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 .شــريــف مـحـمــد صــالــح الـشـريــف : الاســــــــــــــــم

تـجـزئــة الـصــور الـطـبيــة نـمــوذج مـطـور لـلـمنحـنـى الـنـشــط الـمـسـتخــدم فــي :  عنوان الرسالة

 .هـنـدســة الـنـظــم  :التخصـــــــص

. 2010يـنــايــر  :تاريخ التخرج

 

رة الى عدة أجزاء بحيث يحتوي وتستخدم  في تقطيع الصو, تعتبر تقنية التجزئة كإحدى تقنيات تحليل الصور            

وتهدف هذة العملية الى تبسيط أو تغيير طريقة عرض . المميزاتزء منها على مكونات تحمل نفس الخصائص أو جكل 

. كما تعمل هذه الطريقة على تسهيل عملية تحليل الصور, الصورة بحيث تصبح ذات معنى

            

لهذه التقنية عدة تطبيقات من أهمها عملية تحديد أماكن الأورام في الصور الطبية كمرحلة أولى في التخطيط            

" الأفعى " أو " المنحنى النشط " يمكن تطبيق هذة التقنية بعدة أساليب من أنجحها طريقة  . لعلاج مرضى السرطان

.  مرن يتكيف ديناميكيا مع شكل حواف الجزء المراد تحديده في الصورة) أو سطح(والتي يعتمد مبدأ عملها على منحنى 

           

كما تم فحص هذة النسخة بأستخدام ,  )الأفعى(خلال هذا البحث تم تطوير نسخة معدلة من تقنية  المنحنى النشط         

 .  وقد اعطت النسخة المعدلة نتائج واعدة. صور طبية حقيقية مأخوذة بطريقة التصوير الطبقي المحوري
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الـممـلـكــة الـعــربيــة الـسـعـوديــة  الـظـهــران –, لـلـبتـرول والـمعـادنجـامـعـة الـمـلـك فـهـد 
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CHAPTER ONE 

 

 

INTRODUCTION 

1.1.  OVERVIEW OF THE RESEARCH: 

 

The rapid development and proliferation of imaging technologies is revolutionizing 

medicine. Medical imaging allows scientists and physicians to glean potentially life-

saving information by peering noninvasively into the human body. The role of medical 

imaging has expanded beyond the simple visualization and inspection of anatomic 

structures. It has become a tool for surgical planning and simulation, intra-operative 

navigation, radiotherapy planning, and for tracking the progress of disease [1]. 
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Medical  image analysis has  become  one of the most active areas  of research these 

days; many important achievements have  been addressed  in  this field  which is vital for 

physicians who become  highly  dependent on the image information in order to give an 

accurate diagnosis of  diseases, especially,  of  tumors,  since  an  early  diagnosis of 

cancer would help very much in treatment. In radiotherapy, medical imaging allows the 

delivery of a necrotic dose of radiation to a tumor with minimal collateral damage to 

healthy tissues [1].  

The area of medical image  processing and analysis covers a wide range of topics, 

including image acquisition, image formation/reconstruction, image enhancement, image 

compression and storage, image analysis, and image-based visualization [2]. Medical 

Image analysis is a promising area of research. It includes many powerful techniques 

within image analysis, and it has a wide range of applications. One of the well known 

approaches in medical image analysis is Image Segmentation: its basic is to subdivide the 

image into regions in which each one contains components having similar properties or 

characteristics. The goal of segmentation is to simplify and/or change the representation 

of an image into something that is more meaningful and easier to analyze. In its earlier 

applications, image segmentation was typically used to locate objects and boundaries 

(lines, curves, etc.) in images. Now, image segmentation is defined as the process of 

assigning a label to every pixel in an image such that pixels with the same label share 

certain visual characteristics [3]. This approach is widely used in extracting tumor areas 

from medical images as a first step in the therapy planning [39,68] of cancer patients. 
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Other medical applications for image segmentation, besides locating tumors and other 

pathologies [69-74], include: measuring tissue volumes [34], computer-guided surgery 

[76], diagnosis [35,75], localization pathology [36] treatment planning and studying of 

anatomical structures [37,38]. Beside medical applications of segmentation, segmentation 

is also used in general Pattern recognition [77], Object detection [78], Machine learning 

[79], Image or video coding [80,81], Tracking [82-85], and Augmented reality. 

 
 

1.2. OBJECTIVES OF THE RESEARCH WORK: 

The work presented in this thesis focuses on the automatic segmentation of medical 

images using deformable curves incorporating a priori information. Such priori 

information is extracted from the region of interest in the original image and used to 

achieve a faster and a more accurate segmentation. The specific objectives of this 

research work are as follows: 

1. Improving the accuracy of ACM-based medical image segmentation in order to obtain 

more accurate segmentation for the intended region in the medical image. This will 

help the physician to be more comfortable with his decision, also, accurate 

segmentation of the infected region in the medical image of the patient will help the 

physician to limit the medication only to the infected area, and this will   prevent the 

destruction of the adjacent healthy regions of the patient tissues. 
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2. Reducing the complexity of the proposedACM-based medical image segmentation 

algorithm in order to achieve faster segmentation.  

3. Evaluating the performance of the proposed algorithm on real medical images.  To 

facilitate the interaction with the algorithm, a GUI is developed, which will also 

facilitate the task of the medical practitioner. 

 

The entire thesis will be arranged as follows; Chapter two will be a literature 

review of image segmentation techniques, then, chapter three will focus on active contour 

models used in medical image segmentation. Chapter four will introduce the Hybrid 

Wavelet-ACM (WACM) segmentation technique and in chapter six, experiments and 

results will be discussed. Finally, in chapter seven, conclusions, discussion of the results 

and future research directions will be presented.           

 

2.  
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CHAPTER 2 
 

 

 
TECHNIQUES USED IN IMAGE 

SEGMENTATION

 

Many techniques for image segmentation have been proposed in the literature, all of 

which achieve good accuracy even though they may differ in the way images are 

analyzed. The following techniques are the most popular approaches. These are clustered 

into two classes: general purpose segmentation techniques and segmentation techniques 

used in medical imaging. 
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2.1. GENERAL PURPOSE IMAGE SEGMENTATION TECHNIQUES: 

Several general-purpose algorithms and techniques have been developed for 

image segmentation. Since there is no unique solution to the problem, these techniques 

often have to be combined with domain knowledge in order to effectively solve an image 

segmentation problem for a given problem domain or application [3]. 

 

2.1.1. Clustering Methods: 

This technique [87-89] is based on the “K-means algorithm” [57,86] which was 

initially proposed in 1956. It is an iterative technique that is used to partition an image 

into K clusters. The technique is briefly outlined below: 

i. Choose K cluster centers, either randomly or based on some heuristics. 

ii. Assign each pixel in the image to the cluster that minimizes the absolute 

distance between the pixel and the centroid. 

iii. By averaging all of the pixels in the cluster, re-compute the cluster centroid. 

iv. Repeat steps 2 and 3 until convergence is attained (e.g. no pixels change 

clusters).  

The difference is typically based on pixel color, intensity, texture, and location, 

or a weighted combination of these factors. K can be selected manually, randomly, or by a 

http://wapedia.mobi/en/Algorithm�
http://wapedia.mobi/en/Iterative�
http://wapedia.mobi/en/Cluster_analysis�
http://wapedia.mobi/en/Cluster�
http://wapedia.mobi/en/Random�
http://wapedia.mobi/en/Color�
http://wapedia.mobi/en/Intensity�
http://wapedia.mobi/en/Random�
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heuristic. Even though the algorithm is guaranteed to converge; it may not return the 

optimal solution. The quality of the solution depends upon the initial set of clusters and 

the value of K. 

In statistics and machine learning, the k-means algorithm is a clustering 

algorithm used to partition n objects into k clusters, where k < n. It is similar to the 

expectation-maximization algorithm for mixtures of Gaussians in that they both attempt 

to find the centers of natural clusters in the data. The model requires that the object 

attributes correspond to elements of a vector space. The ultimate goal is to minimize the 

total intra-cluster variance, or, the mean squared error function.  

 

2.1.2. Methods Based on Histogram: 

These techniques [90-93] are very effective when compared to other image 

segmentation techniques because they typically require only one pass through the pixels. 

Under this approach, a histogram is computed from all of the pixels in the image, then, 

the peaks and valleys in the histogram are used to locate the clusters in the image.  Color 

or intensity can be used as the measure. A refinement of this technique is to recursively 

apply the histogram-seeking method to clusters in the image in order to divide these into 

smaller clusters. This is repeated with smaller and smaller clusters until no more clusters 

are formed.  

http://wapedia.mobi/en/Heuristic�
http://wapedia.mobi/en/Global_optimum�
http://wapedia.mobi/en/Pixel�
http://wapedia.mobi/en/Cluster�
http://wapedia.mobi/en/Color�
http://wapedia.mobi/en/Intensity�
http://wapedia.mobi/en/Recursive�
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One disadvantage of the histogram-seeking method is that it may be difficult to 

identify significant peaks and valleys in the image. In this technique of image 

classification, distance metric and integrated region matching are commonly used 

 
2.1.3. Methods Based on Edge Detection: 

Edge detection is a well-developed field on its own within the image processing. 

Area, region boundaries and edges are closely related, since there is often a sharp 

adjustment in intensity at the region boundaries. Edge detection techniques [94-96] have 

therefore been used as the base of segmentation techniques. The edges identified by edge 

detection are often disconnected. To segment an object from an image however, one 

needs closed region boundaries. Discontinuities are bridged if the distance between the 

two edges is within some predetermined threshold. 

 
2.1.4. Methods Based on Region Growing: 

Region growing [97] is one of the simplest region-based image segmentation 

methods and can also be classified as pixel-based image segmentation since it involves 

the selection of an initial seed points. This approach of segmentation examines the 

neighboring pixels of the initial “seed points” and determines if the pixel should be added 
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to the seed point or not. The process is iterated in the same way as clustering. The 

algorithm is briefly described below. 

The first approach proposed for region growing was “the seeded region growing 

method” [3]. The method takes a set of seeds as input from the image. The seeds mark 

each of the objects to be segmented. The regions are iteratively grown by comparing all 

unallocated neighboring pixels to the regions. The difference between a pixel’s intensity 

value and the region’s mean, , is used as a measure of similarity. The pixel with the 

smallest difference measured this way is allocated to the respective region. This process 

continues until all pixels are allocated to a region. Seeded region growing requires seeds 

as additional input. The segmentation results are dependent on the choice of seeds. Noise 

in the image can cause the seeds to be poorly placed. Unseeded region growing is a 

modified algorithm that doesn’t require explicit seeds. It starts off with a single region A1 

– the pixel chosen here does not significantly influence final segmentation. At each 

iteration, it considers the neighboring pixels in the same way as seeded region growing. It 

differs from seeded region growing in that if the minimum is less than a predefined 

threshold T then it is added to the respective region Aj. If not, the pixel is considered 

significantly different from all current regions Ai and a new region An+1 is created with 

this pixel. 
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2.1.5. Methods Based on Level Sets: 

Curve propagation is a popular technique in image analysis for object extraction, 

object tracking, stereo reconstruction, etc. The main idea behind such an approach is to 

evolve a curve towards the lowest potential of a cost function, where its definition reflects 

the task to be addressed and imposes certain smoothness constraints. Lagrangian 

techniques are based on parameterizing the contour according to some sampling strategy 

and then evolve each element according to image and internal terms. While such a 

technique can be very efficient, it suffers from various limitations like deciding on the 

sampling strategy, estimating the internal geometric properties of the curve, changing its 

topology, addressing problems in higher dimensions, etc.  

