
P. Anbalagan and T. Xie, "Clamp: Automated Joinpoint Clustering and Pointcut Mining in Aspect-Oriented Refactoring," ACM SIGSOFT Softw. Eng. Notes vol. 31, 2006.

[40]
S. N. B. J, "Why Quality? ISO 9126 Software Quality Metrics (Functionality) Support by UML Suite," ACM SIGSOFT Software Engineering Notes, vol. 30, 2005.

[41]
N. E. Fenton and S. L. Pfleeger, Software Metrics- A Rigorous and Practical Approach: PWS Publishing Company, 1997.

[42]
S. a. C. K. Chidamber, "Towards a Metrics Suite for Object-Oriented Design," in Proceedings of the Conference on Object Oriented Programming Systems, Languages, and Applications (OOPSLA '91), 1991, pp. 97-211.

[43]
S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE Transactions on Software Engineering vol. 20, pp. 476-493, 1994.

[44]
H. Tabbasum, S. Jabeen, H. F. Ahmed, and A. Ghafoor, "Impact of Aspect-Orientation on the Reliability of Decentralized Multi-Agent System," in International Conference on Emerging Technologies IEEE-ICET 2008 Rawalpindi, Pakistan: IEEE, 2008.

[45]
C. N. Sant’Anna, A. F. Garcia, C. v. F. G. Chavez, C. J. P. d. Lucena, and A. v. Staa, "On the Reuse and Maintenance of Aspect-Oriented Software: An Assessment Framework," in Proceedings of the Brazilian Symposium on Software Engineering, PUC-RioInf.MCC26/03 Agosto, 2003.

[46]
M. Ceccato and P. Tonella, "Measuring the Effects of Software Aspectization," in Proceedings of the 1st Workshop on Aspect Reverse Engineering, 2004.

[47]
A. Zakaria and H. Hosny, "Metrics for Aspect-Oriented Software Design," in In Proceedings of Workshop on Aspect-Oriented Modeling, International Conference on Aspect-Oriented Software Development, 2003.

[48]
W. C. Wake, Refactoring Workbook: Addison Wesley, 2003.

[49]
B. Schulz, T. Gen
ler, B. Mohr, and W. Zimmer, "On the Computer Aided Introduction of Design Patterns into Object-Oriented Systems," in in Technology of Object-Oriented Languages, TOOLS, 1998.

[50]
S.-U. Jeon, J.-S. Lee, and D.-H. Bae, "An automated refactoring approach to design pattern-based program transformations in Java programs," in Proceedings in theSoftware Engineering Conference, 2002. Ninth Asia-Pacific, 2002.

[51]
K. Elish, "Classification Of Refactoring Methods Based On Software Quality Attributes," in MS Thesis Dhahran, SA: King Fahd University of Petroleum and Minerals (KFUPM), 2008.

[52]
C. Zhang and H.-A. Jacobsen, "Efficiently Mining Crosscutting Concerns through RandomWalks," in Proceedings of the Sixth International Conference on Aspect-oriented Software Development (AOSD), Vancouver Canada, 2007, pp. 226–238.

[53]
M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourw´e, "A Qualitative Comparison of Three Aspect Mining Techniques," in Proceedings in the13th International Workshop on Program Comprehension (IWPC), 2005, pp. 13-22.

[54]
A. Kellens, K. Mens, and P. Tonella, "A Survey of Automated Code-Level Aspect Mining Techniques," in, Transactions on Aspect-Oriented Software Development 2007, pp. 145–164.

[55]
W. F. OPDYKE, "Refactoring Object-Oriented Frameworks," in PhD Thesis: University of Illinois at Urbana-Champaign, 1992.

[56]
D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella, "Automated Refactoring of Object Oriented Code into Aspects," in Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM), 2005, pp. 27–36.

[57]
D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella, "Tool-Supported Refactoring of Existing Object-Oriented Code into Aspects," IEEE Transactions On Software Engineering, vol. 32, pp. 698-717, 2006.

[58]
L. Cole and P. Borba, "Deriving Refactorings for AspectJ," in Proceedings of the 4th international conference on Aspect-oriented software development, 2005, pp. 123 – 134.

[59]
L. C. Neto, "Deriving Refactorings For AspectJ," in MS Thesis: Universidade Federal de Pernambuco, 2004.

[60]
K. Srivisut and P. Muenchaisri, "Defining and Detecting Bad Smells of Aspect-Oriented Software," in Proceedings of the 31st Annual International Computer Software and Applications Conference(COMPSAC 2007), 2007.

[61]
K. Srivisut and P. Muenchaisri, "Bad-Smell Metrics for Aspect-Oriented Software," in Proceedings of the 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007), 2007.

[62]
J. Wloka, R. Hirschfeld, and J. H¨ansel, "Tool-supported Refactoring of Aspect-oriented Programs," in Proceedings in the AOSD’08, March 31 – April 4, 2008, , Brussels, Belgium, 2008.

[63]
A. A. Kvale, J. Li, and R. Conradi, "A Case Study on Building COTS-Based System Using Aspect-Oriented Programming," in SAC’05, Santa Fe, New Mexico, USA., 2005.

[64]
Lech Madeyski and L. S. la, "Impact of aspect-oriented programming on software development efficiency and design quality: an empirical study," IET Software Journal, vol. 1, pp. 180–187, 2007.

[65]
J. Zhao, "Towards A Metrics Suite for Aspect-Oriented Software," Information Processing Society of Japan (IPSJ) Technical- Report SE-136-25, March 2002 2002.

[66]
N. Pataki, Á. Sipos, and Z. Porkoláb, "Measuring the Complexity of Aspect-Oriented Programs with Multiparadigm Metric," in Proceedings of the 10th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering, 2006.

[67]
J. Zhao, "Measuring Coupling in Aspect-Oriented Systems," in Proceedings of the10th International Software Metrics Symposium (Metrics 04), 2004.

[68]
T. T. Bartolomei, A. Garcia, and C. Sant’Anna, "Towards a Unified Coupling Framework for Measuring Aspect-Oriented Programs," in Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA’06), Portland, OR, USA., 2006.

[69]
P. Tonella and M. Ceccato, "Refactoring the Aspectizable Interfaces: An Empirical Assessment," IEEE Transactions on Software Engineering, vol. 31, pp. 819-832, 2005.

[70]
U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho, A. v. Staa, and C. Lucena, "Quantifying the Effects of Aspect-Oriented Programming:A Maintenance Study," in Proceedings of the 22nd IEEE International Conference on Software Maintenance, 2006.

[71]
C. Sant’Anna, C. Lobato, and U. Kulesza, "On the modularity assessment of aspect-oriented multiagent architectures: a quantitative study," Int. J. Agent-Oriented Software Engineering, vol. 2, 2008.

[72]
C. A. Constantinides, A. Bader, T. H. Elrad, M. E. Fayad, and P. Netinant, "Designing an Aspect-Oriented Framework in an Object-Oriented Environment," ACM, 2000.

[73]
E. S. a. Barrenechea, "A Query-Based Approach for the Analysis of Aspect-Oriented Systems," in MS Thesis Waterloo, Canada: University of Waterloo, 2007.

[74]
M. A. Wehrmeister, E. Freitas, D. Orfanus, C. E. Pereira, and F. Rammig, "A Case Study to Evaluate Pros/Cons of Aspect- and Object-Oriented Paradigms to Model Distributed Embedded Real-Time Systems," in Proceedings of the 5th International Workshop on Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2008), 2008.

[75]
R. E. Filman and D. P. Friedman, "Aspect-Oriented Programming is Quantification and Implicit Invocation," 2002.

[76]
S. J. Metsker, Design Patterns Java™ Workbook: Addison Wesley, 2002.

[77]
"http://www.eclipse.org/aspectj."

[78]
"IEEE Standard Glossary of Software Engineering Terminology," in St. 610.121990, The Institute of Electrical and Electronics Ehgineers, 1990.

[79]
S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," Transactions on Software Engineering vol. 20, pp. 467-493, 1994.

[80]
"http://www.teccomm.les.inf.puc-rio.br/emagno/ajato/."

[81]
"http://www.eclipse.org/ajdt/. ."

[82]
"http://www.guzzzt.com/coding/aspecttetris.shtml."

[83]
"http://sourceforge.net/project/showfiles.php?group_id=179493."

[84]
"http://sourceforge.net/projects/ajhotdraw/."

[85]
"http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/.
 ADDIN
Appendix A

AspectJ Joinpoint

This appendix provides an overview of the AspectJ Joinpoints. The AspectJ defines a host of joinpoints available to be triggered [33, 77]. These joinpoints are:

	Joinpoint
	Description

	Method call
	A method call joinpoint is defined when any method call is made. This joinpoint is defined within the calling object or application. That is, any place in the code where a call is made to the specified method, the pointcut related to that joinpoint is triggered.

	Method execution
	A method call execution joinpoint is defined when a method is called on an object and control transfers to the method. The joinpoint is triggered based on the object receiving the method call before any of the code within the method is executed. It is assured that the joinpoint will be triggered upon transfer of execution to the method just before the method code begins to process.

	Constructor call
	A constructor call joinpoint is defined when a constructor is called during the creation of a new object.

	Constructor execution
	A constructor call reception joinpoint is the same as the method call reception joinpoint except we are dealing with constructors. The joinpoint is triggered before the constructor code starts to execute.

	Field get
	A field get joinpoint is defined when an attribute associated with an object is read.

	Field set
	A field set joinpoint is defined when an attribute associated with an object is written.

	Joinpoint
	Description

	Object pre-initialization
	before the object initialization code for a particular class runs. This encompasses the time between the start of its first called constructor and the start of its parent’s constructor.

	Object initialization
	when the object initialization code for a particular class runs. This encompasses the time between the return of its parent’s constructor and the return of its first called constructor.

	Static initializer execution
	when the static initializer for a class executes.

	Exception handler execution
	An exception handler execution joinpoint is defined when an exception handler is executed.

	Advice execution
	when the body of code for a piece of advice executes.

Call, execution, get and set joinpoints may potentially have multiple signatures. All other joinpoints have exactly one signature. The following table summarizes the constituent parts of a joinpoint signature for the different kinds of joinpoint.

	Joinpoint

Kind
	Return Type
	Declaring Type
	Id
	Parameter Types
	Field Type
	Exception Type

	Method call
	+
	+
	+
	+
	
	

	Method execution
	+
	+
	+
	+
	
	

	Constructor call
	
	+
	
	+
	
	

	Constructor execution
	
	+
	
	+
	
	

	Field get
	
	+
	+
	
	+
	

	Field set
	
	+
	+
	
	+
	

	Pre-initialization
	
	+
	
	+
	
	

	Initialization
	
	+
	
	+
	
	

	Static initialization
	
	+
	
	
	
	

	Handler
	
	
	
	
	
	+

	Advice execution
	
	+
	
	+
	
	

Every joinpoint has a single set of modifiers - these include the standard Java modifiers such as public, private, static, abstract etc., any annotations and the throws clauses of methods and constructors. These modifiers are the modifiers of the subject of the joinpoint.

