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Image Segmentation is an image processing technique which is used to subdivide an
image into regions in which each one contains components having similar properties or
characteristics. Its goal is to “simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze”. This approach has many
applications. One of its most important applications is the extraction of tumor areas from
medical images as a first step in the therapy planning of cancer patients. This objective can
be achieved by many image segmentation approaches. One of these successful techniques
is the active contour (Snake); its idea is based on a flexible curve (or surface) which is
dynamically adapted to required edges or objects in an image. In this work an improvement
over a current active contour model is proposed. The new model was tested using real CT

images and has given promising results.
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CHAPTER ONE

INTRODUCTION

1.1. OVERVIEW OF THE RESEARCH:

The rapid development and proliferation of imaging technologies is revolutionizing
medicine. Medical imaging allows scientists and physicians to glean potentialy life-
saving information by peering noninvasively into the human body. The role of medical
imaging has expanded beyond the simple visualization and inspection of anatomic
structures. It has become a tool for surgical planning and simulation, intra-operative

navigation, radiotherapy planning, and for tracking the progress of disease [1].
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Medical image analysis has become one of the most active areas of research these
days; many important achievements have been addressed in thisfield which isvita for
physicians who become highly dependent on the image information in order to give an
accurate diagnosis of diseases, especialy, of tumors, since an early diagnosis of
cancer would help very much in treatment. In radiotherapy, medical imaging alows the
delivery of a necrotic dose of radiation to a tumor with minimal collateral damage to
healthy tissues [1].

The area of medical image processing and analysis covers a wide range of topics,
including image acquisition, image formation/reconstruction, image enhancement, image
compression and storage, image analysis, and image-based visualization [2]. Medical
Image analysis is a promising area of research. It includes many powerful techniques
within image analysis, and it has a wide range of applications. One of the well known
approaches in medical image analysis is Image Segmentation: its basic is to subdivide the
image into regions in which each one contains components having similar properties or
characteristics. The goa of segmentation is to ssimplify and/or change the representation
of an image into something that is more meaningful and easier to analyze. In its earlier
applications, image segmentation was typically used to locate objects and boundaries
(lines, curves, etc.) in images. Now, image segmentation is defined as the process of
assigning a label to every pixel in an image such that pixels with the same label share
certain visual characteristics [3]. This approach is widely used in extracting tumor areas

from medical images as a first step in the therapy planning [39,68] of cancer patients.
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Other medica applications for image segmentation, besides locating tumors and other
pathologies [69-74], include: measuring tissue volumes [34], computer-guided surgery
[76], diagnosis [35,75], localization pathology [36] treatment planning and studying of
anatomical structures [37,38]. Beside medical applications of segmentation, segmentation
is also used in genera Pattern recognition [77], Object detection [78], Machine learning

[79], Image or video coding [80,81], Tracking [82-85], and Augmented reality.

1.2. OBJECTIVES OF THE RESEARCH WORK:

The work presented in this thesis focuses on the automatic segmentation of medical
images using deformable curves incorporating a priori information. Such priori
information is extracted from the region of interest in the original image and used to
achieve a faster and a more accurate segmentation. The specific objectives of this

research work are as follows:

1. Improving the accuracy of ACM-based medical image segmentation in order to obtain
more accurate segmentation for the intended region in the medical image. This will
help the physician to be more comfortable with his decision, also, accurate
segmentation of the infected region in the medical image of the patient will help the
physician to limit the medication only to the infected area, and thiswill prevent the

destruction of the adjacent healthy regions of the patient tissues.
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2. Reducing the complexity of the proposedACM-based medical image segmentation
algorithm in order to achieve faster segmentation.

3. Evauating the performance of the proposed agorithm on real medical images. To
facilitate the interaction with the algorithm, a GUI is developed, which will aso

facilitate the task of the medical practitioner.

The entire thesis will be arranged as follows; Chapter two will be a literature
review of image segmentation techniques, then, chapter three will focus on active contour
models used in medical image segmentation. Chapter four will introduce the Hybrid
Wavelet-ACM (WACM) segmentation technique and in chapter six, experiments and
results will be discussed. Finaly, in chapter seven, conclusions, discussion of the results

and future research directions will be presented.
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CHAPTER 2

TECHNIQUES USED IN IMAGE

SEGMENTATION

Many techniques for image segmentation have been proposed in the literature, all of
which achieve good accuracy even though they may differ in the way images are
analyzed. The following technigques are the most popular approaches. These are clustered

into two classes. general purpose segmentation techniques and segmentation techniques

used in medical imaging.
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2.1 GENERAL PURPOSE IMAGE SEGMENTATION TECHNIQUES:

Severa general-purpose algorithms and techniques have been developed for
image segmentation. Since there is no unique solution to the problem, these techniques
often have to be combined with domain knowledge in order to effectively solve an image

segmentation problem for a given problem domain or application [3].

21.1. Clustering Methods:

This technique [87-89] is based on the “K-means agorithm” [57,86] which was
initially proposed in 1956. It is an iterative technique that is used to partition an image

into K clusters. The technique is briefly outlined below:

I Choose K cluster centers, either randomly or based on some heuristics.
ii. Assign each pixel in the image to the cluster that minimizes the absolute
distance between the pixel and the centroid.
iii. By averaging al of the pixelsin the cluster, re-compute the cluster centroid.
V. Repeat steps 2 and 3 until convergence is attained (e.g. no pixels change

clusters).