The level set method was initially proposed to track moving interfaces by [44] 

and has spread across various imaging domains in the late nineties. It was efficiently used 

to address the problem of curve/surface/etc. propagation in an implicit manner. The 

central idea is to represent the evolving contour using a signed function, where its zero 

level corresponds to the actual contour. Then, according to the motion equation of the 

contour, one can easily derive a similar flow for the implicit surface that when applied to 

the zero-level will reflect the propagation of the contour. The level set method has 

numerous advantages: it is implicit, parameter free, provides a direct way to estimate the 

geometric properties of the evolving structure, can change the topology and is intrinsic. 

Furthermore, level sets can be used to define an optimization framework as proposed by 
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Zhao, Merriman and Osher in 1996 [103]. Therefore, one can conclude that it is a very 

convenient framework to address numerous applications of computer vision and medical 

image analysis [58]. 

 

2.1.6. Methods Based on Graph Partitioning: 

Graphs can effectively be used for image segmentation. Usually, a pixel or a 

group of pixels are vertices and edges define the dis-similarity among the neighborhood 

pixels. Some popular algorithms under this category include Ratio cut [98], random 

walker, minimum mean cut, minimum spanning tree-based algorithm, normalized cut, etc. 

The “normalized cuts” method was first proposed by [59]. In this method, the image 

being segmented is modeled as a weighted, undirected graph. Each pixel is a node in the 

graph, and an edge is formed between every pair of pixels. The weight of an edge is a 

measure of the similarity between the pixels. The image is partitioned into disjoint sets 

(segments) by removing the edges connecting the segments. The optimal partitioning of 

the graph is the one that minimizes the weights of the edges that were removed (the 

“cut”). Shi’s algorithm seeks to minimize the “normalized cut”, which is the ratio of the 

“cut” to all of the edges in the set. 

 

 

http://wapedia.mobi/en/Undirected_graph�
http://wapedia.mobi/en/Graph_(data_structure)�
http://wapedia.mobi/en/Edge�
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2.1.7. Watershed Transformation: 

The watershed algorithm [99,100] is an image processing segmentation 

algorithm that splits an image into areas, based on the topology of the image. The length 

of the gradients is interpreted as elevation information. During the successive flooding of 

the gray value relief, watersheds with adjacent catchment basins are constructed. This 

flooding process is performed on the gradient image, i.e. the basins should emerge along 

the edges. Normally this will lead to an over-segmentation of the image, especially for 

noisy image material, e.g. medical CT data. Either the image must be pre-processed or the 

regions must be merged on the basis of a similarity criterion afterwards [60]. 

 
2.1.8. Model-based segmentation: 

The central assumption of such an approach is that structures of interest/organs 

have a repetitive form of geometry. Therefore, one can use a probabilistic model to 

explain the variation of the shape of the organ and then use constraints to segment the 

image. Such a task involves: registration of the training examples to a common pose, 

probabilistic representation of the variation of the registered samples, and statistical 

inference between the model and the image. State-of-the-art methods in the literature for 

knowledge-based segmentation involve active shape and appearance models, active 

contours and deformable templates and level-set based-methods. 
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2.1.9. Multi-Scale Segmentation: 

Image segmentations are computed at multiple scales in scale-space and 

sometimes propagated from coarse to fine scales [61]. Segmentation criteria can be 

arbitrarily complex and may take into account global as well as local criteria. A common 

requirement is that each region must be connected in some sense. One of the well known 

algorithms adopting this segmentation technique is the Connected Coherence Tree 

Algorithm [101], its goal is to find regions with an adaptive spatial scale and an 

appropriate intensity-difference scale. This algorithm often forms several sets of coherent 

neighboring pixels which maximize the probability of being a single image contents. In 

practice, each set of coherent neighboring pixels corresponds to a coherence class. The 

fact that each coherence class just contains a single equivalence class ensures the 

separability of an arbitrary image theoretically. In addition, the resultant coherence 

classes are represented by tree-based data structures, named connected coherence trees.  

 

2.1.10. Semi-automatic segmentation: 

In this kind of segmentation, the user outlines the region of interest with the 

mouse clicks and algorithms are applied so that the path that best fits the edge of the 

image is shown. Techniques like Livewire or Intelligent Scissors are used in this kind of 

segmentation. The live-wire [102] segmentation technique formulates the problem of 

creating the boundary of object of interest as a path searching problem in a cost weighted 

http://wapedia.mobi/en/Livewire_Segmentation_Technique�
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graph. Its idea is to find the optimal cost paths between a start node and a set of target 

nodes. If the edges of the object of interest are well defined, these paths will align to the 

region’s outline and form the result of segmentation. 

 
 

2.1.11. Neural networks-Based segmentation: 

Neural Network-based segmentation relies on processing small areas of an image 

using a neural network or a set of neural networks. After processing, the decision-making 

mechanism marks the areas of an image accordingly to the category recognized by the 

neural network. A type of network designed especially for this, is the Kohonen map [62].  

In this algorithm, a set of points is initially input to a map consisting of units. Associated 

with each unit is a weight vector, initially consisting of random values. Units respond 

more or less to the input vector according to the correlation between the input vector and 

the unit's weight vector. The unit with the highest response to the input is allowed to 

learn, as well as some units in the neighborhood. The neighborhood decreases in size 

during the training period. Learning is done by adjusting the weights of the units by a 

small amount to resemble the input vector more.  

The result of the training is that a pattern of organization emerges in the map. 

Different units learn to respond to different vectors in the input set, and units closer 

together will tend to respond to input vectors that resemble each other.  
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When the training is finished, the set of input vectors is applied to the map once 

more, marking for each input vector the unit that responds the strongest (is most similar) 

to that input vector.  

 

2.2. METHODS OF MEDICAL IMAGES SEGMENTATION: 

 Accuracy is the most important issue in medical images segmentation since the 

segmented images are used in the therapy planning of patients and this process is an error 

sensitive process i.e. a small error can cause big problem. Below are techniques are used 

in medical images segmentation:   

 
2.2.1. Image Segmentation with Deformable Curves: 

Medical Images Segmentation is defined as the segmentation of anatomic 

structures or the partitioning of the original set of image points into subsets corresponding 

to the structures. It is an essential first stage of most medical image analysis tasks, such as 

registration, labeling, and motion tracking. These tasks require anatomic structures in the 

original image to be reduced to a compact, analytic representation of their shapes. 

Performing this segmentation manually is extremely labor-intensive and time-consuming, 

and so, many automatic algorithms were proposed to perform this task automatically.  
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Among the first and primary uses of deformable models in medical image 

analysis was the application of deformable contour models, such as snakes to segment 

structures in 2D images [4-14]. Deformable model is set near the object of interest in the 

image, then, it is allowed to deform towards this object. Users could use the interactive 

capabilities of these models and manually fine-tune them. Furthermore, once the user is 

satisfied with the result on an initial image slice, the fitted contour model may then be 

used as the initial boundary approximation for neighboring slice. These models are then 

deformed into place and again propagated until all slices have been processed. The 

resulting sequence of 2D contours can then be connected to form a continuous 3D surface 

model [6,9,15,16]. 

The application of deformable models (snakes) to extract regions of interest is 

not without limitations and in order to get accurate contour, the snake needs to be 

initialized close to the region of interest, also the internal energy of the contour, which is 

responsible for its propagation, may affect the performance of the deformable model [1]. 

Also, the structure of the region of interest must be known in advance.  

Many approaches were proposed to improve and further automate the snake 

segmentation process [1]. Cohen used an internal “inflation” force to expand a snakes 

model past spurious edges towards the real edges of the structure, making the snake less 

sensitive to initial conditions [9] (inflation forces were also employed in [17]. Amini used 

dynamic programming to carry out a more extensive search for global minima[18], while  

poon et al. [19] minimized the energy of active contour models using simulated annealing 
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which is known to give global solutions and allows the incorporation of non-

differentiable constraints., he also used a discriminant function to incorporate region 

based image features into the snake [20]. The snake begins as a single closed curve and 

becomes three closed curves [1]. 

Image features were also used as a discriminator in snake to lead the deformable 

contour converge to the exact destination (region of interest) resulting in  a more robust 

energy functional and a much better tolerance to deviation of the initial guess from the 

true boundaries. Others researchers [21-26] have also integrated region-based information 

into deformable contour models in an attempt to decrease sensitivity to insignificant 

edges and initial model placement [1].  

 
 

2.2.2. Incorporating Priori Knowledge in Segmentation: 

In medical images, the general shape, location and orientation of objects is 

known beforehand, and this knowledge may be incorporated into the deformable model in 

the form of initial conditions, data constraints, constraints on the model shape parameters, 

or into the model fitting procedure. The use of implicit or explicit anatomical knowledge 

to guide shape recovery is especially important for robust automatic interpretation of 

medical images. For automatic interpretation, it is essential to have a model that not only 

describes the size, shape, location and orientation of the target object but also permits 

expected variations in these characteristics. Automatic interpretation of medical images 
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can relieve clinicians from the labor-intensive aspects of their work while increasing the 

accuracy, consistency, and reproducibility of the interpretation [1]. 

Several researchers casted the deformable model fitting process in a probabilistic 

framework and included prior knowledge of object shape by incorporating prior 

probability distributions on the shape variables to be estimated [27-29]. For example, 

Staib and Duncan used a deformable contour model on 2D echocardiograms and MR 

images to extract the left ventricle of the heart and the corpus callosum of the brain, 

respectively [28]. This closed contour model was parameterized using an elliptic Fourier 

decomposition and a priori shape information which is included as a spatial probability 

expressed through the likelihood of each model parameter. The model parameter 

probability distributions are derived from a set of example object boundaries and serve to 

bias the contour model towards expected or more likely shapes [1]. 

 

2.2.3. Volume Image Segmentation with Deformable Surfaces:

This process is a slice-by-slice segmentation                            of 3D image 

volumes, either manually or by applying 2D contour models. It is a laborious process and 

requires a post-processing step to connect the sequence of 2D contours into a continuous 

surface. Moreover, the resulting surface reconstruction can contain inconsistencies or 

show rings or bands. The use of a true 3D deformable surface model on the other hand, 

can result in a faster, more robust segmentation technique which ensures a globally 

smooth and coherent surface between image slices. Deformable surface models in 3D 
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were first used in computer vision in 1988 [30], since then, many researchers have used 

this technique and improved upon it using some post processing tools. 
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CHAPTER THREE 

 

 

ACTIVE CONTOUR MODELS 

IN MEDICAL IMAGE SEGMENTATION 

3.1. OVERVIEW: 

The most popular approaches brought to maturation during 1980s and 1990s in 

terms of both methodology development and application were boundary finding strategies 

based on deformable models (snakes) [2]. A snake, which is a fundamental approach in 

image analysis, was first introduced in 1987 by Kass et al. [4]. Since then, it became an 

area of successful research for image segmentation. The snake is a deformable continuous 
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curve; whose shape is controlled by forces applied upon it. Its objective is to divide an 

image into a number of strongly correlated objects.  This objective is a difficult task 

because of the big variability of object shapes and different image quality [32]. Many 

people have proposed various definitions of snakes in the literature. All of these 

definitions lead to the same meaning but with different words. The following are some of 

these: (1) It is the grouping of parts in an image into units that are homogeneous with 

respect to one or more features, another definition is given as (2) The maximization of the 

mutual information between the region labels and the image pixel intensities subject to a 

constraint on the total length of the region boundaries, a third definition is (3) The 

partitioning of an image into a finite number of semantically important regions. One more 

definition is given as (4) An energy minimizing spline that detects specified features 

within an image. It is a flexible curve (or surface) which can be dynamically adapted to 

required edges or objects in the image. It can be used for automatic image segmentation. 