Appendix B

Pointcuts

In AspectJ, pointcuts pick out certain joinpoints in the program flow. This Appendix presents the primitive pointcuts provided by AspectJ language [33, 77].

	
	The pointcut
	Description

	Methods and Constructors
	execution

execution(Signature)
	every execution of any method or constructor matching Signature

	
	call

call(Signature)
	every call to any method or constructor matching Signature at the call site

	Advice
	adviceexecution

adviceexecution()
	every execution of any piece of advice

	Exception handler
	handler

handler(TypePattern)
	every exception handler for any Throwable type in TypePattern. The exception value can be exposed with an args pointcut

	Fields
	get

get(Signature)
	every reference to any field (class attribute) matching Signature.

	
	set

Get(Signature)
	every assignment to any field (class attribute) matching Signature. The assigned value can be exposed with an args pointcut

	Control Flow
	cflow

cflow(Pointcut)
	returns joinpoints in the execution flow of another joinpoint.

	
	cflowbelow

cflowbelow(Pointcut)
	returns joinpoints in the execution flow of another joinpoint but not including the current joinpoint.

	
	The pointcut
	Description

	Instance-of checks and context exposure
	this

this(Type or Id)
	returns the object associated with a particular joinpoint or limits the scope of a joinpoint by using a class type.

	
	target

target(Type or Id)
	returns the target object of a joinpoint or limits the scope of a joinpoint.

	
	args

args(Type or Id, ...)
	exposes the arguments to a joinpoint or limits the scope of the pointcut.

	Initialization
	staticinitialization

staticinitialization(TypePattern)
	matches the execution of a class’s static initialization code.

	
	initialization

initialization(Signature)
	matches execution of the first constructor to a class.

	
	preinitialization

preinitialization(Signature)
	matches pre-initialization joinpoints.

	Lexical
	within

Within(TypePattern)
	matches joinpoints within a specific type.

	
	withincode

withincode(Signature)
	matches joinpoints within a method or constructor.

	Conditional
	if

If(Expression)
	allows a dynamic condition to be part of a pointcut.

Appendix C

Source Code Examples

Aspect-Oriented Refactoring Within Aspects

	// Before Refactoring

public aspect InterAdvicePrecedenceAspect {

public pointcut performCall() :

call(* TestPrecedence.perform());

public pointcut creatobject():

execution (TestPrecedence.new());

before() : creatobject() {

System.out.println("<Creating new Instance>");

}

void around() : performCall() {

System.out.println("<First>");

proceed();

System.out.println("<Second>");

}

after() : creatobject() {

System.out.println("<New Instance is Ready>");

}
}

// After Refactoring

public aspect InterAdvicePrecedenceAspect {

public pointcut performCall() :

call(* TestPrecedence.perform());

public pointcut creatobject():

execution (TestPrecedence.new());

before() : creatobject() {

System.out.println("<Creating new Instance>");

}

before() : performCall() {

System.out.println("<First>");

}

after(): performCall() {

System.out.println("<Second>");

}

after() : creatobject() {

System.out.println("<New Instance is Ready>");

}
}

Listing 1: Change Advice Kind from Around.

	// Before Refactoring

abstract aspect SubjectObserverProtocol {
 abstract pointcut stateChanges(Subject s);
 after(Subject s): stateChanges(s) {
 for (int i = 0; i < s.getObservers().size(); i++) {
 ((Observer)s.getObservers().elementAt(i)).update();
 }
 }
 private Vector Subject.observers = new Vector();
 public void Subject.addObserver(Observer obs) {
 observers.addElement(obs);
 obs.setSubject(this);
 }
 public void Subject.removeObserver(Observer obs) {
 observers.removeElement(obs);
 obs.setSubject(null);
 }
 public Vector Subject.getObservers() {

 return observers;

 }
 private Subject Observer.subject = null;
 public void Observer.setSubject(Subject s) {

 subject = s;

 }
 public Subject Observer.getSubject() {

 return subject;

 }

}

//After Refactoring

abstract aspect SubjectObserverProtocol {
 abstract pointcut stateChanges(Subject s);
 after(Subject s): stateChanges(s) {
 updating (s);
 }
 void updating(Subject ss){

for (int i = 0; i < ss.getObservers().size(); i++) {
 ((Observer)ss.getObservers().elementAt(i)).update();
 }
 }
 private Vector Subject.observers = new Vector();
 public void Subject.addObserver(Observer obs) {
 observers.addElement(obs);
 obs.setSubject(this);
 }

 public void Subject.removeObserver(Observer obs) {
 observers.removeElement(obs);
 obs.setSubject(null);
 }

 public Vector Subject.getObservers() {

 return observers;

 }
 private Subject Observer.subject = null;
 public void Observer.setSubject(Subject s) {

 subject = s;

 }
 public Subject Observer.getSubject() {

 return subject;

 }

}

Listing 2: Extract Method from Advice

	// Before Refactoring

aspect GetInfo {
 pointcut goCut():

cflow(this(Demo)
 && execution(void go()));
 pointcut demoExecs():

within(Demo)
 && execution(* *(..));
 Object around(): demoExecs() && !execution(* go()) && goCut() {
 println("Intercepted message: " +
 thisJoinPointStaticPart.getSignature().getName());
 println("in class: " +
 thisJoinPointStaticPart.getSignature().getDeclaringType().getName());
 printParameters(thisJoinPoint);
 Object result = proceed();
 println(" result: " + result);
 return result;
 }

 static final void println(String s){

System.out.println(s);

 }
 static private void printParameters(JoinPoint jp) {
 println("Arguments: ");
 Object[] args = jp.getArgs();
 String[] names = ((CodeSignature)jp.getSignature()).getParameterNames();
 Class[] types = ((CodeSignature)jp.getSignature()).getParameterTypes();
 for (int i = 0; i < args.length; i++) {
 println(" " + i + ". " + names[i] + " : "
 + types[i].getName() + " = " + args[i]);
 println("Running original method: \n");

 }
 }
}

//After Refactoring

aspect GetInfo {
 static final void println(String s){

System.out.println(s);

 }
 pointcut goCut():

cflow(this(Demo)
 && execution(void go()));
 pointcut demoExecs():

within(Demo)
 && execution(* *(..));
 Object around(): demoExecs() && !execution(* go()) && goCut() {
 println("Intercepted message: " +
 thisJoinPointStaticPart.getSignature().getName());
 println("in class: " +
 thisJoinPointStaticPart.getSignature().getDeclaringType().getName());
 println("Arguments: ");
 Object[] args = thisJoinPoint.getArgs();
 String[] names = ((CodeSignature)thisJoinPoint.getSignature()).getParameterNames();
 Class[] types = ((CodeSignature)thisJoinPoint.getSignature()).getParameterTypes();
 for (int i = 0; i < args.length; i++) {
 println(" " + i + ". " + names[i] + " : "
 + types[i].getName() + " = " + args[i]);
 println("Running original method: \n");

}
 Object result = proceed();
 println(" result: " + result);
 return result;
 }
}

Listing 3: Inline Method into Advice

	// Before Refactoring

public aspect SaveEnergyAspect {

before() : call(void Home.exit()) {

System.out.println("Switching off lights");

}

after() : call(void Home.enter()) {

System.out.println("Switching on lights");

}

after() : call(void Home.exit()) {

System.out.println("");

System.out.println("To produce a sound");

}

after() : call(void Home.exit()) {

System.out.println("");

}
}

//After Refactoring

public aspect SaveEnergyAspect {

before() : call(void Home.exit()) {

System.out.println("Switching off lights");

}

after() : call(void Home.enter()) {

System.out.println("Switching on lights");

}

after() : call(void Home.exit()) {

System.out.println("");

System.out.println("To produce a sound");

System.out.println("");

}
}

Listing 4: Merge Advice Bodies

	// Before Refactoring

public aspect Tracer{

private int test_value= -1;

pointcut tracePoint() :

execution(public Point.new(..))

&& !within(Tracer);

before() : tracePoint(){

test_value ++;

System.out.println("Before "+ test_value);

}

after() : tracePoint(){

test_value --;

System.out.println("After "+ test_value);

}
}

// After Refactoring

public aspect Tracer{

private int test_value= -1;

pointcut tracePoint() :

execution(public Point.new(..))

&& !within(Tracer);

void around() : tracePoint(){

test_value ++;

System.out.println("Before "+ test_value);

proceed();

test_value --;

System.out.println("After "+ test_value);

}
}

Listing 5: Generalize before or after Advice to around Advice

	// Before Refactoring

public aspect OptimizeFactorialAspect {

pointcut factorialOperation(int n) :

call(long *.factorial(int)) && args(n);

pointcut topLevelFactorialOperation(int n) :

factorialOperation(n)

&& !cflowbelow(factorialOperation(int));

private Map _factorialCache = new HashMap();

before(int n) : topLevelFactorialOperation(n) {

System.out.println("Seeking factorial for " + n);

}

long around(int n) : factorialOperation(n) {

Object cachedValue = _factorialCache.get(new Integer(n));

if (cachedValue != null) {

System.out.println("Found cached value for "

+ n + ": " + cachedValue);

return ((Long)cachedValue).longValue();

}

return proceed(n);

}

before() : execution(TestFactorial.new(..)) {

System.out.println("It the time to Start");

}

after(int n) returning(long result): topLevelFactorialOperation(n) {

_factorialCache.put(new Integer(n), new Long(result));

}
}

//After Refactoring

public aspect OptimizeFactorialAspect {

pointcut factorialOperation(int n) :

call(long *.factorial(int)) && args(n);

pointcut topLevelFactorialOperation(int n) :

factorialOperation(n)

&& !cflowbelow(factorialOperation(int));

private Map _factorialCache = new HashMap();

before(int n) : topLevelFactorialOperation(n) {

System.out.println("Seeking factorial for " + n);

}

long around(int n) : factorialOperation(n) {

Object cachedValue = _factorialCache.get(new Integer(n));

if (cachedValue != null) {

System.out.println("Found cached value for "

+ n + ": " + cachedValue);

return ((Long)cachedValue).longValue();

}

return proceed(n);

}

after(int n) returning(long result): topLevelFactorialOperation(n) {

_factorialCache.put(new Integer(n), new Long(result));

}
}

Listing 6: Delete Unreachable Advice

	// Before Refactoring

 public aspect CallRecipe {

 pointcut infodetail()

: call(void MyClass.foo(int, String));

 before() : infodetail (){

System.out.println("----------- Aspect Advice Logic -----------");

System.out.println("In the advice attached to the call pointcut");
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());

System.out.println("Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println("---");
 }
}

//After Refactoring

public aspect CallRecipe {

 pointcut infodetail ()

: execution(public MyClass.new());

after() : infodetail (){

System.out.println("----------- Aspect Advice Logic -----------");

System.out.println("In the advice attached to the call pointcut");
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());