The difference is typically based on pixel color, intensity, texture, and location,

or aweighted combination of these factors. K can be selected manually, randomly, or by a


http://wapedia.mobi/en/Algorithm�
http://wapedia.mobi/en/Iterative�
http://wapedia.mobi/en/Cluster_analysis�
http://wapedia.mobi/en/Cluster�
http://wapedia.mobi/en/Random�
http://wapedia.mobi/en/Color�
http://wapedia.mobi/en/Intensity�
http://wapedia.mobi/en/Random�
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heuristic. Even though the algorithm is guaranteed to converge; it may not return the
optimal solution. The quality of the solution depends upon the initial set of clusters and

the value of K.

In statistics and machine learning, the k-means agorithm is a clustering
algorithm used to partition n objects into k clusters, where k < n. It is similar to the
expectation-maximization algorithm for mixtures of Gaussians in that they both attempt
to find the centers of natura clusters in the data. The model requires that the object
attributes correspond to elements of a vector space. The ultimate goal is to minimize the

total intra-cluster variance, or, the mean squared error function.

2.1.2. MethodsBased on Histogram:

These techniques [90-93] are very effective when compared to other image
segmentation techniques because they typically require only one pass through the pixels.
Under this approach, a histogram is computed from all of the pixels in the image, then,
the peaks and valleys in the histogram are used to locate the clustersin the image. Color
or intensity can be used as the measure. A refinement of this technique is to recursively
apply the histogram-seeking method to clusters in the image in order to divide these into
smaller clusters. Thisis repeated with smaller and smaller clusters until no more clusters

are formed.


http://wapedia.mobi/en/Heuristic�
http://wapedia.mobi/en/Global_optimum�
http://wapedia.mobi/en/Pixel�
http://wapedia.mobi/en/Cluster�
http://wapedia.mobi/en/Color�
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http://wapedia.mobi/en/Recursive�
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One disadvantage of the histogram-seeking method is that it may be difficult to
identify significant peaks and valleys in the image. In this technique of image

classification, distance metric and integrated region matching are commonly used

2.1.3. MethodsBased on Edge Detection:

Edge detection is a well-developed field on its own within the image processing.
Area, region boundaries and edges are closely related, since there is often a sharp
adjustment in intensity at the region boundaries. Edge detection techniques [94-96] have
therefore been used as the base of segmentation techniques. The edges identified by edge
detection are often disconnected. To segment an object from an image however, one
needs closed region boundaries. Discontinuities are bridged if the distance between the

two edges is within some predetermined threshold.

2.1.4. MethodsBased on Region Growing:

Region growing [97] is one of the simplest region-based image segmentation
methods and can aso be classified as pixel-based image segmentation since it involves
the selection of an initial seed points. This approach of segmentation examines the

neighboring pixels of theinitial “seed points” and determines if the pixel should be added
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to the seed point or not. The process is iterated in the same way as clustering. The

algorithm is briefly described below.

The first approach proposed for region growing was “the seeded region growing
method” [3]. The method takes a set of seeds as input from the image. The seeds mark
each of the objects to be segmented. The regions are iteratively grown by comparing all
unallocated neighboring pixels to the regions. The difference between a pixel’s intensity
value and the region’s mean, ¢ , is used as a measure of similarity. The pixel with the
smallest difference measured this way is allocated to the respective region. This process
continues until all pixels are alocated to a region. Seeded region growing requires seeds
as additional input. The segmentation results are dependent on the choice of seeds. Noise
in the image can cause the seeds to be poorly placed. Unseeded region growing is a
modified algorithm that doesn’t require explicit seeds. It starts off with asingle region A;
— the pixel chosen here does not significantly influence final segmentation. At each
iteration, it considers the neighboring pixels in the same way as seeded region growing. It
differs from seeded region growing in that if the minimum ¢ is less than a predefined
threshold T then it is added to the respective region A;. If not, the pixel is considered
significantly different from all current regions A; and a new region An.1 is created with

this pixel.
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2.15. MethodsBased on Level Sets:

Curve propagation is a popular technique in image analysis for object extraction,
object tracking, stereo reconstruction, etc. The main idea behind such an approach is to
evolve a curve towards the lowest potentia of a cost function, where its definition reflects
the task to be addressed and imposes certain smoothness constraints. Lagrangian
techniques are based on parameterizing the contour according to some sampling strategy
and then evolve each element according to image and internal terms. While such a
technique can be very efficient, it suffers from various limitations like deciding on the
sampling strategy, estimating the internal geometric properties of the curve, changing its

topology, addressing problems in higher dimensions, etc.

The level set method was initially proposed to track moving interfaces by [44]
and has spread across various imaging domains in the late nineties. It was efficiently used
to address the problem of curve/surface/etc. propagation in an implicit manner. The
central idea is to represent the evolving contour using a signed function, where its zero
level corresponds to the actual contour. Then, according to the motion equation of the
contour, one can easily derive a similar flow for the implicit surface that when applied to
the zero-level will reflect the propagation of the contour. The level set method has
numerous advantages: it is implicit, parameter free, provides a direct way to estimate the
geometric properties of the evolving structure, can change the topology and is intrinsic.

Furthermore, level sets can be used to define an optimization framework as proposed by
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Zhao, Merriman and Osher in 1996 [103]. Therefore, one can conclude that it is a very
convenient framework to address numerous applications of computer vision and medical

image analysis [58].