This approach is found in the literature under different names such as snakes, active 

contours, surfaces or balloons. The active contour consists of a set of control points 

connected by straight lines. It is defined by the number of control points as well as their 

sequence. Shaping the image by fitting active contours is an interactive process in which 

an initial contour needs to be suggested by the user (should be as close as possible to the 

intended shape). The contour is attracted to the features in the image extracted by internal 

energy creating an attracter image. 
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Active contour “Snakes” techniques have been used in many applications, one 

of its most important uses is the tumor areas extraction from medical images which is 

used as a first step in the therapy planning of cancer patients. Other medical applications 

are measurement of tissue volumes, computer-guided surgery, diagnosis, treatment 

planning and study of anatomical structure. Beside medical applications of segmentation, 

snake has also been used in pattern recognition, object detection, machine learning, 

image or video coding, tracking, and augmented reality. 

 

3.2. MEDICAL IMAGE SEGMENTATION USING ACTIVE CONTOUR MODEL: 

The main idea here is to isolate and extract individual components from a 

medical image. This is an important part of medical imaging; once a shape is found, 

physicians can measure various quantities, such as size of tumors, thickness of heart walls 

… etc. Tracing the boundary of these shapes by hand is time-consuming. Instead, the goal 

is an automatic segmentation technique which finds the desired regions without human 

interaction. Suppose that we are given a medical image; say a digital subtraction 

angiogram - DSA (see figure.3.1) [63].  
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Figure.3.1. DSA Image of an Artery 

 

Suppose that we want to extract the important features within this image; in this 

case, the outline of the artery. One idea is to look for places where there is a big jump in 

intensity between neighboring pixels. However, it is hard to pick a good value for the 

jump; too small and you get extra boundaries; too large and you miss the whole target. 

Another problem is that we can get fooled by large spikes of noise. A different approach 

comes from initializing a small circle inside the region of interest, and allowing it to grow 

outwards until it reaches the desired boundary (see figure.3.2). This is a typical example 

of an active contour that starts with an initial contour then propagates toward the edges of 

the image under the control of the contour and other image forces. 

 

 
Figure.3.2. Segmentation of a DSA Image 

 

 

3.3. DEFORMABLE MODELS:  

  Active contour Models (ACM) or Snakes were first introduced by Kass et al. [4] 

in 1987, since then, ACM became an active area of research. The approach is based on a 
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flexible curve (or surface) which is dynamically adapted to required edges or objects in 

the image. There are two basic types of deformable models; parametric deformable 

models [4,6,18,31] and geometric deformable models [40-43].  

 

3.3.1. Parametric Deformable Models: 

 Parametric deformable models, proposed by Kass et al. in 1987 [4], represent 

curves and surfaces that are explicit in their parametric forms during deformation. This 

representation allows direct interaction with the model and can lead to a compact 

representation for fast real-time implementation. Adaptation of the model topology, 

however, such as splitting or merging parts during the deformation, can be difficult using 

parametric models. There are two types of formulations for parametric deformable 

models; the energy minimizing formulation which searches for parametric curve that 

minimizes weighted sum of the internal and external energies, where the internal energy 

specifies the tension or the smoothness of the contour, while the external energy is 

defined in the image domain and usually has a minimal value at the point where there is a 

high intensity gradient in the image, i.e. at an object edge. In this technique, the total 

energy minimization occurs when the internal and the external energies are equal [63]. 

The second formulation for parametric deformable models is the dynamic force 

formulation which is used in cases where it is more comfortable to form a deformable 

model straight from the dynamic problem with the help of force formulation.  Despite the 

fact that these two formulations lead to similar results, the first formulation has the 
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simplicity advantage since its solution satisfies a minimum principle while the second 

formulation is flexible to allow the use of more general types of external forces, even 

those which are not potential ones such as the forces which cannot be described by a 

negative gradient of potential energy function [63].  

 

3.3.1.1. Energy minimizing formulation: 

The basic concept of energy minimization in deformable contours is to find a 

parameterized curve that minimizes the weighted sum of internal energy and potential 

energy [65]. The internal energy specifies the tension or the smoothness of the contour, it 

depends on the intrinsic properties of the curve and it is a sum of two types of energy; 

elastic energy and bending energy. The elastic energy treats the curve as a rubber band; it 

discourages stretching of the curve by introducing tension (see figure 3.3). It is 

mathematically described as the sum of the squared rate of change of the position of each 

point in the contour (see the first term in eq.3.2). A weight α(s) allows us to control the 

elastic energy along different parts of the contour and is always considered to be constant 

α for many applications. The bending energy forces the contour to behave as a thin metal 

disc (see figure 3.4), it discourages bending of the curve, and as a result, the contour is 

forced to slow down when it reaches the sharp edges and precisely takes its shape. 

Bending energy is formulated as the sum of the squared curvature of the contour.  
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               Figure3.3. Elastic Energy Effect on the Curve 

 

  
The term β(s) is multiplied by the bending energy (in the second term of eq.3.2) 

in order to control this energy along the contour, and is always considered to be constant 

for many application. 

 

 

 

 

           Figure3.4. Effect of Bending Energy on the Curve (Left) Initial Curve (High Bending Energy) 
(Right) Final Curve Deformed by Bending Force (Low Bending Energy) 

 

 

The potential energy is defined over the image domain and typically possesses 

local minima at the image intensity edges occurring at object boundaries. Minimizing the 

total energy yields internal forces and potential forces. Internal forces hold the curve 

together (elastic forces) and keep it from bending too much (bending forces). External 
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forces attract the curve toward the desired object boundaries (see figure 3.5). To find the 

object boundary, parametric curves are initialized within the image domain, and are 

forced to move toward the potential energy minima (or maximum gradient of the image 

which is near its edges) under the influence of both these forces. 

 
 

                           
 
 
 
 
 

 
 
 

Figure3.5  Potential Force, (Left) Original Image, (Middle) External Forces,  
(Right) Zoomed in External Forces 

 

 

Mathematically, a deformable contour is a curve X(s) = (x(s),y(s)), which moves 

through the spatial domain of an image to minimize the following energy functional [65]: 

 
     

ε(X) =𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  � 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑿𝑿(𝑠𝑠)�𝑑𝑑𝑑𝑑 = ��𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 �𝑿𝑿(𝑠𝑠)� + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 �𝑿𝑿(𝑠𝑠)�� 𝑑𝑑𝑑𝑑
1

0

1

0
 

 

where 

    

                                                                 ε(X)=S(X)+𝓟𝓟(𝑿𝑿)                                                          3.1 

 

The first term is the internal energy functional and is defined to by: 
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                               S(X) = 1
2 ∫ �𝛼𝛼(𝑠𝑠) �𝜕𝜕X

𝜕𝜕𝜕𝜕
�

2
+ 𝛽𝛽(𝑠𝑠) �𝜕𝜕

2X
𝜕𝜕𝑠𝑠2�

2
� 𝑑𝑑𝑑𝑑𝑠𝑠                            3. 2 

 

The internal energy is composed of two types of energy; the first one is the 

elastic energy which is the first term in eq.3.2, and the bending energy which is the 

second term in eq.3.2. The first-order derivative discourages stretching and makes the 

model behave like an elastic string (i.e. smoothes the contour). The second-order 

derivative discourages bending and makes the contour behave like a thin metal disc (i.e. 

slows down the contour when it gets near the edges of the region of interest in order to 

force it to take the shape of the edges) as shown in figure 3.4. The weighting parameters 

α(s) and β(s) can be used to control the strength of the model’s tension and rigidity, 

respectively. In practice, α(s) and β(s) are often chosen to be constants [65]. 

The second term is the external or potential energy functional is calculated by 

integrating a potential energy function P(x,y) along the contour X(s) [65].  

 
                                     

                                                 𝒫𝒫(𝑿𝑿) = ∫ 𝑃𝑃�𝑿𝑿(𝑠𝑠)�1
0 𝑑𝑑𝑑𝑑                                                3. 3 

 
 
 

The potential energy function P(x,y) is derived from the image data. It takes 

smaller values at object boundaries as well as other features of interest. Given a gray-level 

image I(x,y) viewed as a function of continuous spatial variables, (x,y), [65] a typical 
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potential energy function is designed to make a deformable contour converge toward step 

edges (see eq.3.4): 

 
                              𝑃𝑃(𝑥𝑥, 𝑦𝑦) =  −𝜔𝜔𝑒𝑒|∇[Gσ(x, y) ∗ I(x, y)]|2                                 3. 4 

                     
 

Where 𝜔𝜔𝑒𝑒 is a positive weighting parameter, Gσ(x, y) is a two-dimensional Gaussian 

function with standard deviation 𝜎𝜎 (see equn.3.5), ∇(. ) is the gradient operator, and * is a  

2D image convolution operator. Note that the integration in equn.3.3 is only over P(x,y) 

corresponding to the contour X(s). 

  For the edge potential energy, increasing 𝜎𝜎 can broaden its attraction range since 

the use of a large 𝜎𝜎 decreases the attenuation of low frequencies, resulting in decreased 

blurring in the attracter image [66]. However, using a larger value for 𝜎𝜎 can also cause a 

shift in the location of the boundary which leads to a less accurate result [65]. 

 
                                           

                                       𝐺𝐺𝜎𝜎 (𝑥𝑥, 𝑦𝑦) = 𝐾𝐾. 𝑒𝑒
−�(𝑥𝑥−𝑥𝑥0)2+(𝑦𝑦−𝑦𝑦0)2�

2𝜎𝜎2                                       3. 5 
 
 
 

Regardless of the selection of the exact potential energy function, the procedure for 

minimizing the energy functional is the same [65].  The problem of finding a curve 𝐗𝐗(s) 

that minimizes the energy functional ε is known as a variational problem.  The curve that 

minimizes ε must satisfy the following Euler-Lagrange equation: 
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𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛼𝛼 𝜕𝜕𝑿𝑿

𝜕𝜕𝜕𝜕
� − 𝜕𝜕2

𝜕𝜕𝜕𝜕2 �𝛽𝛽
𝜕𝜕2𝑿𝑿
𝜕𝜕𝑠𝑠2� − ∇𝑃𝑃(𝑿𝑿) = 0                                  3. 4 

 

To gain some insight about the physical behavior of deformable contours, we can view 

eq.3.6 as a force balance equation. 