System.out.println("Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println("---");
 }
}

Listing 7: Change Advice kind from Before to After

	// Before Refactoring

public aspect PointcutsAspect {

pointcut firstpointcut(Demo c, int a, int b):

call (void Demo.foo(int, int))

&& target (c) && args (a, b);

pointcut secondpointcut(Demo c, int a, int b):

call (void Demo.bar(.., int))

&& target(c) && args(a, b);

after (Demo c, int a, int b):

firstpointcut(c, a, b)|| secondpointcut(c, a, b){

System.out.println(" Separation of Pointcuts");

}
}

//After Refactoring

public aspect PointcutsAspect {

pointcut firstpointcut():

call (void Demo.foo(int, int));
 pointcut secondpointcut():

call (void Demo.bar(.., int));
 pointcut thirdpointcut(Demo c, int a, int b):

target(c) && args(a, b);

after (Demo c, int a, int b):

firstpointcut()|| secondpointcut() || thirdpointcut(c, a, b){

System.out.println(" Separation of Pointcuts");

}
}

Listing 8: Separate Pointcuts

	// Before Refactoring

public abstract aspect SecurityAspect {

public static boolean TestPrecedence._check;

public void printCheck(){

System.out.println("value of check is "+TestPrecedence._check);

}

public pointcut performCall() :

call(* TestPrecedence.perform());

before() : performCall() {

System.out.println("<SecurityAspect:check/>");

printCheck();

}
}

//After Refactoring

public abstract aspect SecurityAspect {

public static boolean TestPrecedence._check;

public static void printCheck(){

System.out.println("Value of check is "+TestPrecedence._check);

}

declare error:

call(void printCheck())

&& !within(TestPrecedence+)

&& !within(SecurityAspect+):

"Method printCheck is aspect protected";

public pointcut performCall() :

call(* TestPrecedence.perform());

before() : performCall() {

System.out.println("<SecurityAspect:check/>");

printCheck();

}
}

Listing 9: Introduce Aspect Protection

	// Before Refactoring

public aspect DBConnectionPoolLoggingAspect {

declare precedence: *, DBConnectionPoolLoggingAspect;

after(String url, String userName, String password)

returning(Connection connection)

: call(Connection DBConnectionPool.getConnection(..))

&& args(url, userName, password) {

System.out.print("For [" + url + ",");

System.out.print(userName + ",");

System.out.print(password + "]");

System.out.println("\n\tGot from pool: " + connection);

}

after(String url, String userName, String password)

returning(Connection connection)

: call(Connection DriverManager.getConnection(..))

&& args(url, userName, password) {

printlogData(url, userName, password);

System.out.println("\n\tCreated new : " + connection);

}

void printlogData(String urL, String userNm, String psw){

System.out.print("For [" + urL + ",");

System.out.print(userNm + ",");

System.out.print(psw + "]");

}
}

// After Refactoring

public aspect DBConnectionPoolLoggingAspect {

declare precedence: *, DBConnectionPoolLoggingAspect;

after(String url, String userName, String password)

returning(Connection connection)

: call(Connection DBConnectionPool.getConnection(..))

&& args(url, userName, password) {

printlogData(url, userName, password);

System.out.println("\n\tGot from pool: " + connection);

}

after(String url, String userName, String password)

returning(Connection connection)

: call(Connection DriverManager.getConnection(..))

&& args(url, userName, password) {

printlogData(url, userName, password);

System.out.println("\n\tCreated new : " + connection);

}

void printlogData(String urL, String userNm, String psw){

System.out.print("For [" + urL + ",");

System.out.print(userNm + ",");

System.out.print(psw + "]");

}
}

Listing 10: Replace Statement List in Advice with Method call

	// Before Refactoring

public aspect MinimumBalanceRuleAspect {

private float Account._minimumBalance;

public float Account.getAvailableBalance() {

return getBalance() - _minimumBalance;

}

pointcut ckeckValidity()

: call(public Account.new(int));

after(Account account) :

execution(SavingsAccount.new(..)) && this(account) {

account._minimumBalance = 25;

}
 before(Account account, float amount)

throws InsufficientBalanceException :

execution(* Account.debit())

&& this(account) && args(amount) {

if (account.getAvailableBalance() < amount) {

throw new InsufficientBalanceException("Insufficient available balance");

}

}
}

//After Refactoring

public aspect MinimumBalanceRuleAspect {

private float Account._minimumBalance;

public float Account.getAvailableBalance() {

return getBalance() - _minimumBalance;

}
 after(Account account) :

execution(SavingsAccount.new(..)) && this(account) {

account._minimumBalance = 25;

}

before(Account account, float amount)

throws InsufficientBalanceException :

execution(* Account.debit())

&& this(account) && args(amount) {

if (account.getAvailableBalance() < amount) {

throw new InsufficientBalanceException("Insufficient available balance");

}

}
}

Listing 11: Delete Unreferenced Named Pointcut.

Aspect-Oriented Refactoring Betwwen Aspects

	// Before Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}

public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{ ((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

before(): execution(public Bee.new(String)) {

System.out.println(“ Bee status: bedtimeSleep/breakfastTime“);

}
}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{ ((Observer)it.next()).bedtimeSleep();

}

}

}

before(): execution(public Bee.new(String)) {

System.out.println(“ Bee status: bedtimeSleep/breakfastTime“);

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

before(): execution(public Bee.new(String)) {

System.out.println(“Bee status: bedtimeSleep/breakfastTime“);

}

protected abstract void notifyObservers(Subject subject);

}

public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime(); }

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{ ((Observer)it.next()).bedtimeSleep();}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

Listing 12: Pull Up Advice.

	// Before Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

after(): call(void Flower.open()){

subject.alreadyOpen = true;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}

public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}

public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{ ((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

after(): call(void Flower.open()){

subject.alreadyOpen = true;

}
}

Listing 13: Push Down Advice

	// Before Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

 protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

declare parents: Flower implements Subject;

declare parents: (Bee || Hummingbird) implements Observer;
}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();) {

((Observer)it.next()).bedtimeSleep();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

declare parents: Flower implements Subject;

declare parents: (Bee || Hummingbird) implements Observer;
}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

declare parents: Flower implements Subject;

declare parents: (Bee || Hummingbird) implements Observer;
}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).bedtimeSleep();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

Listing 14: Pull Up Declare Parents.

	// Before Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

declare parents: Bee implements Subject;
}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

declare parents: Bee implements Subject;
}

Listing 15: Push Down Declare Parents.

	// Before Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

public boolean Flower.isOpen() {

return _isOpen;

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();) {

((Observer)it.next()).bedtimeSleep();

}

}

}

public boolean Flower.isOpen() {

return _isOpen;

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

public boolean Flower.isOpen() {

return _isOpen;

}

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{ ((Observer)it.next()).bedtimeSleep();

}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

Listing 16: Pull Up Inter-type Declaration.

	//After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected WeakHashMap subject2ObserversMap = new WeakHashMap();

public abstract boolean Subject.isOpen();

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;
}

public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);

if(!observers.contains(observer))

observers.add(observer);

subject2ObserversMap.put(subject, observers);

}

public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);

}

public void clearObservers(Subject subject) {

getObservers(subject).clear();

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void Flower.printinfo(){

if (subject.alreadyopen){

System.out.println (“Flower’s status now is open!”);

}

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{ ((Observer)it.next()).breakfastTime();

 }

 }

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

Listing 17: Push Down Inter-Type Declaration.

	// Before Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

 {((Observer)it.next()).bedtimeSleep();}

}

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;}

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

public pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

protected pointcut flowerClose(Subject subject):

execution(void close())
 && this(subject);

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;
}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingOpen extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected void Flower.printinfo(){

println(“the status of the Flower now:”);

}

protected void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{((Observer)it.next()).breakfastTime();}

}

}

after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);

}

after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;

}

}

public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

 {((Observer)it.next()).bedtimeSleep();}

}

}

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

 }

}

Listing 18: Pull Up Pointcut.

	// Before Refactoring

public abstract aspect ObservingRelationships {

public abstract void Observer.breakfastTime();

private boolean Subject.alreadyOpen = false;

protected interface Subject {}

protected interface Observer {}

public pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

protected pointcut flowerClose(Subject subject):

execution(void close()) && this(subject);

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{

((Observer)it.next()).bedtimeSleep();

}

 }

}

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

// After Refactoring

public abstract aspect ObservingRelationships {

protected interface Subject {}

protected interface Observer {}

protected pointcut flowerClose(Subject subject):

execution(void close()) && this(subject);

protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);

if(observers == null) {

observers = new ArrayList();

subject2ObserversMap.put(subject, observers);

}

return observers;

}

protected abstract void notifyObservers(Subject subject);

}
public aspect ObservingClose extends ObservingRelationships {

public abstract boolean Subject.isOpen();

public abstract void Observer.bedtimeSleep();

private boolean Subject.alreadyClosed = false;

protected void notifyObservers(Subject subject) {

if(!subject.isOpen() && !subject.alreadyClosed) {

subject.alreadyClosed = true;

List observers = getObservers(subject);

for(ListIterator it = observers.listIterator(); it.hasNext();)

{

((Observer)it.next()).bedtimeSleep();

}

 }

}

private pointcut flowerOpen(Subject subject):

execution(void open())
 && this(subject);

after(Subject subject) returning : flowerOpen(subject) {

subject.alreadyClosed = false;

}

after(Subject subject): flowerClose(subject) {

notifyObservers(subject);

}

}

Listing 19: Push Down Pointcut.

	// Before Refactoring

public aspect HomeSecurityAspect {

pointcut beforeLeaving()

: call(void Home.exit());

before() : beforeLeaving() {

System.out.println("Engaging");

}

pointcut afterEntering()

: call(void Home.enter());

after() : afterEntering(){

System.out.println("Disengaging");
 }

}

public aspect InfoAspect {

before() : HomeSecurityAspect.beforeLeaving() {

System.out.println("Home Management System");

}
}

public aspect SaveEnergyAspect {

before() : HomeSecurityAspect.beforeLeaving() {

System.out.println("Switching off lights");

}

pointcut afterEntering()

: call(void Home.enter());

after() : afterEntering () {

System.out.println("Switching on lights");

}

}

//After Refactoring

public aspect HomeSecurityAspect {

pointcut afterEntering()

: call(void Home.enter());

before() : BorrowedPointcutAspect.beforeLeaving() {

System.out.println("Engaging");

}

after() : afterEntering(){

System.out.println("Disengaging");

}
}

public aspect InfoAspect {

before() : BorrowedPointcutAspect.beforeLeaving() {

System.out.println("Home Management System");

}
}

public aspect SaveEnergyAspect {

before() : BorrowedPointcutAspect.beforeLeaving() {

System.out.println("Switching off lights");

}

pointcut afterEntering()

: call(void Home.enter());

after() : afterEntering () {

 System.out.println("Switching on lights");

}

}

public aspect BorrowedPointcutAspect {

pointcut beforeLeaving()

: call(void Home.exit());

}

Listing 20: Eliminating Borrowed Pointcut.