2.1.6. MethodsBased on Graph Partitioning:

Graphs can effectively be used for image segmentation. Usually, a pixel or a
group of pixels are vertices and edges define the dis-similarity among the neighborhood
pixels. Some popular algorithms under this category include Ratio cut [98], random
walker, minimum mean cut, minimum spanning tree-based algorithm, normalized cut, etc.
The “normalized cuts’ method was first proposed by [59]. In this method, the image
being segmented is modeled as a weighted, undirected graph. Each pixel is a node in the
graph, and an edge is formed between every pair of pixels. The weight of an edge is a
measure of the similarity between the pixels. The image is partitioned into digoint sets
(segments) by removing the edges connecting the segments. The optimal partitioning of
the graph is the one that minimizes the weights of the edges that were removed (the
“cut”). Shi’s agorithm seeks to minimize the “normalized cut”, which is the ratio of the

“cut” to all of the edgesin the set.
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2.1.7. Watershed Transformation:

The watershed agorithm [99,100] is an image processing segmentation
algorithm that splits an image into areas, based on the topology of the image. The length
of the gradients is interpreted as elevation information. During the successive flooding of
the gray value relief, watersheds with adjacent catchment basins are constructed. This
flooding process is performed on the gradient image, i.e. the basins should emerge along
the edges. Normally this will lead to an over-segmentation of the image, especially for
noisy image material, e.g. medical CT data. Either the image must be pre-processed or the

regions must be merged on the basis of asimilarity criterion afterwards [60].

2.1.8. Modé-based segmentation:

The central assumption of such an approach is that structures of interest/organs
have a repetitive form of geometry. Therefore, one can use a probabilistic model to
explain the variation of the shape of the organ and then use constraints to segment the
image. Such a task involves: registration of the training examples to a common pose,
probabilistic representation of the variation of the registered samples, and statistical
inference between the model and the image. State-of-the-art methods in the literature for
knowledge-based segmentation involve active shape and appearance models, active

contours and deformabl e templates and level-set based-methods.
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2.1.9. Multi-Scale Segmentation:

Image segmentations are computed at multiple scales in scale-space and
sometimes propagated from coarse to fine scales [61]. Segmentation criteria can be
arbitrarily complex and may take into account global as well as local criteria. A common
requirement is that each region must be connected in some sense. One of the well known
algorithms adopting this segmentation technique is the Connected Coherence Tree
Algorithm [101], its goa is to find regions with an adaptive spatial scale and an
appropriate intensity-difference scale. This algorithm often forms several sets of coherent
neighboring pixels which maximize the probability of being a single image contents. In
practice, each set of coherent neighboring pixels corresponds to a coherence class. The
fact that each coherence class just contains a single equivalence class ensures the
separability of an arbitrary image theoretically. In addition, the resultant coherence

classes are represented by tree-based data structures, named connected coherence trees.

2.1.10. Semi-automatic segmentation:

In this kind of segmentation, the user outlines the region of interest with the
mouse clicks and algorithms are applied so that the path that best fits the edge of the
image is shown. Techniques like Livewire or Intelligent Scissors are used in this kind of
segmentation. The live-wire [102] segmentation technique formulates the problem of

creating the boundary of object of interest as a path searching problem in a cost weighted
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graph. Itsideais to find the optimal cost paths between a start node and a set of target
nodes. If the edges of the object of interest are well defined, these paths will align to the

region’s outline and form the result of segmentation.

2.1.11. Neural networ ks-Based segmentation:

Neural Network-based segmentation relies on processing small areas of an image
using a neural network or a set of neural networks. After processing, the decision-making
mechanism marks the areas of an image accordingly to the category recognized by the
neural network. A type of network designed especiadly for this, is the Kohonen map [62].
In this algorithm, a set of pointsisinitially input to a map consisting of units. Associated
with each unit is a weight vector, initially consisting of random values. Units respond
more or less to the input vector according to the correlation between the input vector and
the unit's weight vector. The unit with the highest response to the input is allowed to
learn, as well as some units in the neighborhood. The neighborhood decreases in size
during the training period. Learning is done by adjusting the weights of the units by a

small amount to resemble the input vector more.

The result of the training is that a pattern of organization emerges in the map.
Different units learn to respond to different vectors in the input set, and units closer

together will tend to respond to input vectors that resemble each other.
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When the training is finished, the set of input vectors is applied to the map once
more, marking for each input vector the unit that responds the strongest (is most similar)

to that input vector.

22. METHODSOF MEDICAL IMAGESSEGMENTATION:

Accuracy is the most important issue in medical images segmentation since the
segmented images are used in the therapy planning of patients and this processis an error
sensitive process i.e. a small error can cause big problem. Below are techniques are used

in medical images segmentation:

2.21. Image Segmentation with Defor mable Curves:

Medical Images Segmentation is defined as the segmentation of anatomic
structures or the partitioning of the original set of image points into subsets corresponding
to the structures. It is an essential first stage of most medical image analysis tasks, such as
registration, labeling, and motion tracking. These tasks require anatomic structures in the
original image to be reduced to a compact, analytic representation of their shapes.
Performing this segmentation manually is extremely labor-intensive and time-consuming,

and so, many automatic algorithms were proposed to perform this task automatically.
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Among the first and primary uses of deformable models in medical image
analysis was the application of deformable contour models, such as snakes to segment
structures in 2D images [4-14]. Deformable mode is set near the object of interest in the
image, then, it is allowed to deform towards this object. Users could use the interactive
capabilities of these models and manually fine-tune them. Furthermore, once the user is
satisfied with the result on an initial image dlice, the fitted contour model may then be
used as the initial boundary approximation for neighboring slice. These models are then
deformed into place and again propagated until all slices have been processed. The
resulting sequence of 2D contours can then be connected to form a continuous 3D surface
model [6,9,15,16].