 

                                                𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 (𝑿𝑿) + 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 (𝑿𝑿) = 0                                                    3. 5 

 

where the internal force is given by: 

                                         𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 (𝑿𝑿) = 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛼𝛼 𝜕𝜕𝑿𝑿

𝜕𝜕𝜕𝜕
� − 𝜕𝜕2

𝜕𝜕𝑠𝑠2 �𝛽𝛽
𝜕𝜕2𝑿𝑿
𝜕𝜕𝑠𝑠2 �                                  3. 6 

and the potential force is given by 

                                                   𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 (𝑿𝑿) = −∇𝑃𝑃                                                        3. 7 

 
The internal force Fint discourages stretching and bending while the potential 

force Fpot pulls the contour toward the desired object boundaries. Here, we define the 

forces derived from the potential energy function P(x,y), given in eq.3.4 , as Gaussian 

potential forces. 
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To find a solution to eq.3.6, the deformable contour is made dynamic by 

treating X(s) as a function of time t as well as s — i.e. X(s,t). The partial derivative of X 

with respect to t is then set equal to the left-hand side of eq.3.6 as follows: 

 
                                         𝛾𝛾 𝜕𝜕𝑿𝑿

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝛼𝛼 𝜕𝜕𝑿𝑿

𝜕𝜕𝜕𝜕
� − 𝜕𝜕2

𝜕𝜕𝑠𝑠2 �𝛽𝛽
𝜕𝜕2𝑿𝑿
𝜕𝜕𝑠𝑠2 � − ∇𝑃𝑃                              3. 8 

 

The coefficient 𝛾𝛾 is introduced to make the units on the left side consistent with the right 

side. When the solution X(s,t) stabilizes, the left side vanishes and we achieve a solution 

of eq.3.6. We note that this approach of making the time derivative term vanish is 

equivalent to applying a gradient descent algorithm to find the local minimum of eq.3.1. 

Thus, the minimization is solved by placing an initial contour on the image domain and 

allowing it to deform according to eq.3.10. 

 

3.3.1.2. Dynamic forces formulation: 

 

In the previous section, the deformable model was modeled as a static 

problem. However, it is sometimes more convenient to formulate the deformable model 

directly from a dynamic problem using a force formulation. Such a formulation permits 

the use of more general types of external forces which are often expressed as the 

superposition of several different forces [65]: 

                                      𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 (𝑿𝑿) = 𝐹𝐹1(𝑿𝑿) + 𝐹𝐹2(𝑿𝑿) + ⋯+ 𝐹𝐹𝑁𝑁(𝑿𝑿)                                3. 11 
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where N is the total number of external forces. This superposition formulation allows the 

external forces to be broken down into more manageable terms [65]. 

 

3.3.2. Geometric Deformable Models: 

Geometric deformable models were independently proposed by Caselles et al. 

[40] and Malladi et al.[41]. They can handle topological changes naturally. These models 

are based on two techniques; the first one is the theory of curve evolution [65], which is   

a famous theorem in differential geometry that had been proved less than ten years ago. 

This theory says that "any simple closed curve moving under its curvature collapses 

nicely to a circle and then disappears. That is, no matter how wildly twisting a curve 

is, as long as it is simple, it will "relax" to a circle and then disappear". The purpose 

of curve evolution theory is to study the deformation of curves using only geometric 

measures such as the unit normal and curvature as opposed to the quantities that depend 

on parameters such as the derivatives of an arbitrary parameterized curve. The second 

technique which gives the basics for geometric deformable models is the level set method 

[44], this technique represents curves and surfaces implicitly as a level set of a higher-

dimensional scalar function, the models parameterizations are computed only after 

complete deformation, thereby allowing topology to be adaptively and easily 

accommodated. 
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3.3.2.1. Level set method: 

The level set method is used to account for automatic topology adaptation. It 

offers the basis for a numerical scheme that is used by geometric deformable models. The 

level set method for evolving curves was initially proposed by to Osher and Sethian 

[44,46,48]. 

In the level set method, the curve is represented implicitly as a level set of a two 

dimensional scalar function referred to as the “level set function”. This function is usually 

defined in the same domain as the image. The level set is defined as the set of points that 

have the same function value. The only purpose of the level set function is to provide an 

implicit representation of the evolving curve. Instead of tracking a curve through time, the 

level set method evolves the curve by updating the level set function at fixed coordinates 

through time. This perspective is similar to that of an Eulerian formulation of motion as 

opposed to a Lagrangian formulation which is analogous to the parametric deformable 

model. A useful property of this approach is that the level set function remains a valid 

function while the embedded curve can change its topology [65].   

Suppose that you are given a curve separating one region from another, and a 

force F that tells you how to move each point of the curve. In the figure.3.6 [64] below, a 

black curve separates two regions, and at each point of the black curve the force F is 

given. This force can depend on many physical effects.  
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Figure3.6 Example of a Curve Separating Two Regions 
 

Most numerical techniques depend on markers, which tracks the motion of the 

boundary by breaking it up into buoys that are connected by pieces of rope. The idea is to 

move each buoy under the force F depending on the connecting ropes to keep things 

straight. The hope is that more buoys will make the answer more accurate, but this is not 

always the case, since in many cases the buoys try to cross over themselves, or the curve 

tries to break into two. In these cases, it is very hard to keep the connecting ropes 

organized [64]. 

Instead of following the curve itself, the level set technique introduced by 

Osher and Sethian [44] takes the original curve (see figure 3.7-a) and builds it into a 

surface. That cone-shaped surface, which is shown figure 3.7-b, has an excellent property; 

it intersects the xy plane exactly where the curve sits. The surface in figure 3.7-b is called 

the level set function; because it accepts any point in the plane as input and returns its 

height as output. The initial contour (figure 3.7-a) is called the zero level set, because it is 

the collection of all points that are at height zero [64].  
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Figure3.7. Level Set Function (Left) The Original Curve (xy Plane),  
 (Right) The Level Set Function (Curve is in  Intersection with Surface and xy Plane) 

 

 

The idea of the level set is that; the surface (figure 3.7-b) moves instead of 

moving the curve (figure 3.7-a). By this, we can get rid of all sorts of weird things that 

may happen when the curve deforms. In other words, the level set function expands, rises, 

falls, and does all the work [64]. The technique of level set is called “Initial Value 

Formulation” since its solution starts at a given position and evolves in time (figure 3.8). 

 

 
                  Figure3.8 Evolution of Level Set 

 

 

The advantage of the level set approach over the traditional curve evolution is that 

the level set approach allows the evolving curve to change topology, break, and 
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merge, which means that the evolving curve can extract the boundaries of particularly 

complicated contours. In addition, this technique works in three dimensions with 

almost no change, so three dimensional surfaces can be extracted as well [64].  

 

 

  
  Figure3.9 Two Initial Curves Joins Together as they Grow  
 

 

3.3.2.2. Moving the Contour: 

 Active contour is used to determine the real boundary of an object of interest 

in an image. To do this, an initial guess of the boundary of an object of interest is done by 

the user. Then, the contour starts its evolution until it reaches the actual boundary of the 

object of interest. Active contour is a collection of points in the plane: 

𝑉𝑉 = {𝜈𝜈1, … , 𝜈𝜈𝑛𝑛} 

                                                      𝜈𝜈𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … , 𝑛𝑛                                            3.12 
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The points in the contour iteratively approach the boundary of an object 

through the solution of an energy minimization problem. For each point in the 

neighborhood of 𝜈𝜈𝑖𝑖   an energy term is computed:  

                                 𝐸𝐸𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈𝑖𝑖) + 𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 (𝜈𝜈𝑖𝑖)                                        3.13 

Where 𝐸𝐸𝑖𝑖 , 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  and 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒  are matrices. The value at the center of each matrix corresponds 

to the contour energy at point 𝜈𝜈𝑖𝑖 . Other values in the matrices correspond spatially to the 

energy at each point in the neighborhood of 𝜈𝜈𝑖𝑖 .  

Each point, 𝜈𝜈𝑖𝑖 , is moved to the point, 𝜈𝜈𝑖𝑖′ , corresponding to the location of the 

minimum value in 𝐸𝐸𝑖𝑖  (see figure 3.10) [104].  

 
 

 
 
 
 

Figure3.10 Moving the Contour Iteratively Under the influence of Energy 
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3.3.2.3. Formulation of the Speed Function: 

In image segmentation, active contours are defined as dynamic curves that 

move toward object boundaries [49].  To accomplish this objective, an external energy is 

defined. This energy moves the zero level contour (see section 3.3.2.1) toward object 

boundaries. Suppose that I is an image, the stopping function g is formulated as follows:  

                           
                                                     𝑔𝑔(∇𝐼𝐼) = 1

1+|∇(𝐺𝐺𝜎𝜎∗𝐼𝐼)|2                                              3. 14 

 
where 𝐺𝐺𝜎𝜎  is a Gaussian kernel with a standard deviation 𝜎𝜎 . It is used to reduce the noise 

in the image. The curve evolution is connected with the image data using the stopping 

function g. This technique works well for objects having good contrast. On the other 

hand, when the object boundary is blurred or has gaps, the geometric deformable contour 

may fail to catch the boundary because the stopping function slows down the curve near 

the boundary instead of completely stopping it. If the contour passes the boundary, it will 

not be pulled back to recover the correct boundary. To remedy this problem, Caselles et 

al. [42] used the stopping function in eq.3.15, where 𝛽𝛽 > 0 controls the convergence speed 

of the stopping function. The geometric active contour model is expressed as a diffusion 

equation by using the level set technique with the original curve  X(s,t). 

 

                                            𝑔𝑔(∇𝐼𝐼) = 1
1+𝛽𝛽|∇(𝐺𝐺𝜎𝜎∗𝐼𝐼)|2                                      3.15 
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CHAPTER FOUR 

 

 
HYBRID WAVELETS-ACM 

SEGMENTATION TECHNIQUE 

4.1. BASIC DEFINITIONS: 

 
Since the last few years, the work in the segmentation area has been concentrated 

on geometric active contours technique i.e. the active contours which are implemented via 

level set methods. The goal of this work is to address a wide range of image segmentation 

problems in image processing and computer vision [49]. Active contours are 
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mathematically defined as a set of the coordinates of control points on the contour 

[33].They are parametrically defined as follows: 

 
 

                                           𝜈𝜈(𝑠𝑠) = (𝑥𝑥(𝑠𝑠), 𝑦𝑦(𝑠𝑠))                                                   4.1 

 
 

where x(s), and y(s) are x,y coordinates over the contour, and s is the normalized index of 

the control points. The active contour is described by an energy function which is 

composed of two types of energy components. The first component is the internal energy 

which makes the curve elastic (elastic energy Eelastic) and limits its sharp deflections 

(bending Energy Ebending). The second component is the external energy which pushes the 

curve towards the object borders [33]. The internal energy can be described as follows: 

 

                        𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛼𝛼(𝑠𝑠) �𝜕𝜕𝝂𝝂
𝜕𝜕𝜕𝜕
�

2
+ 𝛽𝛽(𝑠𝑠) �𝜕𝜕

2𝝂𝝂
𝜕𝜕𝑠𝑠2�

2
                           4. 2 

 

where α is an adjustable constant that specifies continuity, and β is an adjustable constant 

that specifies contour curving [33]. Both variables are usually chosen as constants which 

are used to control the internal energy over the whole contour (see section 3.3.1). 

The elastic energy is defined as the sum of the squared distances between each 

two adjacent points in the active contour. It is mathematically described as follows: 
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                                     𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∫ 𝛼𝛼�𝜈𝜈(𝑠𝑠) − 𝜈𝜈(𝑠𝑠 − 1)�
2
𝑑𝑑𝑑𝑑𝑠𝑠                                        4. 3 

 

The bending energy is defined as the sum of the squared curvatures for all points 

along the contour.  Mathematically, it is the described as the elastic energy derivate. 