	// Before Refactoring

public aspect HomeSecurityAspect {

pointcut beforeLeaving()

: call(void Home.exit());

before() : beforeLeaving() {

System.out.println("Engaging");

}

pointcut afterEntering()

: call(void Home.enter());

after() : afterEntering(){

System.out.println("Disengaging");

}
}

public aspect SaveEnergyAspect {

pointcut beforeLeaving()

: call(void Home.exit());

before() : beforeLeaving() {

System.out.println("Switching off lights");

}

pointcut afterEntering()

: call(void Home.enter());

after() : afterEntering() {

System.out.println("Switching on lights");

}
}

//After Refactoring

public aspect DuplicatePointcutsAspect {

pointcut beforeLeaving()

: call(void Home.exit());

pointcut afterEntering()

: call(void Home.enter());

}
public aspect HomeSecurityAspect {

before() : DuplicatePointcutsAspect.beforeLeaving() {

System.out.println("Engaging");

}

after() : DuplicatePointcutsAspect.afterEntering(){

System.out.println("Disengaging");

}
}

public aspect SaveEnergyAspect {

before() : DuplicatePointcutsAspect.beforeLeaving() {

System.out.println("Switching off lights");

}

after() : DuplicatePointcutsAspect.afterEntering() {

System.out.println("Switching on lights");

}
}

Listing 21: Eliminating Duplicated Pointcut.

	// Before Refactoring

import java.util.Hashtable;
public aspect HashablePoint {

public int Point.hashCode() {

return (int) (getX() + getY() % Integer.MAX_VALUE);

}

public boolean Point.equals(Object o) {

if (o == this) { return true; }

if (!(o instanceof Point)) { return false; }

Point other = (Point)o;

return (getX() == other.getX()) && (getY() == other.getY());

}

public static void main(String[] args) {

Hashtable h = new Hashtable();

Point p1 = new Point();

p1.setRectangular(10, 10);

Point p2 = new Point();

p2.setRectangular(10, 10);

System.out.println("p1 = " + p1);

System.out.println("p2 = " + p2);

System.out.println("p1.hashCode() = " + p1.hashCode());

System.out.println("p2.hashCode() = " + p2.hashCode());

h.put(p1, "P1");

System.out.println("Got: " + h.get(p2));

}
}

public aspect CloneablePoint {

declare parents: Point implements Cloneable;

public Object Point.clone() throws CloneNotSupportedException {

makeRectangular();

makePolar();

return super.clone();

}

public static void main(String[] args){

Point p1 = new Point();

Point p2 = null;

p1.setPolar(Math.PI, 1.0);

try {

p2 = (Point)p1.clone();

} catch (CloneNotSupportedException e) {}

System.out.println("p1 =" + p1);

System.out.println("p2 =" + p2);

p1.rotate(Math.PI / -2);

System.out.println("p1 =" + p1);

System.out.println("p2 =" + p2);

}
}

// After Refactoring

import java.util.Hashtable;
public aspect HashablePoint {

public int Point.hashCode() {

return (int) (getX() + getY() % Integer.MAX_VALUE);

}

public static void main(String[] args) {

Hashtable h = new Hashtable();

Point p1 = new Point();

p1.setRectangular(10, 10);

Point p2 = new Point();

p2.setRectangular(10, 10);

System.out.println("p1 = " + p1);

System.out.println("p2 = " + p2);

System.out.println("p1.hashCode() = " + p1.hashCode());

System.out.println("p2.hashCode() = " + p2.hashCode());

h.put(p1, "P1");

System.out.println("Got: " + h.get(p2));

}
}

public aspect CloneablePoint {

declare parents: Point implements Cloneable;

public Object Point.clone() throws CloneNotSupportedException {

makeRectangular();

makePolar();

return super.clone();

}

public boolean Point.equals(Object o) {

if (o == this) { return true; }

if (!(o instanceof Point)) { return false; }

Point other = (Point)o;

return (getX() == other.getX()) && (getY() == other.getY());

}

public static void main(String[] args){

Point p1 = new Point();

Point p2 = null;

p1.setPolar(Math.PI, 1.0);

try {

p2 = (Point)p1.clone();

} catch (CloneNotSupportedException e) {}

System.out.println("p1 =" + p1);

System.out.println("p2 =" + p2);

p1.rotate(Math.PI / -2);

System.out.println("p1 =" + p1);

System.out.println("p2 =" + p2);

}
}

Listing 22: Move Static Introduction.

Vita
	Name:
	Hamdi Ali Ahmed Al-Jamimi

	Nationality:
	Yemeni

	Birth Place /Date:
	Dhamar Government, Dec 28, 1978

	Current Address:
	Information and Computer Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

	Permanent Address:
	Computer Science and Information Systems, Dhamar University, Yemen

	Email:
	hamdi_aljamimi@yahoo.com

Hamdi A. Al-Jamimi received his Bachelor of Science (B.S.) with honors in Computer Science from Dhamar University in June 2001. In his senior project, he worked in software development project for Academic Affairs in the university. Prior to attending King Fahd University of Petroleum & Minerals (KFUPM), he worked as a full time lecturer from September 2001 to June 2005 in Dhamar University, Computer Science and Information systems Collage.
He joined KFUPM as a full time student to pursue the master’s degree. During the course of his graduate studies, he took advanced software engineering courses such as Principles of Software Engineering, Software Design, Software Metrics, Software Project Management and Software Requirements. He received Master of Science (MS) degree in Computer Science from KFUPM. He is a member of Software Engineering Research Group (SERG) at KFUPM. His research interests include software refactoring, software metrics and measurement, aspect-oriented programming, and empirical software engineering.
AO Construct�
Aspect- Oriented Refactoring Method�
Maintainability�
Reusability�
Flexibility �
Understandability�
Testability�
Reliability�
�
Inter-Type Declaration�
Move Static Introduction�
(�
(�
(�
(�
(�
(�
�
�
Pull Up Inter-Type Declaration�
(�
(�
(�
(�
(�
(�
�
�
Push Down Inter-Type Declaration �
(�
(�
(�
(�
(�
(�
�
Declare Clause�
Pull Up Declare Parents �
(�
(�
(�
(�
(�
(�
�
�
Push Down Declare Parents�
(�
(�
(�
(�
(�
(�
�
�
Introduce Aspect Protection �
(�
(�
(�
-�
-�
(�
�

AO Construct�
Aspect- Oriented Refactoring Method�
Maintainability�
Reusability�
Flexibility �
Understandability�
Testability�
Reliability�
�
Advice�
Change Advice Kind from Around �
(�
(�
(�
(�
(�
(�
�
�
Extract Method from Advice �
(�
(�
(�
(�
(�
(�
�
�
Push Down Advice �
(�
(�
(�
(�
(�
(�
�
�
Pull Up Advice�
(�
(�
(�
(�
(�
(�
�
�
Merge Advice Bodies �
(�
(�
(�
(�
(�
(�
�
�
Inline Method into Advice �
(�
(�
(�
(�
(�
(�
�
�
Delete Unreachable Advice�
(�
(�
(�
(�
(�
(�
�
�
Generalize before or after Advice to around Advice �
(�
(�
(�
(�
(�
(�
�
�
Replace Statement List in Advice with Method call�
(�
(�
(�
-�
-�
(�
�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
�
Pointcut�
Separate Pointcuts �
(�
(�
(�
-�
-�
(�
�
�
Push Down Pointcut �
(�
(�
(�
-�
-�
(�
�
�
Pull up Pointcut �
(�
(�
(�
-�
-�
(�
�
�
Delete Unreferenced Named Pointcut�
(�
(�
(�
-�
-�
(�
�
�
Eliminating Duplicated Pointcuts �
(�
(�
(�
-�
-�
(�
�
�
Eliminating Borrowed Pointcuts �
(�
(�
(�
(�
(�
(�
�

AO Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Inter-Type Declaration�
Pull Up Inter-Type Declaration�
-�
-�
(�
(�
(�
(�
-�
(�
�
�
Move Static Introduction�
-�
-�
(�
(�
(�
(�
-�
(�
�
�
Push Down Inter-Type Declaration �
-�
-�
(�
(�
(�
(�
-�
(�
�
Declare Clause�
Pull Up Declare Parents �
-�
-�
(�
-�
-�
-�
(�
(�
�
�
Push Down Declare Parents�
-�
-�
(�
-�
-�
-�
(�
(�
�
�
Introduce Aspect Protection �
-�
-�
-�
-�
-�
-�
(�
(�
�

AO Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Change Advice Kind from Around �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Extract Method from Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Pull Up Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Push Down Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Delete Unreachable Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Inline Method into Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Generalize before or after Advice to around Advice �
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Merge Advice Bodies �
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Replace Statement List in Advice with Method call�
-�
-�
-�
-�
-�
-�
-�
(�
�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
-�
-�
�
Pointcut�
Separate Pointcuts �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Pull up Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Push Down Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Delete Unreferenced Named Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Eliminating Duplicated Pointcuts �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Eliminating Borrowed Pointcuts �
-�
-�
(�
-�
-�
-�
(�
(�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Extract Method form Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Change Advice Kind form Before to After�
-�
-�
-�
-�
-�
-�
-�
-�
�
�
Replace Statement List in Advice with A method call�
-�
-�
-�
-�
-�
-�
-�
(�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Extract Method From Advice�
Before�
Debug�
1�
0�
4�
17�
5�
17�
13�
109�
�
�
After�
Debug�
1�
0�
4�
18�
9�
18�
13�
112�
�
Replace Statement with A method call�
Before�
Debug�
1�
0�
4�
18�
9�
18�
13�
112�
�
�
After�
Debug�
1�
0�
4�
18�
9�
18�
13�
110�
�
Replace Statement with A method call�
Before�
Debug�
1�
0�
4�
18�
9�
18�
13�
110�
�
�
After�
Debug�
1�
0�
4�
18�
9�
18�
13�
108�
�
Replace Statement list in Advice with A method call�
Before�
Debug�
1�
0�
4�
18�
9�
18�
13�
108�
�
�
After�
Debug�
1�
0�
4�
18�
9�
18�
13�
106�
�
Change Advice Kind form Before to After�
Before�
EnsureShipIsAlive�
1�
0�
2�
2�
1�
2�
1�
11�
�
�
After�
EnsureShipIsAlive�
1�
0�
2�
2�
1�
2�
1�
11�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Inline Method Into Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Push Down Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Delete Unreachable Advice�
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Generalize before or after advice to Around�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Extract Method form Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
Pointcut �
Delete Unreferenced Named Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Push Down Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
Inter-Type Declaration�
Move Static Introduction�
-�
-�
(�
(�
(�
(�
-�
(�
�
�
Push Down Inter-Type Declaration�
-�
-�
(�
(�
(�
(�
-�
(�
�
�
Pull Up Inter-Type Declaration�
-�
-�
(�
(�
(�
(�
-�
(�
�
Declare Clause�
Pull Up Declare Parents�
-�
-�
(�
-�
-�
-�
(�
(�
�
�
Introduce Aspect Protection�
-�
-�
-�
-�
-�
-�
(�
(�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Move Static Introduction�
Before�
CensorPublisherAspect�
1�
0�
3�
3�
1�
3�
3�
21�
�
�
�
CensorPublisherThread�
1�
0�
2�
4�
3�
4�
4�
30�
�
�
After�
CensorPublisherAspect�
1�
0�
2�
2�
0�
2�
3�
17�
�
�
�
CensorPublisherThread�
1�
0�
2�
5�
3�
5�
4�
34�
�
 Pull Up Declare Parents�
Before�
ThreadAbstractPublisher�
2�
0�
2�
0�
0�
0�
2�
8�
�
�
�
SynchMethods�
1�
7�
2�
1�
1�
1�
1�
17�
�
�
After�
ThreadAbstractPublisher�
2�
0�
1�
0�
0�
0�
1�
7�
�
�
�
SynchMethods�
1�
7�
2�
1�
1�
1�
2�
18�
�
Push Down PointCut�
Before�
SynchMethods�
1�
7�
3�
3�
1�
3�
3�
25�
�
�
�
BrokenClockSynch�
2�
0�
1�
0�
0�
0�
1�
7�
�
�
After�
SynchMethods�
1�
7�
3�
3�
1�
3�
2�
23�
�
�
�
BrokenClockSynch�
2�
0�
1�
0�
0�
0�
2�
9�
�
Push Down Advice�
Before�
SynchMethods�
1�
7�
3�
3�
1�
3�
2�
23�
�
�
�
BrokenClockSynch�
2�
0�
1�
0�
0�
0�
2�
8�
�
�
After�
SynchMethods�
1�
7�
3�
2�
0�
2�
2�
19�
�
�
�
BrokenClockSynch�
2�
0�
1�
1�
1�
1�
2�
12�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Inline Method Into Advice�
Before�
ServerListenerThread�
1�
0�
1�
2�
1�
2�
3�
14�
�
�
After�
ServerListenerThread�
1�
0�
1�
1�
0�
1�
3�
11�
�
Introduce Aspect Protection�
Before�
SnapshotPrevaylerAspect�
1�
0�
1�
2�
0�
3�
1�
22�
�
�
After�
SnapshotPrevaylerAspect�
1�
0�
1�
2�
0�
3�
2�
25�
�
Introduce Aspect Protection�
Before�
ClockTransactionTimeStamp�
1�
0�
1�
2�
1�
2�
1�
14�
�
�
After�
ClockTransactionTimeStamp�
1�
0�
1�
2�
1�
2�
2�
19�
�
Extract Method form Advice�
Before�
BankFrameClock�
1�
0�
1�
2�
0�
2�
3�
15�
�
�
After�
BankFrameClock�
1�
0�
1�
3�
1�
3�
3�
18�
�
Generalize before or after advice to Around�
Before�
DemoWeave�
1�
0�
1�
4�
2�
4�
2�
20�
�
�
After�
DemoWeave�
1�
0�
1�
3�
1�
3�
2�
19�
�
Pull Up Inter-Type Declaration�
Before�
POBOXThread�
2�
0�
2�
6�
4�
6�
10�
46�
�
�
�
SynchMethods�
1�
7�
2�
1�
1�
1�
2�
11�
�
�
After�
POBOXThread�
2�
0�
1�
5�
3�
5�
10�
41�
�
�
�
SynchMethods�
1�
7�
3�
2�
3�
2�
2�
15�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Introduce Aspect Protection�
Before�
CensorPublisherAspect�
1�
0�
3�
3�
1�
3�
2�
14�
�
�
After�
CensorPublisherAspect�
1�
0�
3�
3�
1�
3�
3�
18�
�
Introduce Aspect Protection�
Before�
ClockPrevayler�
1�
0�
3�
8�
7�
8�
12�
47�
�
�
After�
ClockPrevayler�
1�
0�
3�
8�
7�
8�
13�
50�
�
Delete Unreferenced Named Pointcut�
Before�
ThreadClockPublisher�
2�
0�
1�
5�
1�
5�
7�
45�
�
�
After�
ThreadClockPublisher�
2�
0�
1�
5�
1�
5�
6�
43�
�
Delete Unreferenced Named Pointcut�
Before�
BrokenClockSynch�
2�
0�
1�
0�
1�
0�
2�
10�
�
�
After�
BrokenClockSynch�
2�
0�
1�
0�
0�
0�
1�
7�
�
Delete Unreachable Advice�
Before�
POBOXClock�
1�
0�
2�
3�
0�
3�
2�
18�
�
�
After�
POBOXClock�
1�
0�
2�
2�
0�
2�
2�
15�
�
Push Down Inter-Type Declaration�
Before�
SynchMethods�
1�
7�
2�
2�
3�
2�
1�
20�
�
�
�
ThreadTransientLogger�
2�
0�
1�
2�
0�
2�
5�
25�
�
�
After�
SynchMethods�
1�
7�
1�
1�
1�
1�
1�
17�
�
�
�
ThreadTransientLogger�
2�
0�
1�
3�
1�
3�
5�
28�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Merge Advice Bodies �
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Inline Method Into Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Pull Up Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Delete Unreachable Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Extract Method form Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Change Advice Kind form Around�
-�
-�
-�
(�
(�
(�
-�
(�
�
Pointcut �
Separate Pointcuts�
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Delete Unreferenced Named Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Pull Up Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
Declare Clause�
Push Down Declare Parents�
-�
-�
(�
-�
-�
-�
(�
(�
�
Inter-Type Declaration�
Move Static Introduction�
-�
-�
(�
(�
(�
(�
-�
(�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Push Down Declare Parents�
Before�
FigureSelectionObserver�
1�
1�
2�
0�
0�
1�
1�
14�
�
�
�
FigureSelectionObserverRole�
2�
0�
6�
2�
3�
2�
5�
21�
�
�
After�
FigureSelectionObserver�
1�
1�
1�
0�
0�
1�
0�
13�
�
�
�
FigureSelectionObserverRole�
2�
0�
6�
2�
3�
2�
6�
22�
�
Pull Up Pointcut�
Before�
PersistentFigure�
1�
2�
2�
1�
1�
2�
1�
14�
�
�
�
PersistentImageFigure�
2�
0�
2�
3�
3�
3�
1�
34�
�
�
�
PersistentTextFigure�
2�
0�
2�
3�
3�
3�
1�
45�
�
�
After�
PersistentFigure�
1�
2�
2�
1�
1�
2�
2�
16�
�
�
�
PersistentImageFigure�
2�
0�
2�
3�
3�
3�
0�
32�
�
�
�
PersistentTextFigure�
2�
0�
2�
3�
3�
3�
0�
43�
�
Pull Up Advice�
Before�
PersistentImageFigure�
2�
0�
2�
3�
3�
3�
0�
32�
�
�
�
PersistentTextFigure�
2�
0�
2�
3�
3�
3�
0�
43�
�
�
�
PersistentFigure�
1�
2�
2�
1�
1�
2�
2�
15�
�
�
After�
PersistentImageFigure�
2�
0�
2�
2�
2�
2�
0�
28�
�
�
�
PersistentTextFigure�
2�
0�
2�
2�
2�
2�
0�
39�
�
�
�
PersistentFigure�
1�
2�
2�
2�
2�
2�
2�
19�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Delete Unreachable Advice�
Before�
UndoableCommand�
1�
0�
3�
7�
2�
8�
9�
80�
�
�
After�
UndoableCommand�
1�
0�
3�
6�
0�
7�
9�
77�
�
Delete Unreferenced Named Pointcut�
Before�
UndoableCommand�
1�
0�
3�
6�
0�
7�
9�
77�
�
�
After�
UndoableCommand�
1�
0�
3�
6�
0�
7�
8�
75�
�
Extract Method form Advice�
Before�
CutCommandUndo�
1�
0�
3�
12�
5�
12�
3�
76�
�
�
After�
CutCommandUndo�
1�
0�
3�
13�
8�
13�
3�
79�
�
Delete Unreachable Advice�
Before�
DuplicateCommandUndo�
1�
0�
1�
4�
6�
4�
1�
21�
�
�
After�
DuplicateCommandUndo�
1�
0�
1�
3�
3�
3�
1�
19�
�
Inline Method Into Advice�
Before�
CommandContracts�
1�
0�
1�
3�
1�
3�
2�
18�
�
�
After�
CommandContracts�
1�
0�
1�
2�
0�
2�
2�
15�
�
Inline Method Into Advice�
Before�
CutCommandUndo�
1�
0�
3�
13�
8�
13�
3�
79�
�
�
After�
CutCommandUndo�
1�
0�
3�
12�
7�
12�
3�
76�
�
Push Down Declare Parents�
Before�
FigureSelectionObserver�
1�
1�
3�
0�
0�
1�
2�
15�
�
�
�
FigureSelectionObserverRole�
2�
0�
6�
2�
3�
2�
4�
20�
�
�
After�
FigureSelectionObserver�
1�
1�
2�
0�
0�
1�
1�
14�
�
�
�
FigureSelectionObserverRole�
2�
0�
6�
2�
3�
2�
5�
21�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Merge Advice Bodies �
Before�
AlignCommandUndo�
1�
0�
2�
11�
9�
12�
2�
64�
�
�
After�
AlignCommandUndo�
1�
0�
2�
10�
9�
11�
2�
62�
�
Merge Advice Bodies �
Before�
BringToFrontCommandUndo�
1�
0�
2�
5�
2�
5�
2�
19�
�
�
After�
BringToFrontCommandUndo�
1�
0�
2�
4�
2�
4�
2�
17�
�
Separate Pointcuts�
Before�
FigureSelectionObserverRole�
1�
0�
3�
5�
3�
5�
2�
23�
�
�
After�
FigureSelectionObserverRole�
1�
0�
3�
5�
3�
5�
3�
25�
�
Change Advice Kind form Around�
Before�
UndoableCommand�
1�
0�
3�
6�
0�
7�
9�
79�
�
�
After�
UndoableCommand�
1�
0�
3�
7�
2�
8�
9�
80�
�
Merge Advice Bodies�
Before�
DeleteCommandUndo�
1�
0�
2�
6�
0�
6�
2�
39�
�
�
After�
DeleteCommandUndo�
1�
0�
2�
5�
0�
5�
2�
37�
�
Move Static Introduction�
Before�
FigureSelectionSubjectRole�
1�
0�
4�
6�
4�
7�
4�
28�
�
�
�
FigureSelectionObserverRole�
1�
0�
3�
5�
3�
5�
3�
22�
�
�
After�
FigureSelectionSubjectRole�
1�
0�
3�
5�
2�
6�
4�
25�
�
�
�
FigureSelectionObserverRole�
1�
0�
4�
5�
3�
6�
3�
26�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Pull Up Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Push Down Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
Declare Clause�
Pull Up Declare Parents �
-�
-�
(�
-�
-�
-�
(�
(�
�
�
Push Down Declare Parents�
-�
-�
(�
-�
-�
-�
(�
(�
�
Pointcut �
Push Down Pointcut �
-�
-�
�
-�
-�
-�
(�
(�
�
Inter-Type Declaration�
Push Down Inter-Type Declaration �
-�
-�
(�
(�
(�
(�
-�
(�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Push Down Declare Parents�
Before�
AspectMinorGroup�
2�
0�
5�
1�
0�
1�
4�
10�
�
�
�
AspectError�
1�
2�
7�
6�
3�
7�
8�
83�
�
�
After�
AspectMinorGroup�
2�
0�
5�
1�
0�
1�
5�
11�
�
�
�
AspectError�
1�
2�
6�
6�
3�
7�
7�
82�
�
Push Down Pointcut�
Before�
AspectMajorGroup�
2�
0�
5�
2�
0�
2�
2�
14�
�
�
�
AspectError�
1�
2�
7�
6�
3�
7�
8�
84�
�
�
After�
AspectMajorGroup�
2�
0�
5�
2�
0�
2�
3�
16�
�
�
�
AspectError�
1�
2�
7�
6�
3�
7�
7�
82�
�
Push Down Inter-Type Declaration �
Before�
AspectMinorGroup�
2�
0�
5�
1�
0�
1�
4�
10�
�
�
�
AspectError�
1�
2�
7�
6�
3�
7�
7�
82�
�
�
After�
AspectMinorGroup�
2�
0�
5�
2�
0�
2�
4�
13�
�
�
�
AspectError�
1�
2�
6�
5�
2�
6�
7�
79�
�

Looking for opportunity to apply AOR

* All the research studies shown in the table, except [69] investigated the effects of the AOP on the software systems. The study in [69] investigated the effects of the applying AOR on some internal and external software quality attributes; similarly, our study investigated the effects of twenty-two AOR methods on several quality attributes.

introduction

Final System

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Pull Up Advice�
Before�
AspectMajorGroup�
2�
0�
6�
2�
1�
2�
3�
15�
�
�
�
AspectMinorGroup�
2�
0�
6�
2�
1�
2�
4�
13�
�
�
�
AspectError�
1�
2�
7�
6�
4�
7�
8�
82�
�
�
After�
AspectMajorGroup�
2�
0�
6�
1�
0�
1�
3�
12�
�
�
�
AspectMinorGroup�
2�
0�
6�
1�
0�
1�
4�
10�
�
�
�
AspectError�
1�
2�
7�
7�
6�
8�
8�
85�
�
Push Down Advice�
Before�
AspectMajorGroup�
2�
0�
6�
1�
0�
1�
3�
12�
�
�
�
AspectError�
1�
2�
7�
7�
6�
8�
8�
85�
�
�
After�
AspectMajorGroup�
2�
0�
6�
2�
0�
2�
3�
15�
�
�
�
AspectError�
1�
2�
7�
6�
4�
7�
8�
83�
�
Pull Up Declare Parents �
Before�
AspectMajorGroup�
2�
0�
6�
2�
0�
2�
3�
15�
�
�
�
AspectMinorGroup�
2�
0�
6�
1�
0�
1�
5�
11�
�
�
�
AspectError�
1�
2�
6�
6�
3�
7�
7�
82�
�
�
After�
AspectMajorGroup�
2�
0�
5�
2�
0�
2�
2�
14�
�
�
�
AspectMinorGroup�
2�
0�
5�
1�
0�
1�
4�
10�
�
�
�
AspectError�
1�
2�
7�
6�
3�
7�
8�
83�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Extract Method from Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Delete Unreachable Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Replace Statement List in advice with Method call�
-�
-�
-�
-�
-�
-�
-�
(�
�
Declare Clause�
Introduce Aspect Protection �
-�
-�
-�
-�
-�
-�
(�
(�
�
Inter-Type Declaration�
Pull Up Inter-Type Declaration�
-�
-�
(�
(�
(�
(�
-�
(�
�
Pointcut�
Eliminate Borrowed Pointcut�
-�
-�
(�
-�
-�
-�
(�
(�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Pull Up Inter-Type Declaration �
Before�
Billing.java�
2�
0�
3�
7�
3�
6�
3�
25�
�
�
�
Timing.java�
2�
0�
2�
3�
2�
4�
2�
21�
�
�
�
CustomerAspect.java�
1�
2�
1�
1�
0�
1�
1�
5�
�
�
After�
Billing.java�
2�
0�
2�
6�
0�
5�
3�
22�
�
�
�
Timing.java�
2�
0�
2�
2�
0�
3�
2�
19�
�
�
�
CustomerAspect.java�
1�
2�
1�
2�
1�
2�
1�
8�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Extract Method form Advice�
Before�
TimerLog.java�
1�
0�
1�
2�
0�
2�
2�
12�
�
�
After�
TimerLog.java�
1�
0�
1�
3�
1�
3�
2�
15�
�
Introduce Aspect Protection�
Before�
Billing.java�
1�
0�
4�
8�
5�
7�
3�
26�
�
�
After�
Billing.java�
1�
0�
4�
8�
5�
7�
4�
29�
�
Delete Unreachable Advice�
Before�
Timing.java�
1�
0�
2�
5�
3�
5�
5�
23�
�
�
After�
Timing.java�
1�
0�
2�
4�
1�
4�
5�
20�
�
Replace Statement List in Advice with Method call�
Before�
TimerLog.java�
1�
0�
1�
3�
1�
3�
3�
15�
�
�
After�
TimerLog.java�
1�
0�
2�
4�
1�
3�
3�
13�
�
Eliminating Borrowed Pointcut�
Before�
Billing.java�
1�
0�
4�
8�
5�
7�
3�
29�
�
�
�
Timing.java�
1�
0�
2�
5�
3�
5�
1�
23�
�
�
�
TimerLog.java�
1�
0�
2�
4�
1�
3�
3�
13�
�
�
�
NewTiming.java�
-�
-�
-�
-�
-�
-�
-�
-�
�
�
After�
Billing.java�
1�
0�
3�
8�
5�
7�
2�
27�
�
�
�
Timing.java�
1�
0�
2�
4�
3�
5�
1�
23�
�
�
�
TimerLog.java�
1�
0�
2�
4�
1�
3�
3�
13�
�
�
�
NewTiming.java�
1�
0�
3�
0�
0�
0�
1�
4�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Change Advice Kind from Around �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Extract Method from Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Inline Method into Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Delete Unreachable Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Generalize before or after Advice to around Advice �
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
-�
-�
�
Declare Clause�
Introduce Aspect Protection �
-�
-�
-�
-�
-�
-�
(�
(�
�
Pointcut�
Delete Unreferenced Named Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Pull up Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Eliminate Duplicated Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�

Table � STYLEREF 1 \s �‎8��7 Continued

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Eliminate Duplicated Pointcut�
Before�
Counter.java�
1�
0�
4�
4�
0�
4�
5�
40�
�
�
�
NextBlock.java�
1�
0�
2�
3�
1�
3�
3�
34�
�
�
�
GameInfo.java �
2�
0�
1�
1�
0�
1�
3�
16�
�
�
�
GuiInit.java�
-�
-�
-�
-�
-�
-�
-�
-�
�
�
After�
Counter.java�
1�
0�
4�
4�
0�
4�
4�
38�
�
�
�
NextBlock.java�
1�
0�
2�
3�
1�
3�
2�
32�
�
�
�
GameInfo.java�
2�
0�
1�
1�
0�
1�
2�
14�
�
�
�
GuiInit.java�
1�
0�
3�
0�
0�
0�
1�
5�
�
Pull Up Pointcut�
Before�
GameInfo.java�
2�
0�
2�
1�
0�
1�
2�
17�
�
�
�
Menu.java�
2�
0�
2�
2�
0�
2�
4�
47�
�
�
�
GuiAspect�
1�
2�
1�
1�
0�
1�
1�
4�
�
�
After�
GameInfo.java�
2�
0�
2�
1�
0�
1�
1�
15�
�
�
�
Menu.java�
2�
0�
2�
2�
0�
2�
3�
45�
�
�
�
GuiAspect�
1�
2�
1�
1�
0�
1�
2�
6�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Change Advice Kind from Around�
Before�
NextBlock.java�
1�
0�
2�
2�
0�
2�
3�
31�
�
�
After�
NextBlock.java�
1�
0�
2�
3�
1�
3�
3�
33�
�
Inline Method into Advice �
Before�
Counter.java�
1�
0�
4�
7�
3�
7�
5�
47�
�
�
After�
Counter.java�
1�
0�
4�
6�
1�
6�
5�
43�
�
Extract Method from Advice�
Before�
Levels.java�
1�
0�
4�
4�
0�
4�
4�
44�
�
�
After�
Levels.java�
1�
0�
4�
5�
1�
5�
4�
47�
�
Introduce Aspect Protection�
Before�
Menu.java�
1�
0�
2�
3�
0�
3�
2�
44�
�
�
After�
Menu.java�
1�
0�
2�
3�
0�
3�
3�
47�
�
Generalize before or after Advice to around Advice �
Before�
Counter.java�
1�
0�
4�
6�
1�
6�
5�
43�
�
�
After�
Counter.java�
1�
0�
4�
5�
1�
5�
5�
42�
�
Change Advice kind form Before to After�
Before�
NextBlock.java �
1�
0�
2�
3�
1�
3�
2�
33�
�
�
After�
NextBlock.java �
1�
0�
2�
3�
1�
3�
2�
33�
�
Delete Unreferenced Named Pointcut �
Before�
NewBlocks.java�
1�
0�
4�
5�
0�
5�
6�
77�
�
�
After�
NewBlocks.java�
1�
0�
4�
5�
0�
5�
5�
75�
�
Delete Unreachable Advice�
Before�
Counter.java�
1�
0�
4�
5�
1�
5�
5�
42�
�
�
After�
Counter.java�
1�
0�
4�
4�
0�
4�
5�
39�
�

Report the changes in the internal quality metrics for each aspect

Mapping: internal metrics changes (external attributes

Applying AOR

Inheritance

Size

Cohesion

Coupling

Metrics Collector

Inheritance

Size

Cohesion

Coupling

Metrics Collector

Aspect-Oriented Refactoring Method�
Maintainability�
Reusability�
Flexibility �
Understandability�
Testability�
Reliability�
�
Move Static Introduction�
(�
(�
(�
(�
(�
(�
�
Pull Up Inter-Type Declaration�
(�
(�
(�
(�
(�
(�
�
Push Down Inter-Type Declaration �
(�
(�
(�
(�
(�
(�
�
Pull Up Declare Parents �
(�
(�
(�
(�
(�
(�
�
Push Down Declare Parents�
(�
(�
(�
(�
(�
(�
�
Push Down Advice �
(�
(�
(�
(�
(�
(�
�
Pull Up Advice�
(�
(�
(�
(�
(�
(�
�
Eliminating Borrowed Pointcuts�
(�
(�
(�
(�
(�
(�
�
Eliminating Duplicated Pointcuts�
(�
(�
(�
-�
-�
(�
�
Pull up Pointcut �
(�
(�
(�
-�
-�
(�
�
Push Down Pointcut �
(�
(�
(�
-�
-�
(�
�

Aspect-Oriented Refactoring Method�
Maintainability�
Reusability�
Flexibility �
Understandability�
Testability�
Reliability�
�
Change Advice Kind from Around �
(�
(�
(�
(�
(�
(�
�
Extract Method from Advice �
(�
(�
(�
(�
(�
(�
�
Introduce Aspect Protection �
(�
(�
(�
-�
-�
(�
�
Separate Pointcuts �
(�
(�
(�
-�
-�
(�
�
Generalize before or after Advice to around Advice �
(�
(�
(�
(�
(�
(�
�
Delete Unreachable Advice�
(�
(�
(�
(�
(�
(�
�
Merge Advice Bodies �
(�
(�
(�
(�
(�
(�
�
Inline Method into Advice �
(�
(�
(�
(�
(�
(�
�
Replace Statement List in Advice with Method call�
(�
(�
(�
-�
-�
(�
�
Delete Unreferenced Named Pointcut�
(�
(�
(�
-�
-�
(�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
�

Aspect- Oriented Refactoring Method�
maintainability�
reusability�
Flexibility�
Understandability�
Testability�
Reliability�
�
Pull up Pointcut �
(�
(�
(�
-�
-�
(�
�
Push Down Pointcut �
(�
(�
(�
-�
-�
(�
�
Delete Unreferenced Named Pointcut�
(�
(�
(�
-�
-�
(�
�
Eliminating Duplicated Pointcuts �
(�
(�
(�
-�
-�
(�
�
Replace Statement List in Advice with Method call�
(�
(�
(�
-�
-�
(�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
�

Aspect- Oriented Refactoring Method�
maintainability�
reusability�
Flexibility�
Understandability�
Testability�
Reliability�
�
Change Advice Kind from Around �
(�
(�
(�
(�
(�
(�
�
Extract Method from Advice �
(�
(�
(�
(�
(�
(�
�
Pull Up Advice�
(�
(�
(�
(�
(�
(�
�
Push Down Advice �
(�
(�
(�
(�
(�
(�
�
Delete Unreachable Advice�
(�
(�
(�
(�
(�
(�
�
Inline Method into Advice �
(�
(�
(�
(�
(�
(�
�
Generalize before or after Advice to around Advice �
(�
(�
(�
(�
(�
(�
�
Merge Advice Bodies �
(�
(�
(�
(�
(�
(�
�
Pull Up Declare Parents �
(�
(�
(�
(�
(�
(�
�
Push Down Declare Parents�
(�
(�
(�
(�
(�
(�
�
Pull Up Inter-Type Declaration�
(�
(�
(�
(�
(�
(�
�
Move Static Introduction�
(�
(�
(�
(�
(�
(�
�
Push Down Inter-Type Declaration �
(�
(�
(�
(�
(�
(�
�
Eliminating Borrowed Pointcuts�
(�
(�
(�
(�
(�
(�
�
Separate Pointcuts �
(�
(�
(�
-�
-�
(�
�
Introduce Aspect Protection �
(�
(�
(�
-�
-�
(�
�

Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Pull up Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
Push Down Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
Delete Unreferenced Named Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
Eliminating Duplicated Pointcuts �
-�
-�
-�
-�
-�
-�
(�
(�
�
Eliminating Borrowed Pointcuts �
-�
-�
(�
-�
-�
-�
(�
(�
�
Replace Statement List in Advice with Method call�
-�
-�
-�
-�
-�
-�
-�
(�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
-�
-�
�
Extract Superaspect �
(�
-�
-�
(�
(�
(�
(�
(�
�

Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Change Advice Kind from Around �
-�
-�
-�
(�
(�
(�
-�
(�
�
Extract Method from Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
Pull Up Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
Push Down Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
Delete Unreachable Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
Inline Method into Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
Generalize before or after Advice to around Advice �
-�
-�
-�
(�
-�
(�
-�
(�
�
Merge Advice Bodies �
-�
-�
-�
(�
-�
(�
-�
(�
�
Separate Pointcuts �
-�
-�
-�
-�
-�
-�
(�
(�
�
Introduce Aspect Protection �
-�
-�
-�
-�
-�
-�
(�
(�
�
Pull Up Declare Parents �
-�
-�
(�
-�
-�
-�
(�
(�
�
Push Down Declare Parents�
-�
-�
(�
-�
-�
-�
(�
(�
�
Pull Up Inter-Type Declaration�
-�
-�
(�
(�
(�
(�
-�
(�
�
Move Static Introduction�
-�
-�
(�
(�
(�
(�
-�
(�
�
Push Down Inter-Type Declaration �
-�
-�
(�
(�
(�
(�
-�
(�
�

AO Construct�
Aspect-Oriented Refactoring Method�
Maintainability�
Reusability�
Flexibility �
Understandability�
Testability�
Reliability�
�
Inter-Type Declaration�
Move Static Introduction�
(�
(�
(�
(�
(�
(�
�
�
Pull Up Inter-Type Declaration�
(�
(�
(�
(�
(�
(�
�
�
Push Down Inter-Type Declaration �
(�
(�
(�
(�
(�
(�
�
Declare Clause�
Pull Up Declare Parents �
(�
(�
(�
(�
(�
(�
�
�
Push Down Declare Parents�
(�
(�
(�
(�
(�
(�
�
�
Introduce Aspect Protection �
(�
(�
(�
-�
-�
(�
�

AO Construct�
Aspect-Oriented Refactoring Method�
Maintainability�
Reusability�
Flexibility �
Understandability�
Testability�
Reliability�
�
Advice�
Change Advice Kind from Around �
(�
(�
(�
(�
(�
(�
�
�
Extract Method from Advice �
(�
(�
(�
(�
(�
(�
�
�
Push Down Advice �
(�
(�
(�
(�
(�
(�
�
�
Pull Up Advice�
(�
(�
(�
(�
(�
(�
�
�
Generalize before or after Advice to around Advice �
(�
(�
(�
(�
(�
(�
�
�
Delete Unreachable Advice�
(�
(�
(�
(�
(�
(�
�
�
Merge Advice Bodies �
(�
(�
(�
(�
(�
(�
�
�
Inline Method into Advice �
(�
(�
(�
(�
(�
(�
�
�
Replace Statement List in Advice with Method call�
(�
(�
(�
-�
-�
(�
�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
�
Pointcut�
Separate Pointcuts �
(�
(�
(�
-�
-�
(�
�
�
Push Down Pointcut �
(�
(�
(�
-�
-�
(�
�
�
Pull up Pointcut �
(�
(�
(�
-�
-�
(�
�
�
Eliminating Duplicated Pointcuts �
(�
(�
(�
-�
-�
(�
�
�
Delete Unreferenced Named Pointcut �
(�
(�
(�
-�
-�
(�
�
�
Eliminating Borrowed Pointcuts�
(�
(�
(�
(�
(�
(�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Inter-Type Declaration�
Pull Up Inter-Type Declaration�
-�
-�
(�
(�
(�
(�
-�
(�
�
�
Move Static Introduction�
-�
-�
(�
(�
(�
(�
-�
(�
�
�
Push Down Inter-Type Declaration �
-�
-�
(�
(�
(�
(�
-�
(�
�
Declare Clause�
Pull Up Declare Parents �
-�
-�
(�
-�
-�
-�
(�
(�
�
�
Push Down Declare Parents�
-�
-�
(�
-�
-�
-�
(�
(�
�
�
Introduce Aspect Protection �
-�
-�
-�
-�
-�
-�
(�
(�
�

Aspect-Oriented Construct�
Aspect- Oriented Refactoring Method�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Advice�
Change Advice Kind from Around �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Extract Method from Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Pull Up Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Push Down Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Delete Unreachable Advice�
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Inline Method into Advice �
-�
-�
-�
(�
(�
(�
-�
(�
�
�
Merge Advice Bodies �
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Generalize before or after Advice to around Advice �
-�
-�
-�
(�
-�
(�
-�
(�
�
�
Replace Statement List in Advice with Method call�
-�
-�
-�
-�
-�
-�
-�
(�
�
�
Change Advice kind from Before to After�
-�
-�
-�
-�
-�
-�
-�
-�
�
Pointcut�
Separate Pointcuts �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Pull up Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Push Down Pointcut �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Delete Unreferenced Named Pointcut�
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Eliminating Duplicated Pointcuts �
-�
-�
-�
-�
-�
-�
(�
(�
�
�
Eliminating Borrowed Pointcuts �
-�
-�
(�
-�
-�
-�
(�
(�
�

Table 7-1 Continued

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Eliminating Borrowed Pointcut�
Before�
HomeSecurityAspect�
1�
0�
3�
2�
1�
2�
4�
12�
�
�
�
InfoAspect�
1�
0�
1�
1�
0�
1�
1�
5�
�
�
�
SaveEnergyAspect�
1�
0�
2�
2�
1�
2�
3�
9�
�
�
�
BorrowedPointcutAspect�
-�
-�
-�
-�
-�
-�
-�
-�
�
�
After�
HomeSecurityAspect�
1�
0�
2�
2�
1�
2�
3�
10�
�
�
�
InfoAspect�
1�
0�
1�
1�
0�
1�
1�
5�
�
�
�
SaveEnergyAspect�
1�
0�
2�
2�
1�
2�
3�
9�
�
�
�
BorrowedPointcutAspect�
1�
0�
4�
0�
0�
0�
1�
3�
�
Move static introduction�
Before�
HashablePoint�
1�
0�
2�
3�
3�
3�
3�
24�
�
�
�
CloneablePoint�
1�
0�
1�
2�
2�
2�
2�
21�
�
�
After�
HashablePoint�
1�
0�
1�
2�
2�
2�
3�
16�
�
�
�
CloneablePoint�
1�
0�
1�
3�
3�
3�
2�
23�
�
Delete Unreferenced Named Pointcut�
Before�
MinimumBalanceRuleAspect�
1�
0�
2�
2�
1�
3�
3�
16�
�
�
After�
MinimumBalanceRuleAspect�
1�
0�
2�
2�
1�
3�
2�
14�
�

Table 7-1 Continued

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCO�
WOC�
NOA�
LOC�
�
Pull Up Inter-Type Declaration�
Before�
ObservingRelationships�
1�
2�
2�
5�
0�
4�
1�
31�
�
�
�
ObservingOpen�
2�
0�
3�
4�
2�
4�
6�
30�
�
�
�
ObservingClose�
2�
0�
3�
4�
2�
4�
6�
30�
�
�
After�
ObservingRelationships�
1�
2�
3�
6�
3�
5�
1�
34�
�
�
�
ObservingOpen�
2�
0�
2�
3�
0�
3�
6�
27�
�
�
�
ObservingClose�
2�
0�
2�
3�
0�
3�
6�
27�
�
Push Down Inter-Type Declaration�
Before