The application of deformable models (snakes) to extract regions of interest is
not without limitations and in order to get accurate contour, the snake needs to be
initialized close to the region of interest, also the internal energy of the contour, which is
responsible for its propagation, may affect the performance of the deformable model [1].
Also, the structure of the region of interest must be known in advance.

Many approaches were proposed to improve and further automate the snake
segmentation process [1]. Cohen used an internal “inflation” force to expand a snakes
model past spurious edges towards the real edges of the structure, making the snake less
sensitive to initial conditions [9] (inflation forces were also employed in [17]. Amini used
dynamic programming to carry out a more extensive search for global minima[ 18], while

poon et a. [19] minimized the energy of active contour models using simulated annealing
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which is known to give globa solutions and alows the incorporation of non-
differentiable constraints., he also used a discriminant function to incorporate region
based image features into the snake [20]. The snake begins as a single closed curve and
becomes three closed curves[1].

Image features were aso used as a discriminator in snake to lead the deformable
contour converge to the exact destination (region of interest) resulting in a more robust
energy functional and a much better tolerance to deviation of the initial guess from the
true boundaries. Others researchers [21-26] have aso integrated region-based information
into deformable contour models in an attempt to decrease sensitivity to insignificant

edges and initial model placement [1].

2.2.2. Incorporating Priori Knowledgein Segmentation:

In medical images, the genera shape, location and orientation of objects is
known beforehand, and this knowledge may be incorporated into the deformable model in
the form of initial conditions, data constraints, constraints on the model shape parameters,
or into the model fitting procedure. The use of implicit or explicit anatomical knowledge
to guide shape recovery is especially important for robust automatic interpretation of
medical images. For automatic interpretation, it is essential to have a modd that not only
describes the size, shape, location and orientation of the target object but aso permits

expected variations in these characteristics. Automatic interpretation of medical images
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can relieve clinicians from the labor-intensive aspects of their work while increasing the
accuracy, consistency, and reproducibility of the interpretation [1].

Severa researchers casted the deformable model fitting process in a probabilistic
framework and included prior knowledge of object shape by incorporating prior
probability distributions on the shape variables to be estimated [27-29]. For example,
Staib and Duncan used a deformable contour model on 2D echocardiograms and MR
images to extract the left ventricle of the heart and the corpus callosum of the brain,
respectively [28]. This closed contour model was parameterized using an elliptic Fourier
decomposition and a priori shape information which is included as a spatia probability
expressed through the likelihood of each model parameter. The model parameter
probability distributions are derived from a set of example object boundaries and serve to

bias the contour model towards expected or more likely shapes[1].

2.2.3. Volumelmage Segmentation with Defor mable Surfaces:

This process is a slice-by-slice segmentation of 3D image
volumes, either manually or by applying 2D contour models. It is a laborious process and
requires a post-processing step to connect the sequence of 2D contours into a continuous
surface. Moreover, the resulting surface reconstruction can contain inconsistencies or
show rings or bands. The use of a true 3D deformable surface model on the other hand,
can result in a faster, more robust segmentation technique which ensures a globally

smooth and coherent surface between image dlices. Deformable surface models in 3D
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were first used in computer vision in 1988 [30], since then, many researchers have used

this technique and improved upon it using some post processing tools.
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CHAPTER THREE

ACTIVE CONTOUR MODELS

IN MEDICAL IMAGE SEGMENTATION

31 OVERVIEW:

The most popular approaches brought to maturation during 1980s and 1990s in
terms of both methodology development and application were boundary finding strategies
based on deformable models (snakes) [2]. A snake, which is a fundamenta approach in
image analysis, was first introduced in 1987 by Kass et al. [4]. Since then, it became an

area of successful research for image segmentation. The snake is a deformable continuous
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curve; whose shape is controlled by forces applied upon it. Its objective is to divide an
image into a number of strongly correlated objects. This objective is a difficult task
because of the big variability of object shapes and different image quality [32]. Many
people have proposed various definitions of snakes in the literature. All of these
definitions lead to the same meaning but with different words. The following are some of
these: (1) It is the grouping of parts in an image into units that are homogeneous with
respect to one or more features, another definition is given as (2) The maximization of the
mutual information between the region labels and the image pixel intensities subject to a
constraint on the total length of the region boundaries, a third definition is (3) The
partitioning of an image into afinite number of semantically important regions. One more
definition is given as (4) An energy minimizing spline that detects specified features
within an image. It is a flexible curve (or surface) which can be dynamically adapted to
required edges or objects in the image. It can be used for automatic image segmentation.
This approach is found in the literature under different names such as snakes, active
contours, surfaces or balloons. The active contour consists of a set of control points
connected by straight lines. It is defined by the number of control points as well as their
sequence. Shaping the image by fitting active contours is an interactive process in which
an initial contour needs to be suggested by the user (should be as close as possible to the
intended shape). The contour is attracted to the features in the image extracted by internal

energy creating an attracter image.
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Active contour “Snakes’ techniques have been used in many applications, one
of its most important uses is the tumor areas extraction from medical images which is
used as afirst step in the therapy planning of cancer patients. Other medical applications
are measurement of tissue volumes, computer-guided surgery, diagnosis, treatment
planning and study of anatomical structure. Beside medical applications of segmentation,
snake has aso been used in pattern recognition, object detection, machine learning,

image or video coding, tracking, and augmented reality.