  

                    𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∫ 𝛽𝛽�𝜈𝜈(𝑠𝑠 − 1) − 2𝜈𝜈(𝑠𝑠) − 𝜈𝜈(𝑠𝑠 + 1)�
2
𝑑𝑑𝑑𝑑𝑠𝑠                                4. 4 

 

The external energy is extracted from the image to be segmented. It depends on 

the gradient of this image. It is usually formulated as follows: 

                             𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1.
1+|𝐺𝐺𝜎𝜎 (𝑥𝑥,𝑦𝑦)∗𝐼𝐼(𝑥𝑥,𝑦𝑦)|2                                    4. 5 

 

where I(x,y) is the image to be segmented and  𝐺𝐺𝜎𝜎  is a Gausssian kernel used to smooth 

the image in order to facilitate the segmentation process. The energy function which is 

needed to be minimized in order to achieve the segmentation process is expressed in 

eqn.(4.6). 

 

             𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∫ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1

0 �𝜈𝜈(𝑠𝑠)�𝑑𝑑𝑑𝑑 = ∫ 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 (𝜈𝜈(𝑠𝑠))1
0 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 �𝜈𝜈(𝑠𝑠)� 𝑑𝑑𝑑𝑑                      4. 6 
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4.2. ANALYSIS USING INTENSITY PRIORS: 

In 2008, H. Zhang et.al. [55] proposed a new method for enhancing the classical  

geometric active contours (GAC) model by incorporating ‘prior’ information into the 

scheme. The modified model was applied to biomedical imagery, specifically serial 

ultrathin electron microscopy sections. The technique was used to apply prior analysis on 

a training set of data and provide geometric information about the target object during the 

process of curve evolution. Experiments on synthetic and real images were performed 

using the new technique. The analysis of results showed that the approach works better 

than the previous methods. The proposed technique was implemented in semi-automated 

fashion and gave noticeable improvements over manual schemes. 

 

4.2.1 Intensity Priors: 

 Sometimes, curve evolution becomes sensitive and unstable so that the final 

result in some cases will be inaccurate or missing the real boundary [55]. To remedy this 

problem, a number of points on the boundary of the region of interest (ROI) in the image 

are manually selected to generate a training set. This set will represent the region of 

interest but it needs to be further analyzed to discard some outliers since the selection is 

effectively subjective. “ Suppose that the image under analysis is in the gray scale, the 

samples are gray pixels and their intensities are fairly concentrated so that we assume the 

samples follow a ‘univariate’ normal distribution and the variance is known empirically” 
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[55]. As a result of a statistical analysis for the set of points, an intensity interval is 

obtained by the following procedure:  

 
1. The mean u and variance σ2 of the parameters is calculated. 

2.  The range of intensity values around the boundary of ROI is estimated by using a 

confidence interval at a given confidence level (c). See equn.4.7 where z* is the 

critical value of (1-c/2) where c in the confidence level [0,1].   

 

                                             �𝑥𝑥 − 𝜎𝜎
√𝑛𝑛

 𝑧𝑧∗, 𝑥𝑥 + 𝜎𝜎
√𝑛𝑛

 𝑧𝑧∗�                                        4. 7 
  

3. If there is any intensity value that is out of the calculated range, it will be discarded. 

4. Because the samples come from the same statistical distribution, interval analysis is 

used (eqn.4.8) to further to improve the intensity interval after discarding the 

‘outliers’. See equn.4.8 where si, i=1 ... n, are the samples intensities, and m is the 

mean of the intensities follows the t(n-1) student distribution. 

 
 

                                         𝑆𝑆 = � 1
𝑛𝑛−1

∑ (𝑠𝑠𝑖𝑖 − 𝑚𝑚)2𝑛𝑛
𝑖𝑖=1                                                   4. 8 

  

 

5. For a degree of belief α, a confidence interval is created according to t-distribution. 

The degree of belief that the sample lies in the confidence interval is (1-α) %, so, the 

confidence interval will be as follows [55].  
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                                        �𝑚𝑚 − 𝑠𝑠
√𝑛𝑛
𝑡𝑡𝛼𝛼

2
 ,𝑚𝑚 + 𝑠𝑠

√𝑛𝑛
𝑡𝑡𝛼𝛼

2
�                                          4.9 

 

where 𝑡𝑡𝛼𝛼
2
 is the corresponding value of the degree of belief α in the t-distribution. 

 

4.2.2 Geometric Priors: 

 Because the prior analysis is relative to a region of interest in the image, noise 

around the region of interest may still affect the curve evolution. This effect leads the 

contour to converge to false edge. By providing the contour with some geometric 

information, curve evolution can ‘traverse’ regions of non-interest in order to successfully 

arrive to the boundary of the object of interest [55].  In the training set, every point is 

selected on the object boundary before starting prior analysis (see the previous section). 

Also, a number of points can be chosen around the ROI in order to form a polygon by 

these points. This polygon will enclose the target object in order to facilitate the curve 

evolution and traverse any noise in the area. In some applications, a circle is needed to be 

formed around the ROI instead of the polygon, to do this, a ‘center’ point of the region of 

interest, (x0, y0), and a ‘radius’ of the circle, R,  are needed to be specified. By this, the 

formed circular shape covers the whole region of interest (see figure 4.1). 
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    Figure.4.1. Initial Contour: (Left) Polygon, (Right) Circle 

 

  

4.2.3 Incorporating Priors into  GAC Models:  

In GAC approach, the stopping function g(.) plays a critical role since it controls 

the arrival time of  the active contour at the boundary of ROI during the iterative 

approximation procedure. Note that the value of g(.) at  image boundaries is closer to 

zero, while it is close to 1  in the homogeneous regions in the image. 

 
  
                            𝑔𝑔(|∇𝐼𝐼|) = 1

1+|∇(𝐺𝐺𝜎𝜎∗𝐼𝐼)|2                                                4. 10 

 
 
In order to affect the process of curve evolution, we can rebuild the stopping 

function according to the collected prior information. Our technique is to modify the 

stopping function using this prior information in order to make its value closer to zero 

while the contour is approaching to the boundary of ROI. Since the image gradient near 

its boundary is high, the following indicator function λ(x) is used [55]: 
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                                          𝜆𝜆(𝑥𝑥) = �1        𝑥𝑥𝑥𝑥Θ                   
0       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒       

�                                                  4. 11 

 

where x is the image data (such as the intensity of a pixel) and Θ stands for some prior 

information such as the intensity interval. Then, the indicator function is smoothed with a 

Gaussian kernel and subsequently multiplied with the smoothed image. Based on the 

above, we proposed to change the stopping function g (in eqn.4.10) in the following 

manner: 

 
                    𝑔𝑔(|∇𝐼𝐼|) = 1

1+𝛽𝛽(𝑥𝑥)•|∇(𝐺𝐺𝜎𝜎∗𝐼𝐼)|2  , 𝛽𝛽(𝑥𝑥) = 𝐺𝐺𝜎𝜎 ∗ 𝜆𝜆(𝑥𝑥)                         4. 12 

 

In eqn.4.12, β is no longer a simple weight but is a matrix formed by the convolution of 

the Gaussian Gσ with the indicator function λ(x), and • indicates point-to-point array 

multiplication [55]. 

    

4.3. MODIFYING THE STOPPING FUNCTION: 

The speed function can be improved more to achieve faster convergence to the 

region of interest in the image, below there are some suggested stopping function that we 

investigated. 

 
                             𝑔𝑔(|∇𝐼𝐼|) = 1

1+𝑒𝑒𝛽𝛽(𝑥𝑥)•M    , 𝑀𝑀 = |∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼)|2                                4. 13 
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 After expanding the exponential term in equn.4.13 using Taylor series it 

becomes as follows:  

 
                           𝑔𝑔(∇𝐼𝐼) = 1

2+𝛽𝛽(𝑥𝑥)•M+𝛽𝛽(𝑥𝑥)2•M 2
2! +𝛽𝛽(𝑥𝑥)3•M 3

3! +𝛽𝛽(𝑥𝑥)4•M 4
4!

                                        4. 14 

 

 In the stopping function of eq.4.13, the exponential function is integrated with 

the stopping parameters in the denominator of eq.4.12. The aim of this integration is to 

increase the speed of convergence of the stopping function in eq.4.12, since it is known 

from mathematics that the exponential function has the fastest increase over other 

functions, and so, if this function is added in the denominator of the stopping function, the 

stopping function will decrease faster. Using this technique, it is expected to increase the 

speed of convergence of the active contour by a noticeable percentage. In eq.4.14, the 

exponential term in eq.4.13 is expanded using Taylor series up to the fourth order. This 

modification in the stopping function is expected to increase the speed of convergence of 

the stopping function by decreasing the computation time. The expansion of the 

exponential function is stopped after the fourth order since there will be no improvement 

in the speed of the contour after this order. This result was obtained by trial.  The results 

of implementing eqs.4.12, 4.13, and 4.14 and their effects over the speed of the active 

contour will be presented and discussed in the following chapters.  
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4.4. IMPROVING THE MODEL USING THE WAVELET TRANAFORM: 

Wavelets are mathematical functions that cut up data into different frequency 

components, and then study each component with resolution matching its scale [67].  One 

of the important techniques used in wavelet is signal decomposition which is a sampling 

technique used to decrease the complexity of the signal in order to facilitate its study. One 

of the important Matlab commands which are used to perform this task over two 

dimensional data is “dwt2”. Using this command to decompose an image results in a 

sampled image identical to the original one but with its size ¼ of the original one 

(figure.4.2).  

 
 

               

Figure.4.2 Processing an Image Using Wavelet 
(Left) Original Image, (Right) Decomposed Image 

 

 By using this technique on an image before starting its segmentation and then 

start the segmentation process of the decomposed image, the speed of the active contour 

is expected to be noticeably increased. The final contour from this process can be used as 
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an initial contour to segment the original image. This procedure is expected to decrease 

the time required for segmenting large images such as medical images.  

 

The procedure in which the developed model follows is described below: 

1. At the beginning, an image to be segmented is loaded and smoothed. 

2. The loaded image I is decomposed using wavelet transform. The output of this 

step is a decomposed image Id. 

3. A Set of points are chosen around the region of interest in the image Id. 

4. The confidence interval of intensities of the selected points is computed. 

5. The β matrix is formed depending on the confidence interval. 

6.  The gradient of the image Id is computed and the stopping function is formed 

depending on β matrix. 

7. An Initial contour is chosen and evolution is started. This contour is run for a 

fixed number of iterations.  

8. Steps 3 – 6 are repeated but this time for the original image I.   

9. The final contour of step 7 is loaded as an initial contour for segmenting the 

original image, evolution resumed.  

10. When the active contour reaches the ROI, in the real image, it stops there and the 

final result of segmentation is displayed.  

The data flow diagram which describes the listed procedure of the Wavelet 

Active Contour Model (WACM) algorithm described above is shown in figure 4.3:    
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Figure.4. 3. Data Flow Diagram for the WACM Segmentation Technique 



51 | P a g e 
 

 
 

 
 
 

 
CHAPTER FIVE: 

 

EXPERIMENTS AND RESULTS 

5.1.  DEVELOPING AN INITIAL ACM MODEL: 

 Our results were obtained using the system proposed by Li et.al. [49]. The 

system was implemented in Matlab7.5.0 (R2007b) to gain familiarity with  active contour 

models and its different controlling parameters.  The original stopping function of the 

contour at this step is illustrated below in eq.5.1. 