�
ObservingRelationships�
1�
2�
3�
6�
2�
5�
2�
35�
�
�
�
ObservingOpen�
2�
0�
2�
3�
0�
3�
5�
27�
�
�
After�
ObservingRelationships�
1�
2�
2�
5�
0�
4�
2�
31�
�
�
�
ObservingOpen�
2�
0�
6�
4�
0�
4�
5�
31�
�
Eliminating Duplicated Pointcut �
Before�
HomeSecurityAspect�
1�
0�
1�
2�
1�
2�
4�
12�
�
�
�
SaveEnergyAspect�
1�
0�
1�
2�
1�
2�
4�
12�
�
�
�
DuplicatePointcutsAspect�
-�
-�
-�
-�
-�
-�
-�
-�
�
�
After�
HomeSecurityAspect�
1�
0�
1�
2�
1�
2�
2�
8�
�
�
�
SaveEnergyAspect�
1�
0�
1�
2�
1�
2�
2�
8�
�
�
�
DuplicatePointcutsAspect�
1�
0�
2�
0�
0�
0�
2�
6�
�

Table 7-1 Continued

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Push Down Advice�
Before�
ObservingRelationships�
1�
2�
2�
6�
2�
5�
1�
34�
�
�
�
ObservingOpen�
2�
0�
2�
3�
0�
3�
5�
27�
�
�
After�
ObservingRelationships�
1�
2�
2�
5�
0�
4�
1�
31�
�
�
�
ObservingOpen �
2�
0�
2�
4�
0�
4�
5�
30�
�
Pull Up Declare Parents �
Before�
ObservingRelationships�
1�
2�
2�
5�
0�
4�
1�
31�
�
�
�
ObservingOpen�
2�
0�
5�
3�
4�
3�
7�
29�
�
�
�
ObservingClose�
2�
0�
5�
3�
4�
3�
7�
29�
�
�
After�
ObservingRelationships�
1�
2�
5�
5�
0�
4�
3�
33�
�
�
�
ObservingOpen�
2�
0�
2�
3�
4�
3�
5�
27�
�
�
�
ObservingClose�
2�
0�
2�
3�
4�
3�
5�
27�
�
Push Down Declare Parents�
Before�
ObservingRelationships�
1�
2�
5�
4�
3�
4�
2�
33�
�
�
�
ObservingOpen�
2�
0�
2�
3�
4�
3�
5�
27�
�
�
After�
ObservingRelationships�
1�
2�
2�
4�
3�
4�
1�
31�
�
�
�
ObservingOpen�
2�
0�
5�
3�
4�
3�
6�
29�
�
Push Down Pointcut�
Before�
ObservingRelationships�
1�
2�
2�
2�
0�
1�
4�
24�
�
�
�
ObservingClose�
2�
0�
2�
3�
0�
3�
3�
26�
�
�
After�
ObservingRelationships�
1�
2�
2�
2�
0�
1�
3�
22�
�
�
�
ObservingClose�
2�
0�
2�
3�
0�
3�
4�
28�
�

Table 7-1 Continued

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Introduce Aspect Protection�
Before�
SecurityAspect�
1�
1�
2�
2�
0�
2�
2�
11�
�
�
After�
SecurityAspect�
1�
1�
2�
2�
0�
2�
3�
16�
�
Replace List Statement with Method Call�
Before�
DBConnectionPoolLoggingAspect�
1�
0�
2�
3�
0�
3�
1�
18�
�
�
After�
DBConnectionPoolLoggingAspect�
1�
0�
2�
3�
0�
3�
1�
16�
�
Pull Up Pointcut�
Before�
ObservingRelationships�
1�
2�
2�
2�
0�
1�
0�
18�
�
�
�
ObservingOpen�
2�
0�
2�
3�
0�
3�
5�
28�
�
�
�
ObservingClose�
2�
0�
2�
3�
0�
3�
5�
27�
�
�
After�
ObservingRelationships�
1�
2�
2�
2�
0�
1�
2�
22�
�
�
�
ObservingOpen�
2�
0�
2�
3�
0�
3�
3�
24�
�
�
�
ObservingClose�
2�
0�
2�
3�
0�
3�
3�
23�
�
Pull Up Advice�
Before�
ObservingRelationships�
1�
2�
2�
5�
0�
4�
1�
31�
�
�
�
ObservingOpen�
2�
0�
2�
4�
2�
4�
5�
30�
�
�
�
ObservingClose�
2�
0�
2�
4�
2�
4�
5�
29�
�
�
After�
ObservingRelationships�
1�
2�
2�
6�
2�
5�
1�
34�
�
�
�
ObservingOpen�
2�
0�
2�
3�
0�
3�
5�
27�
�
�
�
ObservingClose�
2�
0�
2�
3�
0�
3�
5�
26�
�

Aspect- Oriented Refactoring Method�
�
Aspect Name�
Inheritance�
Coupling�
Cohesion�
Size and Complexity�
�
�
�
�
DIT�
NOC�
CBC�
RFC�
LCOO�
WOC�
NOA�
LOC�
�
Change Advice Kind from Around�
Before�
InterAdvicePrecedenceAspect�
1�
0�
1�
3�
1�
3�
2�
15�
�
�
After�
InterAdvicePrecedenceAspect�
1�
0�
1�
4�
2�
4�
2�
16�
�
Extract Method from Advice�
Before�
SubjectObserverProtocol�
1�
1�
2�
6�
1�
6�
8�
27�
�
�
After�
SubjectObserverProtocol�
1�
1�
2�
7�
3�
7�
8�
30�
�
Merge Advice Bodies�
Before�
SaveEnergyAspect�
1�
0�
1�
4�
0�
4�
0�
15�
�
�
After�
SaveEnergyAspect�
1�
0�
1�
3�
0�
3�
0�
14�
�
Inline Method into Advice: �
Before�
GetInfo�
1�
0�
1�
3�
1�
3�
2�
26�
�
�
After�
GetInfo�
1�
0�
1�
2�
0�
2�
2�
23�
�
Generalize before or after Advice to around Advice �
Before�
Tracer�
1�
0�
1�
2�
0�
2�
2�
12�
�
�
After�
Tracer�
1�
0�
1�
1�
0�
1�
2�
11�
�
Delete Unreachable Advice�
Before�
OptimizeFactorialAspect�
1�
0�
1�
4�
4�
4�
3�
22�
�
�
After�
OptimizeFactorialAspect�
1�
0�
1�
3�
2�
3�
3�
19�
�
Change Advice kind from Before to After�
Before�
CallRecipe�
1�
0�
1�
1�
0�
1�
1�
11�
�
�
After�
CallRecipe�
1�
0�
1�
1�
0�
1�
1�
11�
�
Separate pointcuts�
Before�
PointcutsAspect�
1�
0�
1�
1�
0�
1�
2�
10�
�
�
After�
PointcutsAspect�
1�
0�
1�
1�
0�
1�
3�
12�
�

C4

C3

C5 C6

introduction

 pointcut

advice

AspectA

introduction

 pointcut

advice

AspectB

C1

C2

introduction

 pointcut

advice

AspectA

adviceA2

 pointcutA2

adviceA1

aspectA

methodD2

 pointcutB1

attributeD3

adviceB2

aspectB

 pointcutB1

attributeD3

adviceB2

aspectB

adviceA2

 pointcutA2

adviceA1

aspectA

methodD2

adviceB2

adviceB1

 pointcutA1

aspectB

 pointcutC1

adviceC1

 aspectC

adviceA1

aspectA

 pointcutC1

adviceC1

 aspectC

adviceB2

adviceB1

aspectB

 pointcutA1

adviceA1

aspectA

adviceC2

adviceC1

 aspectC

adviceB2

adviceB1

aspectB

 pointcutA1

adviceA1

aspectA

adviceB2

adviceB1

 pointcutA1

aspectB

adviceC2

pointcutA1

adviceC1

aspectC

adviceA1

aspectA

methodC3

attributeC3

adviceB2

adviceB1

aspectB

 pointcutA1

adviceA1

aspectA

attributeC3

adviceB2

adviceB1

aspectB

methodC3

pointcutA1

adviceA1

aspectA

methodD2

attributeC3

adviceB2

adviceB1

aspectB

pointcutA1

adviceA1

aspectA

methodD2

pointcutA1

adviceA1

aspectA

attributeC3

adviceB2

adviceB1

aspectB

adviceC1

 pointcutC1

 aspectC

 DeclareParentsB1

adviceA1

 pointcutA1

aspectA

adviceB1

aspectB

 DeclareParentsB1

adviceC1

pointcutC1

 aspectC

 DeclareParentsB1

adviceB1

aspectB

adviceA1

pointcutA1

aspectA

adviceC1

 pointcutC1

 aspectC

 declareParentsB1

adviceA1

 pointcutA1

aspectA

adviceB1

aspectB

 declareParentsB1

adviceC1

pointcutC1

 aspectC

 declareParentsB1

adviceB1

aspectB

adviceA1

pointcutA1

aspectA

adviceB1

 pointcutA1

aspectA

adviceA1

 pointcutB1

adviceB2

aspectB

adviceC2

aspectC

pointcutB1

adviceB2

aspectB

adviceB1

pointcutA1

adviceA1

aspectA

adviceC2

aspectC

 pointcutB1

adviceB2

aspectB

adviceB1

 pointcutA1

adviceA1

aspectA

introduction

aspectC

introduction

adviceB1

aspectC

pointcutB1

adviceB2

adviceB1

aspectB

pointcutA1

adviceA1

aspectA

Standard Compiler

adviceA2

 pointcutA2

adviceA1

aspectA

adviceA2

pointcutA2

pointcutA1

adviceA1

aspectA

Adaptability

Installability

Co-existence

Replaceability

Analyzability

Changeability

Stability

Testability

Time behavior

Resource -behavior

Understandability

Learnability

Operability

Attractiveness

Maturity

Fault tolerance

Recoverability

Suitability

Accuracy

Interoperability

Security

Portability

Maintainability

Efficiency

Usability

Reliability

Functionality

Quality Attributes ISO 9126

Aspects

Classes

Interfaces

OOP

AOP

Concern identifier

Concerns

System requirements

Aspects Way

Traditional Way

Changed System with concerns

+

Original System+ Changed Aspect

 (c) Making changes

Traditional Way

Aspects Way

Original System + new concerns

 +

Original System+ Original Aspect

 (b) Adding more concerns

(a) Original System

Full compilation process

0100010101010100010111010100

Compiler

---- --- --- ------ ------- ------ ------- --

Woven-Source code

W

E

A

V

E

R

Aspect Weaver

Aspect

Class

Class

Introducing a method

Introducing a data member

debit () method call joinpoint

Account account = ...;

	account.debit(100);

debit () method execution joinpoint

PAGE
ii