3.2. MEDICAL IMAGE SEGMENTATION USING ACTIVE CONTOUR MODEL:

The main idea here is to isolate and extract individual components from a
medical image. This is an important part of medical imaging; once a shape is found,
physicians can measure various quantities, such as size of tumors, thickness of heart walls
... etc. Tracing the boundary of these shapes by hand is time-consuming. Instead, the goal
is an automatic segmentation technique which finds the desired regions without human
interaction. Suppose that we are given a medical image; say a digital subtraction

angiogram - DSA (seefigure.3.1) [63].

R
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Figure.3.1. DSA Image of an Artery

Suppose that we want to extract the important features within this image; in this
case, the outline of the artery. One ideais to look for places where there is abig jump in
intensity between neighboring pixels. However, it is hard to pick a good value for the
jump; too small and you get extra boundaries; too large and you miss the whole target.
Another problem is that we can get fooled by large spikes of noise. A different approach
comes from initializing a small circle inside the region of interest, and alowing it to grow
outwards until it reaches the desired boundary (see figure.3.2). Thisis a typical example
of an active contour that starts with an initial contour then propagates toward the edges of

the image under the control of the contour and other image forces.

Figure.3.2. Segmentation of a DSA Image

3.3. DEFORMABLE MODELS:

Active contour Models (ACM) or Snakes were first introduced by Kass et al. [4]

in 1987, since then, ACM became an active area of research. The approach is based on a
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flexible curve (or surface) which is dynamically adapted to required edges or objects in
the image. There are two basic types of deformable models; parametric deformable

models [4,6,18,31] and geometric deformable models [40-43].

3.3.1. Parametric Deformable M odels:

Parametric deformable models, proposed by Kass et al. in 1987 [4], represent
curves and surfaces that are explicit in their parametric forms during deformation. This
representation alows direct interaction with the model and can lead to a compact
representation for fast real-time implementation. Adaptation of the model topology,
however, such as splitting or merging parts during the deformation, can be difficult using
parametric models. There are two types of formulations for parametric deformable
models; the energy minimizing formulation which searches for parametric curve that
minimizes weighted sum of the internal and external energies, where the internal energy
specifies the tension or the smoothness of the contour, while the external energy is
defined in the image domain and usually has aminimal value at the point where thereis a
high intensity gradient in the image, i.e. a an object edge. In this technique, the total
energy minimization occurs when the internal and the external energies are equal [63].
The second formulation for parametric deformable models is the dynamic force
formulation which is used in cases where it is more comfortable to form a deformable
model straight from the dynamic problem with the help of force formulation. Despite the

fact that these two formulations lead to similar results, the first formulation has the
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simplicity advantage since its solution satisfies a minimum principle while the second
formulation is flexible to alow the use of more genera types of external forces, even
those which are not potential ones such as the forces which cannot be described by a

negative gradient of potential energy function [63].

3.3.1.1.  Energy minimizing formulation:

The basic concept of energy minimization in deformable contoursisto find a
parameterized curve that minimizes the weighted sum of internal energy and potential
energy [65]. The internal energy specifies the tension or the smoothness of the contour, it
depends on the intrinsic properties of the curve and it is a sum of two types of energy;
elastic energy and bending energy. The elastic energy treats the curve as a rubber band; it
discourages stretching of the curve by introducing tension (see figure 3.3). It is
mathematically described as the sum of the squared rate of change of the position of each
point in the contour (see the first term in eq.3.2). A weight a(s) allows us to control the
elastic energy along different parts of the contour and is always considered to be constant
a for many applications. The bending energy forces the contour to behave as a thin metal
disc (see figure 3.4), it discourages bending of the curve, and as a result, the contour is
forced to slow down when it reaches the sharp edges and precisely takes its shape.

Bending energy isformulated as the sum of the squared curvature of the contour.
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Figure3.3. Elastic Ener gy Effect on the Curve

The term B(s) is multiplied by the bending energy (in the second term of eg.3.2)

in order to control this energy along the contour, and is always considered to be constant

for many application.

Figure3.4. Effect of Bending Energy on the Curve (Left) Initial Curve (High Bending Energy)
(Right) Final Curve Deformed by Bending For ce (Low Bending Energy)

The potential energy is defined over the image domain and typically possesses
local minima at the image intensity edges occurring at object boundaries. Minimizing the
total energy yields internal forces and potential forces. Internal forces hold the curve

together (elastic forces) and keep it from bending too much (bending forces). Externa
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forces attract the curve toward the desired object boundaries (see figure 3.5). To find the
object boundary, parametric curves are initialized within the image domain, and are
forced to move toward the potential energy minima (or maximum gradient of the image

which is near its edges) under the influence of both these forces.

Figure3.5 Potential Force, (Left) Original Image, (Middle) External Forces,
(Right) Zoomed in External Forces

Mathematically, a deformable contour is a curve X(s) = (x(s),y(s)), which moves

through the spatial domain of an image to minimize the following energy functional [65]:

1

1
E(X) =Lsnake = J(; Esnake (X(S))ds = f[Eint (X(S)) + Eext (X(S))] ds

0

where

£(X)=S(X)+P(X) 3.1

Thefirst term istheinterna energy functional and is defined to by:
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2
]ds 3.2

500 =11, [at) 2] +ps) |22

The internal energy is composed of two types of energy; the first one is the
elastic energy which is the first term in eg.3.2, and the bending energy which is the
second term in eq.3.2. The first-order derivative discourages stretching and makes the
model behave like an elastic string (i.e. smoothes the contour). The second-order
derivative discourages bending and makes the contour behave like a thin metal disc (i.e.
slows down the contour when it gets near the edges of the region of interest in order to
force it to take the shape of the edges) as shown in figure 3.4. The weighting parameters
a(s) and B(s) can be used to control the strength of the model’s tension and rigidity,

respectively. In practice, a(s) and B(s) are often chosen to be constants [65].