 
                                                             𝑔𝑔(|∇𝐼𝐼|) = 1

1+|∇(𝐺𝐺𝜎𝜎∗𝐼𝐼)|2                                     5. 1 

 
 To test the performance of the system quantitatively, the following steps were 

implemented: 
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1. Gaussian white noise, with a signal to noise ratio (SNR) =10dB, was added to a 

512x512 synthetic image to produce image 5.1(b).  

2. In order to reduce the noise in the input image which can lead the contour to 

false objects, the noisy image was  smoothed with a Gaussian filter having a size 

of 15x15 pixels and a standard deviation σ = 1.5 (see figure. 5.1©). 

 
 

 

                                         (a)                                (b)                              (c) 
 
 

 
3. The gradient of the smoothed image is calculated in order to form the stopping 

function of the evolving contour using eq.5.1; this function is used to stop the 

active contour when it reaches the edge of the desired object in the image since 

this function has its minimum value (approximately zero) on the edges.  

4. An initial contour was specified around the region of interest in the input image. 

The specified contour deforms automatically and stops when it reaches the 

desired object boundaries. 

  In the developed program, the user has three options to choose from to select the 

initial contour which are:  

 Figure.5.1.  512x512 Synthetic Image: (a) Original, (b) Noisy (SNR=10 dB), (c) Smoothed 
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i. A Polygon Initial Contour; in which the user should specify a number points on 

the image using the mouse curser to form a polygon around the region of interest 

in the image. 

ii. A Circle Initial Contour; in which the user should specify a center and a radius of 

a circle on the image using the mouse cursor to let the program form a circle 

initial contour around the region of interest in the image.  

iii. A Program Specified Initial Contour; in which the program itself defines an 

initial contour around the region of interest in the image. 

 
 

 

          Figure.5.2.  Initial Contour (a) Polygon, (b) Circle, (c) Program Specified 
 

 

5. After the initial contour is created, it starts evolution until it reaches the edge of 

object of interest in the image (see figure.5.3 where the synthetic image in 

figure5.1(b) is scaled to 128x128 and then segmented using  a user-specified 

polygon initial contour around ROI): 
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 The reason why the size of the image in figure 5.1(b) is rescaled to its ¼ before 

segmenting it refers to the fact that the size of this image is big. This means that the 

segmentation process of this image needs a large number of computations to be done by 

the algorithm in order to deform the contour. This number of calculations needs a lot of 

time, which means that the deformation process of the contour will be slow, i.e. the 

segmentation time will be too long.  

  After modifying the algorithm in the coming sections, it will be easy to segment 

the original image in figure.5.1(b) without rescaling it. In figure.5.4, the result of 

segmenting the original image in figure.5.1(b) without rescaling it, before the 

segmentation process started,  and using the initial algorithm is shown. This process was 

done in order to compare its result with the future results after modifying the current 

segmentation algorithm. 

  Figure.5.3. Scaled Segmented Image 
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 In figure.5.5, the data flow diagram describes the steps in how the initial 

algorithm works. This algorithm needs to be improved in order to increase its efficiency 

and this is our mission in the following sections. 

 

  

Figure.5.4.  Result of Segmenting 512x512 Image Using The Initial Code 
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Figure.5.5. Data Flow of the Initial ACM Segmentation Algorith 
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5.2. INCORPORATING PRIOR INFORMATION: 
 

As noticed in section 5.1; the final result of segmentation is inaccurate or 

missing the real boundary, especially, when the input image is noisy. The reason for this 

bad result is that the noise in the input image leads the contour to converge to false edges. 

To solve this problem; number of points around the boundary of the region of interest 

(ROI) are manually selected to generate a training set. This set will form the points of 

interest (or samples). It needs to be further analyzed to discard some outliers since the 

selection of process is effectively subjective. After the analyzing the set of points, an 

intensity interval is obtained by applying some statistical techniques to the collected data. 

These techniques are discussed in detail in section (4.2.1).  The formed intensity interval 

contains the pixel-range in which the region of interest (ROI) is situated. 

 As an example, the previous process was applied on the image in figure5.1(b) to 

segment the circle shape in it. The intensity values of the chosen points around the ROI 

were [253, 251,255,204,255,213]. After applying statistical analysis to the previous set 

using equn.4.7 with a critical value (c=0.98), the remaining intensity values has been 

limited to [253, 251,255,255,213] as result the initial intensity interval is [211,255]. By 

applying equn.4.9 on the obtained intensity interval using a degree of belief α=0.02, the 

remaining intensity values was limited to [253,251,255,255] which means that the final 

intensity interval became [251,255].     
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 After getting the intensity interval, a matrix  𝜆𝜆 is formed with its dimensions are 

identical to the input image dimensions. This matrix should contain ones in each pixel 

where the intensity value of its peer pixel in the input image is within the intensity range 

of the intensity interval formed previously. The remaining pixels of this matrix are set to 

zero. After obtaining (𝜆𝜆) matrix, it is smoothed by a Gaussian filter. The result of this 

process is the matrix (𝛽𝛽) which contains the location of the desired region of interest 

(ROI) extracted from the input image. Figure 5.5 shows an image mapping the resulting 𝜆𝜆  

and (𝛽𝛽) matrices of the previous example. 

 
 

 

                  
 Figure 5.6. (Left) An Image Mapping 𝝀𝝀 matrix, (Right) An image Mapping 𝜷𝜷 matix 

 

 

 In the next step, each point in this matrix (𝛽𝛽) in multiplied by its peer point in 

the image gradient-matrix (|∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼)|2  ), the resulting matrix is used to form the new 

stopping function g according to eq.5.2.  

 
    𝑔𝑔(|∇𝐼𝐼|) = 1

1+𝛽𝛽(𝑥𝑥)•|∇(𝐺𝐺𝜎𝜎∗𝐼𝐼)|2    ,   𝛽𝛽(𝑥𝑥) =  𝐺𝐺𝜎𝜎 ∗ 𝜆𝜆(𝑥𝑥)                    5. 2 
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 This modification on the stopping function of the active contour is expected to 

increase its speed of convergence to the edges of the region of interest (ROI), since the 

stopping function - after this modification – will no longer have sharp edges except the 

edges of the (ROI), see figure 5.7, and this will force the contour to reach the edge in 

smaller period of time than it did before.  

 

 

 
 
 
 
 
 
 

 
 

 

 
 Steps of forming the stopping function with incorporating prior information 

are summarized below: 

1. Load an input image and smooth it. 

2. Choose a set of points on the borders of the region of interest (ROI) in the 

input image. 

3. Create a confidence interval containing the range of intensities of the region 

of interest (ROI) using eqs.4.7 - 4.9.  

Figure.5.7 An Image Mapping the Stopping  Function of the Segmented Synthetic Image 
(Figure.5.1(b)). (a) Using Image Gradient Only (b) Incorporating Prior Information 

 
 



60 | P a g e 
 

 
 

4. Form a matrix 𝜆𝜆 with dimensions identical to the input image dimensions, this 

matrix contains ones in each pixel where the intensity value of its peer pixel 

in the input image is within the intensity range of the intensity interval formed 

using prior information, and the remaining pixels of this matrix are set to zero. 

5. Form matrix β by smoothing matrix 𝜆𝜆. 

6. Calculate the gradient matrix of the input image and smooth it. 

7. Form the new stopping function using eq.5.2. 

 
 The result of segmentation with incorporating prior information to the stopping 

function is excellent when comparing it to the previous method; the speed of convergence 

to the edges of the region of interest is noticeably increased. Recall the poor result in 

figure 5.4 (no convergence to the ROI even after 1000 iterations which took more than 20 

minutes).  

 The segmentation of the same image (figure 5.1(b)) was repeated again, but this 

time with incorporating prior information to the stopping function g. The result was 

excellent; the contour had converged to the edge of (ROI) in 3 minutes and 45 seconds 

after 180 iterations. The result of re-segmenting the noisy synthetic image in figure 5.1(b) 

with incorporating prior information is shown in figure.5.7 below.    
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Figure.5.8.  Segmentation of  Noisy 512x512 Synthetic Image 
With Incorporating Prior Information to the Stopping Function 

 

 There are two main issues which have a great influence on the speed of 

convergence of the active contour to the right edge with a minimum time, these factors 

are: 

1. The educated choice of the location and number the points on the boundaries of 

the (ROI) in the image which are used to obtain a confidence interval in order to 

form β matrix, (i.e. the best confidence interval,  the best stopping function, 

which means, the most convergence efficiency). 

2. The educated way of specifying the initial contour (i.e. as the initial contour is 

closer to the region of interest, it needs fewer iterations to converge to the right 

edge which means a shorter convergence time). 

 These factors have a great influence on the active contour (snake) performance; 

they need only a little bit more accuracy from the user. It is recommended to put them in 

consideration when using the algorithm to segment an image by specifying the initial 
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contour as close as possible to the ROI and choosing the points, which are used to form β 

matrix, inside the ROI. 

5.3. Introducing A NEW  Stopping Function: 

 The stopping function (shown in eq.5.2.) can be enhanced more in order to make 

the active contour converge faster and faster. This can be achieved by using the function 

(𝑒𝑒𝑥𝑥 ) in the denominator of the stopping function in eq.5.2. By applying this change, we’ll 

benefit from the mathematical properties of the function (𝑒𝑒𝑥𝑥 ) in increasing the speed of 

the stopping function. The following equations states how we can use the function ( 𝑒𝑒𝑥𝑥  ) 

to improve the speed of the current stopping function.   

 
                    𝑔𝑔(|∇𝐼𝐼|) = 1

1+𝑒𝑒𝛽𝛽(𝑥𝑥)•𝑀𝑀  ,     𝑀𝑀 = |∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼)|2                                        5. 3 

If we expand the term  (𝑒𝑒𝛽𝛽(𝑥𝑥)•𝑀𝑀  ) using Taylor series expansion, this term will become 

as the following: 

     𝑒𝑒𝛽𝛽(𝑥𝑥)•𝑀𝑀  = 1 + 𝛽𝛽(𝑥𝑥) • 𝑀𝑀  +
𝛽𝛽(𝑥𝑥)2 • 𝑀𝑀  2

2!
+
𝛽𝛽(𝑥𝑥)3 • 𝑀𝑀  3

3!
+
𝛽𝛽(𝑥𝑥)4 • 𝑀𝑀  4

4!
+ ⋯           5.4 

As a result of this expansion,  eq.5.3.  becomes as the following:  

 

      𝑔𝑔(|∇𝐼𝐼|) =
1

2 + 𝛽𝛽(𝑥𝑥) • 𝑀𝑀  + 𝛽𝛽2(𝑥𝑥) • 𝑀𝑀  2

2! + 𝛽𝛽3(𝑥𝑥) • 𝑀𝑀  3

3! + 𝛽𝛽4(𝑥𝑥) • 𝑀𝑀  4

4!

                   5.5  
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In eq.5.5, the expansion was stopped at the 4th power because there is no 

speed improvement of the snake after this value. This result was obtained after running 

the algorithm for several times.  

 Table 5.1 shows the performance of the active contour (snake). The results in the 

table were obtained after performing a test over the ACM algorithm using the eqs.5.2, 5.3, 

and 5.5 respectively in the stopping function. The target of this test was to determine the 

most suitable stopping function for the ACM using an initial contour as “program 

specified contour”.  