The second term is the external or potential energy functional is calculated by

integrating a potential energy function P(x,y) along the contour X(s) [65].
PX) = [) P(X(s)) ds 3.3

The potential energy function P(x,y) is derived from the image data. It takes
smaller values at object boundaries as well as other features of interest. Given a gray-level

image I(x,y) viewed as a function of continuous spatial variables, (x,y), [65] a typical
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potential energy function is designed to make a deformable contour converge toward step

edges (see eq.3.4):

P(x,y) = —w|V[Go (x,y) * I(x,y)]I? 3.4

Where w, is a positive weighting parameter, G, (X,y) is a two-dimensional Gaussian
function with standard deviation o (see equn.3.5), V(.) isthe gradient operator, and * isa
2D image convolution operator. Note that the integration in equn.3.3 is only over P(x,y)
corresponding to the contour X(s).

For the edge potential energy, increasing o can broaden its attraction range since
the use of alarge o decreases the attenuation of low frequencies, resulting in decreased

blurring in the attracter image [66]. However, using a larger value for ¢ can aso cause a

shift in the location of the boundary which leads to aless accurate result [65].

—((x—x0)%+(y—y0)?)

G, (x,y)=K.e 202 3.5

Regardless of the selection of the exact potential energy function, the procedure for

minimizing the energy functional is the same [65]. The problem of finding a curve X(s)
that minimizes the energy functional € is known as a variational problem. The curve that

minimizes € must satisfy the following Euler-Lagrange equation:
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e (a5) = 5 (8 55) - vPO0 =0 34

To gain some insight about the physical behavior of deformable contours, we can view

eg.3.6 as aforce balance equation.

Fint(X)+Fpot(X)=0 3.5

where the internal forceis given by:
a ax a2 a’x
Foe 0 = (e 57) = 55 (852) 3.6
and the potential forceis given by

Fypor (X) = —VP 3.7

The internal force Fin discourages stretching and bending while the potential
force Fpot pulls the contour toward the desired object boundaries. Here, we define the
forces derived from the potential energy function P(x,y), given in eg.3.4 , as Gaussian

potential forces.
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To find a solution to eg.3.6, the deformable contour is made dynamic by
treating X(s) as a function of timet as well ass— i.e. X(s,t). The partia derivative of X
with respect to t is then set equa to the left-hand side of eg.3.6 as follows:

aX _d ax a2 a’x
ra=5(a5) = (657) - vp 3.8

The coefficient y isintroduced to make the units on the left side consistent with the right
side. When the solution X(s,t) stabilizes, the left side vanishes and we achieve a solution
of egq.3.6. We note that this approach of making the time derivative term vanish is
equivaent to applying a gradient descent algorithm to find the local minimum of eq.3.1.

Thus, the minimization is solved by placing an initial contour on the image domain and

allowing it to deform according to eq.3.10.

3.3.1.2.  Dynamic forcesformulation:

In the previous section, the deformable model was modeled as a static
problem. However, it is sometimes more convenient to formulate the deformable model
directly from a dynamic problem using a force formulation. Such a formulation permits
the use of more general types of externa forces which are often expressed as the
superposition of severa different forces[65]:

Fexe (X) = F1(X) + F(X) + -+ + Fy(X) 3.11
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where N is the total number of external forces. This superposition formulation allows the

external forces to be broken down into more manageabl e terms [65].

3.3.2. Geometric Deformable Moddls:

Geometric deformable models were independently proposed by Caselles et al.
[40] and Malladi et al.[41]. They can handle topological changes naturally. These models
are based on two techniques; the first one is the theory of curve evolution [65], which is
a famous theorem in differential geometry that had been proved less than ten years ago.
This theory says that " any simple closed curve moving under its curvature collapses
nicely to a circle and then disappears. That is, no matter how wildly twisting a curve
is, aslong asit issimple, it will "relax" to a circle and then disappear” . The purpose
of curve evolution theory is to study the deformation of curves using only geometric
measures such as the unit normal and curvature as opposed to the quantities that depend
on parameters such as the derivatives of an arbitrary parameterized curve. The second
technique which gives the basics for geometric deformable modelsis the level set method
[44], this technique represents curves and surfaces implicitly as a level set of a higher-
dimensiona scalar function, the models parameterizations are computed only after
complete deformation, thereby alowing topology to be adaptively and easily

accommodated.
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3.3.2.1. Level set method:

The level set method is used to account for automatic topology adaptation. It
offers the basis for a numerical scheme that is used by geometric deformable models. The
level set method for evolving curves was initially proposed by to Osher and Sethian
[44,46,48].

In the level set method, the curve is represented implicitly as alevel set of atwo
dimensional scalar function referred to as the “level set function”. This function is usually
defined in the same domain as the image. The level set is defined as the set of points that
have the same function value. The only purpose of the level set function is to provide an
implicit representation of the evolving curve. Instead of tracking a curve through time, the
level set method evolves the curve by updating the level set function at fixed coordinates
through time. This perspective is similar to that of an Eulerian formulation of motion as
opposed to a Lagrangian formulation which is analogous to the parametric deformable
model. A useful property of this approach is that the level set function remains a valid
function while the embedded curve can change its topology [65].

Suppose that you are given a curve separating one region from another, and a
force F that tells you how to move each point of the curve. In the figure.3.6 [64] below, a
black curve separates two regions, and at each point of the black curve the force F is

given. This force can depend on many physical effects.
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Figure3.6 Example of a Curve Separating Two Regions

Most numerical techniques depend on markers, which tracks the motion of the
boundary by breaking it up into buoys that are connected by pieces of rope. The ideaisto
move each buoy under the force F depending on the connecting ropes to keep things
straight. The hope is that more buoys will make the answer more accurate, but this is not
always the case, since in many cases the buoys try to cross over themselves, or the curve
tries to break into two. In these cases, it is very hard to keep the connecting ropes

organized [64].

Instead of following the curve itself, the level set technique introduced by
Osher and Sethian [44] takes the original curve (see figure 3.7-a) and builds it into a
surface. That cone-shaped surface, which is shown figure 3.7-b, has an excellent property;
it intersects the xy plane exactly where the curve sits. The surface in figure 3.7-b is called
the level set function; because it accepts any point in the plane as input and returns its
height as output. The initial contour (figure 3.7-a) is called the zero level set, becauseit is

the collection of all pointsthat are at height zero [64].
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Figure3.7. Level Set Function (Left) The Original Curve (xy Plane),
(Right) The Level Set Function (Curveisin Intersection with Surface and xy Plane)

The idea of the level set is that; the surface (figure 3.7-b) moves instead of
moving the curve (figure 3.7-a). By this, we can get rid of all sorts of weird things that
may happen when the curve deforms. In other words, the level set function expands, rises,
falls, and does all the work [64]. The technique of level set is called “Initial Vaue

Formulation” since its solution starts at a given position and evolves in time (figure 3.8).

Figure3.8 Evolution of Level Set

The advantage of the level set approach over the traditional curve evolution is that

the level set approach allows the evolving curve to change topology, break, and
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merge, which means that the evolving curve can extract the boundaries of particularly
complicated contours. In addition, this technique works in three dimensions with

almost no change, so three dimensional surfaces can be extracted as well [64].

Figure3.9 Two Initial Curves Joins Together asthey Grow

3.3.2.2.  Movingthe Contour:

Active contour is used to determine the real boundary of an object of interest
in an image. To do this, aninitial guess of the boundary of an object of interest is done by
the user. Then, the contour starts its evolution until it reaches the actua boundary of the

object of interest. Active contour is acollection of pointsin the plane:

V={vy, .., v}

vi=(,y)i=1,..,n 3.12
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The points in the contour iteratively approach the boundary of an object
through the solution of an energy minimization problem. For each point in the

neighborhood of v; an energy term is computed:
Ei = aEint (vi) + ﬁEext (Vi) 313

Where E;, E;,,; and E,,; are matrices. The value at the center of each matrix corresponds
to the contour energy at point v;. Other values in the matrices correspond spatialy to the

energy at each point in the neighborhood of v;.

Each point, v;, is moved to the point, Vz corresponding to the location of the

minimum valuein E; (seefigure 3.10) [104].

Prr Pr|
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nalgh borhood

Daformable Contour, ¥

Figure3.10 Moving the Contour Iteratively Under the influence of Energy
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3.3.2.3. Formulation of the Speed Function:

In image segmentation, active contours are defined as dynamic curves that
move toward object boundaries [49]. To accomplish this objective, an external energy is
defined. This energy moves the zero level contour (see section 3.3.2.1) toward object

boundaries. Supposethat | is an image, the stopping function g is formulated as follows:

1
gvi) = VG 3.14

where G, is a Gaussian kernel with a standard deviation ¢ . It is used to reduce the noise
in the image. The curve evolution is connected with the image data using the stopping
function g. This technique works well for objects having good contrast. On the other
hand, when the object boundary is blurred or has gaps, the geometric deformable contour
may fail to catch the boundary because the stopping function slows down the curve near
the boundary instead of completely stopping it. If the contour passes the boundary, it will
not be pulled back to recover the correct boundary. To remedy this problem, Caselles et
al. [42] used the stopping function in eq.3.15, where > 0 controls the convergence speed
of the stopping function. The geometric active contour model is expressed as a diffusion

equation by using the level set technique with the original curve X(st).

1

9D = Toveor 3.15
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CHAPTER FOUR

HYBRID WAVELETS-ACM

SEGMENTATION TECHNIQUE

4.1. BASIC DEFINITIONS:

Sincethe last few years, the work in the segmentation area has been concentrated
on geometric active contours technique i.e. the active contours which are implemented via
level set methods. The goal of thiswork is to address a wide range of image segmentation

problems in image processing and computer vision [49]. Active contours are
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mathematically defined as a set of the coordinates of control points on the contour

[33].They are parametrically defined as follows:

v(s) = (x(s),¥(s)) 4.1

where x(s), and y(s) are x,y coordinates over the contour, and s is the normalized index of
the control points. The active contour is described by an energy function which is
composed of two types of energy components. The first component is the internal energy
which makes the curve elastic (elastic energy Eeasiic) and limits its sharp deflections
(bending Energy Epending). The second component is the external energy which pushes the

curve towards the object borders [33]. The internal energy can be described as follows:

%v 2
as2

4.2

av|?
Eint = Eelastic + Ebending = a(s) |£| + ﬁ(s)

Where a is an adjustable constant that specifies continuity, and f is an adjustable constant
that specifies contour curving [33]. Both variables are usually chosen as constants which

are used to control the internal energy over the whole contour (see section 3.3.1).

The élastic energy is defined as the sum of the squared distances between each

two adjacent pointsin the active contour. It is mathematically described as follows:
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Eelastic = |, a(v(s) —v(s — 1))2ds 4.3

The bending energy is defined as the sum of the squared curvatures for all points

along the contour. Mathematicaly, it isthe described as the elastic energy derivate.