 The test was performed using 512x512 synthetic images and the initial contour 

used in each run of the program was chosen to be a “program specified contour” around 

the whole input image. Also, the confidence interval, obtained after prior information 

analysis, was fixed for each image tested by the ACM algorithm using different stopping 

functions. The reason why this confidence interval was fixed is that; we wanted to test the 

effect of changing the stopping function, of the ACM, on the speed of its convergence for 

each image tested. This required us to fix the value of   β matrix.  
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Tested Input image 

Convergence speed 
using priors only 

Convergence speed 
using priors & 𝑒𝑒𝑥𝑥  

Convergence speed 
using priors & 
truncated  𝑒𝑒𝑥𝑥  

# of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) 
Figure.5.9. (a) 780 794 1070 1070 780 778 
Figure.5.9. (b) 800 790 1070 1069 800 816 
Figure.5.9. (c) 690 693 930 941 690 723 
Figure.5.9. (d) 660 712 1060 1072 660 728 

AVG. contour speed 
(Sec./100 itrs.) 102 100.5 104.5 

 
 

Table 5.1 Results of Segmenting Synthetic Images Using a “Program Specified” Initial Contour 
  

 

From table 5.1, we conclude that; if we are using the initial contour to be 

“program specified”, the best choice for the stopping functions of the ACM is to select 

the one which incorporates prior information but without using the exponential (eq.5.2.) 

to accomplish this task. In this case, we can get the fastest speed of convergence of the 

snake in terms of time and number of iterations. The input images used in the above test 

are shown in (figure.5.9).   
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                      (a) 

 

(c) 

 
  

    (b)  

 

(d) 

 
 

 

 

 
Figure.5. 9. 512x512 Synthetic Images 

 

 

The same test was repeated again using the same test images. This time, the 

initial contour was chosen to be a “user-specified polygon”. Using this kind of initial 

contours, the user is asked to choose points around the ROI in the image. These points are 

used to form a contouring polygon around the ROI. Once this is done, the contour starts 

deforming until it reaches the edges of the ROI and stops there. The same conditions as 

the previous test apply here.  Results of this experiment are shown in table 5.2. 
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Tested Input image 

Convergence speed 
using priors only 

Convergence speed 
using priors & 𝑒𝑒𝑥𝑥  

Convergence speed 
using priors & 
truncated   𝑒𝑒𝑥𝑥  

# of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) 
Figure.5.9. (a) 170 196 170 196 170 196 
Figure.5.9. (b) 280 324 280 324 210 243 
Figure.5.9. (c) 140 136 180 176 140 135 
Figure.5.9. (d) 180 174 250 245 180 173 

AVG. contour speed 
(Sec./100 itrs.) 108 109 107 

 
 
Table 5.2 Results of Segmenting Synthetic Images Using  a “User- Specified Polygon” Initial Contour 
 

From the results above, we conclude that; if our choice for the initial contour 

is a “user-specified polygon,” then, the best selection of stopping functions for the active 

contour (snake) is using priors & truncated  𝑒𝑒𝑥𝑥  in the stopping function (eq.5.5) to 

accomplish this task. In this case, we can get the fastest speed of convergence of the 

snake in terms of time and number of iterations.  

The same test was repeated for the third time, but now after choosing the 

initial contour to be a “user-specified circle”. Using this kind of initial contours, the user 

is asked to choose a center and a radius of a circle around the ROI in the input image. 

Once this is done, a circle appears contouring the ROI. It starts deforming until it reaches 

the edges of the ROI and stops there. The same conditions as the previous tests apply 

here.  Results of this experiment are shown in table 5.2. 
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Tested Input image 

Convergence speed 
using priors only 

Convergence speed 
using priors & 𝑒𝑒𝑥𝑥  

Convergence speed 
using priors & 
truncated  𝑒𝑒𝑥𝑥  

# of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) 
Figure.5.9. (a) 400 350 525 462 350 308 
Figure.5.9. (b) 400 348 425 373 400 348 
Figure.5.9. (c) 1100 940 1260 1065 910 793 
Figure.5.9. (d) 1150 999 1320 1150 1000 875 

AVG. contour speed 
(Sec./100 itrs.) 86.5 86.4 87 

 
 

Table 5.3 Results of Segmenting Synthetic Images Using a “User- Specified Circle” Initial Contour 
 

From table 5.3, we conclude that; if we are using the initial contour to be a 

“user-specified circle,” the best choice for the stopping function of the active contour 

(snake) is selecting the one which incorporates priors only  (eq.5.2.) to accomplish this 

task, except when the shape of the ROI square-like. In this case, it is recommended to use 

the stopping function which incorporates priors and uses the truncated 𝑒𝑒𝑥𝑥  (eq.5.5.) to 

successfully do this task.   

The results of the previous tests above showed that the best initial contour 

used around the ROI of the snake is the “user-specified polygon”; This initial contour can 

be used for any shape of the ROI and it gives excellent results. The “user-specified circle” 

initial contour gives very good results, except when the ROI is square-shaped, in this 

case, this type of initial contour is not recommended to be used. Using a “program-

specified” initial contour, gives very good results but it needs more time than other 
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techniques to converge to the ROI. This type of initial contours   is recommended to be 

use when the ROI is big.  

 In figure.5.10, the resulting segmented images of the previous tests are shown. 

They are arranged according to the initial contour used in the segmentation process of 

each image.   
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Figure 5.10.  512x512 Segmented Synthetic Images 

program specified User specified polygon User specified circle 
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Figure 5.11, shows the data flow of the program after the modification in this section:  

start
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yes

 

Figure5.11 Modified Data Flow Diagram of The Segmentation Algorithm 
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5.4 THE WAVELET-BASED ACM MODEL: 

 From previous experiments, we can find that the speed of the active contour is 

approximately one second per iteration. This speed can be improved more by 

decomposing the input image using wavelet transform and then running the active 

contour to segment ROI in the sampled image. The final contour of this process is used as 

an initial contour for the next step in which the real image is segmented. This process is 

expected to increase the speed of the active contour by a noticeable ratio.  

The purpose of the next test is to evaluate the performance of the active 

contour after the new enhancement (using wavelet) is applied. The image used in this test 

is IM78 (see figure 5.14). After adding the new enhancement to the program, it was run 

30 times using the input image (IM78). After each 10 runs of the program, the stopping 

function was changed (in order to test the enhanced program using the three proposed 

stopping function in eqs. 5.2, 5.3, 5.5). The results of this experiment are shown in 

table5.4.  
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Stopping Function 
Convergence 
speed using 
priors only 

Convergence 
speed using 
priors & 𝑒𝑒𝑥𝑥  

Convergence 
speed using 

priors & 
truncated  𝑒𝑒𝑥𝑥  

 
Pr

og
ra

m
 S

pe
ed

 
 (s

ec
./1

00
 it

er
at

io
ns

)
 

1 15.215 16.588 16.31 
2 16.421 14.389 14.785 
3 18.429 16.738 14.490 
4 15.696 17.190 14.187 
5 14.689 15.512 14.659 
6 15.491 14.368 14.289 
7 14.321 16.982 14.250 
8 14.806 14.356 14.736 
9 15.565 14.596 13.532 
10 17.334 14.279 13.016 

Average Speed sec./100 Itr. 15.797 14.2 14.423 
Time  Reduction 0 -10.11% -8.7% 

 
 
 

Table 5.4 Active Contour Speed After Using Wavelet in the Developed ACM 
 

By using wavelet to down-sample the medical image and then start segmenting the 

sampled image (phase1), the algorithm speed has increased by more than 5 times. This 

process does not affect the accuracy of the program (see figure 5.12).  

After getting the final contour of the previous step, it is used as an initial contour for 

segmenting the real input image (phase2). Applying this technique has decreased the 

numbers of computation done by the algorithm and this improvement has increased the 

speed of the contour evolution. Previously, it took the algorithm 104 seconds to perform 

100 iterations, while now, the time required to perform this number of iteration has 

dropped to 85 seconds only. For example, suppose that  the algorithm is required to 

perform  200 iterations in order to allow the active contour to reach the ROI, if the first 
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100 iterations are performed using the sampled input image, the time  needed to do this 

step is only 15 seconds. The next 100 iterations are to be performed using the final 

contour of the previous step to segment the real 512x512 input image. This step requires 

85 seconds to accomplish it.  The total time required for the whole segmentation process 

(200 iterations) is 100 seconds. Recall that before this enhancement, the time needed to 

perform 200 iterations was 208 seconds. This means that, by applying the new technique, 

we have got an improvement of 43 % in the speed of convergence of the snake.   

  

 

(a)                                                          (b) 
 

Figure 5. 12   Segmentation Result Using Wavelet (a) Segmented Non-sampled Image, Speed of 
Snake=104 sec./100 itr.  (b) Segmented Sampled Image, Speed of Snake=15.33 sec./100 itr. 

 
 

The new technique was tested on the medical image named IM78 (see figure 5.14) 

and compared with the previous segmentation technique (see sections 5.2 and 5.3). Using 

the previous technique, the segmentation process was accomplished after the algorithm 

performed 70 iterations with the rate of 108 sec./100itrs. which means that the process 
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was accomplished after 76 seconds. Now, the new technique is applied on the same 

image. This technique has two phases. In the first phase, the image is sampled using 

wavelet and then segmented by running the algorithm to perform 35 iterations with the 

rate of 15 sec. /100 itrs (see table 5.4). Then, the second phase started by using the final 

contour of the previous phase as an initial contour for segmenting the real input image by 

performing another 35 iterations by the algorithm with the rate of 108 sec. /100 itrs. (see 

table 5.2).  The time consumed to accomplish the whole process was 43 seconds which 

means that, by using the new technique, we got 43% improvement in the speed of the 

snake. 

 Assuming that the number of iteration required to reach the ROI using the snake is 

denoted by ( n ), we can calculate the improvement ( η ) in the active contour speed which 

we got by applying the new technique as follows: 

 

𝜂𝜂 =
��108

100�  ∗ 𝑛𝑛�−��108
100�  ∗ 𝑛𝑛 2� �+�15

100�  ∗ 𝑛𝑛 2� ���
108

100�  ∗ 𝑛𝑛
= 43 %  

 

 The following notes are clearly observed when using this technique: 

 

• The active contour speed is clearly increased by a factor depending on the ratios of 

the number of iterations used in each phase.  
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• The speed of the contour depends on the stopping function used, and it is the 

maximum when using the stopping function which incorporates prior & uses the 

truncated  𝑒𝑒𝑥𝑥  (eq.5.3) to stop the snake on the edges of ROI (see table.5.4). 

• This method requires the user to define the confidence interval (see section 5.2) 

twice; the first time is when tending to segment the sampled input image (phase1) 

and the second time is when tending to segment the real input image (phase2).  The 

new data flow diagram of the program is shown in figure 5.12.  
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Figure.5. 13  Data Flow Diagram of the ACM Model  Using Wavelet 
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5.5. APPLICATION OF WACM ALGORITHM ON SIMULATED DATA IN 

MEDICAL IMAGING: 

 
 In this section, the developed program was used to segment a set of 512x512 real 

DICOM CT images in order to examine its performance. The results of the previous tests 

were taken into account in this experiment. So, the initial contour used in this experiment 

was the “user-specified polygon,” the stopping functions in eqns.5.2, 5.3, and 5.5 were 

used respectively in the segmentation process of each image. Also, same initial contour 

and β matrix are used for each image. The DICOM images used in this test are shown in 

figure 5.14. 

 

  
IM42 

  
IM66 

 
IM78 

    
IM89 IM97 

 
  IM102 

 
Figure .5.14 512x512 DICOM CT Images  

 

 Table 5.5, shows the results of segmenting the DICOM images of figure 5.14 using 

“user-specified polygon” as an initial contour without using wavelet: 
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DICOM image name 

Convergence speed 
using priors only 

Convergence speed 
using priors & 𝑒𝑒𝑥𝑥  

Convergence speed 
using priors & 
truncated  𝑒𝑒𝑥𝑥  

# of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) 
IM42 80 80.3 80 81 80 81 
IM66 80 79 80 79.5 80 83.6 
IM78 110 113 100 105 100 101 
IM89 80 82 80 80.4 80 80.4 
IM97 240 241 240 225 240 228 
IM102 70 72 70 69 70 63 

AVG. contour speed  99 sec./100 itrs. 102 sec./100 itrs. 98 sec./100 itrs. 
 
 

Table 5.5 Results of segmenting DICOM images using   “User- Specified Polygon” Initial Contour 
 

After incorporating wavelet to the algorithm, we got the following results for 

segmenting the same images:  

DICOM image name 

Convergence speed 
using priors only 

Convergence speed 
using priors & 𝑒𝑒𝑥𝑥  

Convergence speed 
using priors & 
truncated  𝑒𝑒𝑥𝑥  

# of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) # of itrs. 
Seg. time 

(sec.) 
IM42 80 46.5 80 46.2 80 46.3 
IM66 80 46 80 45.5 80 47.6 
IM78 110 65.6 100 59.6 100 57.8 
IM89 80 47.5 80 46 80 46 
IM97 240 140 240 129.6 240 131.3 
IM102 70 41.6 70 39.5 70 36.6 

AVG. contour speed  58.6 sec./100 itrs. 56.4 sec./100 itrs. 56.25 sec./100 itrs. 
Speed Improvement 41 % 44.7 % 42.6 % 

 
 

Table 5.6 Results of segmenting DICOM images using WACM Algorithm 
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As noticed from table 5.6, the average speed improvement using the new technique 

(WACM) is approximately 43%. The maximum improvement of the contour speed is 

obtained when incorporating prior information and full 𝑒𝑒𝑥𝑥   to the stopping function of the 

snake. Figure 5.15 shows the resulting segmented DICOM images. 

 

 
IM42 

 
IM 89 

 
IM66 

 
IM78 

 
IM97 

 
IM102 

 
Figure.5.15  512x512 Segmented DICOM Images 

 

5.6 EVALUATING THE ALGORITHM ACCURACY: 

Accuracy of the algorithm is an important measure which helps the user to 

decide if the algorithm suits his/her application. To evaluate the accuracy of WACM 

algorithm, the segmented areas of synthetic images in figure 5.10 were compared with the 

area of the actual objects. Suppose we want the obtain the segmentation accuracy of the 

image in figure 5.16, to do this, we find the number of pixels in both the areas segmented 
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or unsegmented by error and add them together. Then, the obtained result is divided by 

the actual number of pixels   in the ROI (see eq.5.6) 

 

Figure 5.16 Segmentation accuracy test 
 

 

                               𝑄𝑄 = �1 − 1
2
�𝑁𝑁(𝐴𝐴1)+𝑁𝑁(𝐴𝐴2)

𝑁𝑁(𝐴𝐴0)
�� ∗ 100%                                5.6 

where N(.) is the number of pixels, A0 is the area of ROI,  A1 is the unsegmented area in 

the ROI, and A2 is the segmented area out of ROI. 

Applying the previous formula of the synthetic images in figure 5.10, we got the 

following results for the algorithm accuracy. 
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Image 
Program 
Specified 

Initial Contour 

Polygon Initial 
Contour 

Circle Initial 
Contour 

 

(a) 92.0  % 85.7  % 88.7 % 
(b) 91.3  % 84.5  % 89.0  % 
(c) 90.0  % 89.0  % 85.6  % 
(d) 89.0  % 88.5  % 88.7  % 

Q Avg. 90.6 % 86.75 % 88.0  % 88.45 % 

 
 

Table 5.7 Evaluating WACM Algorithm accuracy 
 

 

5.7. GRAPHICAL USER INTERFACE (GUI): 

 
A friendly graphical user interface was designed to facilitate the 

practitioner interaction with the algorithm. At the beginning, a welcome 

screen appears to identify the algorithm objective (figure 5.17-Left). Then, 

the user is asked to load an image to segment it (figure 5.17-Right).   

 

 

 

Figure 5 . 17. Program Initialization, (Left) Welcome screen,  
(Right) Request   for loading an image to segment it.   
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 After choosing the image, it is smoothed by a Gaussian kernel and 

decomposed using wavelets, then, the user is asked to choose a set of points 

in the ROI in order to form an intensity confidence interval (figure 5.18-a). 

After that, β matrix and image gradient are computed and the stopping 

function of the active contour is formed. Figure 5.18-b. 

 

 
(a)                                                                           (b) 

Figure 5. 18. Incorporating Priors (a) Choosing Points in the ROI, (b) Image of the Stopping Function 

 

 In order to start the segmentation process, an initial contour around ROI 

should be specified by the user (figure 5.19). 
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Figure 5. 19 An Interface Asking the User to Choose the Type of Initial Contour 
 

The program offers the user the capability to specify one of the following initial 

contours: User-Specified Polygon around ROI (figure 5.20), User-Specified Circle around 

ROI (figure 5.21) and Program-Specified Contour around the whole image (figure 5.22). 

 
Figure 5 . 20 Specifying A Polygon Initial Contour around ROI 
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Figure 5. 22 A Program Specified Contour Around the whole image 

Figure 5 . 21 Specifying A Circle Initial Contour Around ROI 



85 | P a g e 
 

 
 

After choosing the initial contour, it starts its evolution for n/2 iterations, 

where n is the total number of iterations required by the contour in order to reach ROI, 

this process is called Phase I (see figure 5.23).  

 

  

 

Figure 5. 23 Final Contour of Phase I  
 

 

The final contour of the previous step is used as an initial contour to segment 

the real image; this process is called Phase II. Figure 5.24 shows the final result of the 

segmentation process. 
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Figure 5. 24 Final Result of the Segmentation Process 
 

Finally, the user is asked if he/she is satisfied with the segmentation result. If 

not, the program gives the user a choice to resume or repeat the segmentation process.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. 25 User Satisfaction of the Segmentation Result 
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CHAPTER SIX 

 

DISCUSSION AND CONCLUSIONS 

6.1. SUMMARY OF RESULTS: 

The role of medical imaging has expanded beyond the simple visualization and 

inspection of anatomic structures. It has become a tool for surgical planning and 

simulation, intra-operative navigation, radiotherapy planning, and for tracking the 

progress of diseases. 

Medical  image analysis has  become  one of the most active areas  of research these 

days; many important achievements have  been addressed  in  this field  which is vital for 

physicians who become  highly  dependent on the image information in order to give an 

accurate diagnose for  diseases. 
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Computer processing and analysis of medical images covers a broad number of 

potential topic areas. One of the well known approaches in medical image analysis is 

Image Segmentation; its idea is to subdivide the image into regions in which each one 

contains components having the same properties. The goal of segmentation is to simplify 

and/or change the representation of an image into something that is more meaningful and 

easier to analyze. This approach is widely used in extracting the tumor areas from medical 

images as a first step in the therapy planning. 

 Many techniques in image segmentation were proposed. The most visible 

approaches brought to maturation during the 1980s and 1990s in terms of both 

methodology development and application were boundary finding strategies based on 

deformable model.  This approach  can be found in literature under different names such 

as snakes, active contours, surfaces or balloons; It is a deformable continuous curve  

consists of a set of control points connected by straight lines.  Forces are applied upon the 

snake in order to  control its shape. Its objective is to divide an image into a number of 

strongly correlated objects of reality.  Shaping the image by fitting active contours is an 

interactive process in which an initial contour should be suggested by the user (should be 

as close as possible to the intended shape). The contour will be attracted to features in the 

image extracted by internal energy creating an attracter image.  

 In this work, three techniques for  specifying  the initial contour  were proposed, 

these methods are; (1) User-Specified Polygon initial contour; in which the user should 

specify a number points on the image using the mouse curser to form a polygon around 
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the region of interest in the image. (2) User-Specified Circle initial contour; in which the 

user should specify a center and a radius of a circle on the image using the mouse cursor 

to let the program form a circle initial contour around the region of interest in the image.  

(3) Program specified initial contour; in which the program itself defines an initial 

contour around the region of interest in the image. 

Sometimes, curve evolution becomes sensitive and unstable so that the final result 

in some cases will be inaccurate or missing the real boundary. To remedy this problem; a 

number of points on the boundary of the region of interest (ROI) are manually selected to 

generate a training set. This set will form the points of interest (or samples) and need to 

be further analyzed to discard some outliers since the selection is effectively subjective. 

Within the GAC technique, the stopping function g plays a critical role and controls 

when the curve evolution will arrive at the boundary during the iterative approximation 

procedure where there is high image gradient (e.g. at a boundary) the value of g will be 

closer to zero; in homogeneous regions the value will be closer to 1. Thus, we can revise 

the stopping function according to the prior information where we wish the priors to 

affect the process of curve evolution. Our method was to modify the stopping function in 

order to make its value (around object boundary) closer to zero by employing the prior 

information while the curve is approaching to the boundary. This process was applied in 

three different ways in which the speed of convergence of the snake to the edges of the 

region of interest was noticeably improved. 
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 The speed of the active contour can be improved more by decomposing the input 

image using wavelet transform and then running the active contour to segment ROI in the 

sampled image. The final contour of this process is used as an initial contour for the next 

step in which the real image is segmented. This process has increased the speed of the 

active contour by a noticeable ratio. 

 The developed model was then used to segment a set of 512x512 real DICOM 

CT images in order to examine its performance on real images. In this experiment, the 

program has given very good results, but it was needed to improve the snake speed more 

in order to reduce the segmentation time of the medical images. To solve this problem, 

Wavelet transform was used to down-sample the input image. The resulting image after 

down sampling was segmented by the snake. The final contour resulting from this process 

was used as an initial contour for the snake to segment the original (un-sampled) input 

image. This process has  increased the speed of the snake very significantly.    

In order to facilitate the use of the proposed model, a friendly graphical user 

interface (GUI) was designed. It starts by asking the user to choose an image to segment. 

Next, the selected image is loaded and the user is asked to choose a set of points on the 

edges of ROI. After that, the user is asked to choose the type of the initial contour and 

also to select points around the ROI in order to create it. Then, the evolution of the 

contour over the image is displayed after each n iterations. At the end of segmentation 

process, the final curve is displayed contouring the ROI in the image and the user is asked 
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if he/she is satisfied with the segmentation result and  if he/she wants to continue or 

repeat segmentation of the current image, or if he/she wants to segment a new image.     

 

6.2. FUTURE RESEARCH DIRECTIONS: 

The following research directions are expected to have promising results: 

1. Joining active contour and region growing segmentation techniques by using the 

final contour obtained by the snake to create an initial seed for the region 

growing segmentation technique. 

2. Performing parallel segmentation of two or more objects in an image at the same 

time using the active contour approach. 

3. Constructing a three dimensional object after segmenting a series of two 

dimensional images using active contour. The final contour obtained after 

segmenting each image can be used as an initial contour to segment the next one.  
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