Epending = J, B(v(is—1) —2v(s) —v(s + 1))2ds 4.4

The external energy is extracted from the image to be segmented. It depends on

the gradient of thisimage. It is usually formulated as follows:

E _ 1.
external — 1+|Gy (x,y)*I (x,)|?

4.5

where I(X,y) is the image to be segmented and G, is a Gausssian kernel used to smooth
the image in order to facilitate the segmentation process. The energy function which is
needed to be minimized in order to achieve the segmentation process is expressed in

eqn.(4.6).

Esnake = fol Esnake (v(s))ds = fol Eint (V(S)) + Eext (V(S)) ds 4.6
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4.2. ANALYSISUSING INTENSITY PRIORS:

In 2008, H. Zhang et.al. [55] proposed a new method for enhancing the classical
geometric active contours (GAC) mode by incorporating ‘prior’ information into the
scheme. The modified model was applied to biomedical imagery, specificaly serid
ultrathin electron microscopy sections. The technique was used to apply prior analysis on
atraining set of data and provide geometric information about the target object during the
process of curve evolution. Experiments on synthetic and real images were performed
using the new technique. The analysis of results showed that the approach works better
than the previous methods. The proposed technique was implemented in semi-automated

fashion and gave noticeable improvements over manual schemes.

4.2.1 Intensity Priors:

Sometimes, curve evolution becomes sensitive and unstable so that the fina
result in some cases will be inaccurate or missing the real boundary [55]. To remedy this
problem, a number of points on the boundary of the region of interest (ROI) in the image
are manually selected to generate a training set. This set will represent the region of
interest but it needs to be further analyzed to discard some outliers since the selection is
effectively subjective. “ Suppose that the image under analysis is in the gray scale, the
samples are gray pixels and their intensities are fairly concentrated so that we assume the

samples follow a ‘univariate’ normal distribution and the variance is known empirically”
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[55]. As a result of a dtatistical analysis for the set of points, an intensity interval is

obtained by the following procedure:

1. The mean u and variance ¢° of the parametersis calcul ated.
2. The range of intensity values around the boundary of ROI is estimated by using a
confidence interval at a given confidence level (c). See equn.4.7 where z is the

critical value of (1-c/2) where c in the confidence level [0,1].

— o « — o %
(x—\/—ﬁz,x+ﬁz) 4.7

3. If thereisany intensity value that is out of the calculated range, it will be discarded.

4. Because the samples come from the same statistical distribution, interval analysis is
used (egn.4.8) to further to improve the intensity interval after discarding the
‘outliers’. See equn.4.8 where s, i=1 ... n, are the samples intensities, and m is the

mean of the intensities follows the t(n-1) student distribution.

1

5. For adegree of belief a, a confidence interval is created according to t-distribution.
The degree of belief that the sample liesin the confidence interval is (1-a) %, so, the

confidence interval will be asfollows [55].
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S S
m——t«,m _t“] 4.9
[m- e m+ ot

where ta isthe corresponding value of the degree of belief o in the t-distribution.
2

422 Geometric Priors:

Because the prior analysis is relative to a region of interest in the image, noise
around the region of interest may still affect the curve evolution. This effect leads the
contour to converge to false edge. By providing the contour with some geometric
information, curve evolution can ‘traverse’ regions of non-interest in order to successfully
arrive to the boundary of the object of interest [55]. In the training set, every point is
selected on the object boundary before starting prior analysis (see the previous section).
Also, a number of points can be chosen around the ROI in order to form a polygon by
these points. This polygon will enclose the target object in order to facilitate the curve
evolution and traverse any noise in the area. In some applications, acircle is needed to be
formed around the ROI instead of the polygon, to do this, a‘center’ point of the region of
interest, (Xo, Yo), and a‘radius of the circle, R, are needed to be specified. By this, the

formed circular shape covers the whole region of interest (see figure 4.1).
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Figure.4.1. Initial Contour: (Left) Polygon, (Right) Circle

4.2.3 Incorporating Priorsinto GAC Models:

In GAC approach, the stopping function g(.) plays a critical role since it controls
the arrival time of the active contour at the boundary of ROI during the iterative
approximation procedure. Note that the value of g(.) at image boundaries is closer to

zero, whileitiscloseto 1 in the homogeneous regionsin the image.

1

g(vi|) = TING.DE

4. 10

In order to affect the process of curve evolution, we can rebuild the stopping
function according to the collected prior information. Our technique is to modify the
stopping function using this prior information in order to make its value closer to zero
while the contour is approaching to the boundary of ROI. Since the image gradient near

its boundary is high, the following indicator function A(x) is used [55]:
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(1 xe®
A(x) = {O otherwise 411

where x is the image data (such as the intensity of a pixel) and ® stands for some prior
information such as the intensity interval. Then, the indicator function is smoothed with a
Gaussian kernel and subsequently multiplied with the smoothed image. Based on the
above, we proposed to change the stopping function g (in egn.4.10) in the following

manner:

1

In egn.4.12, B is no longer a simple weight but is a matrix formed by the convolution of
the Gaussian G, with the indicator function A(X), and e indicates point-to-point array

multiplication [55].

43. MODIFYING THE STOPPING FUNCTION:

The speed function can be improved more to achieve faster convergence to the
region of interest in the image, below there are some suggested stopping function that we

investigated.

1
9(VID = g M = V(G x DI’ 4.13
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After expanding the exponentia term in equn.4.13 using Taylor series it
becomes as follows:
1

)2eMZ B (x)3M3 B (x)*eMm4
2! ' 3! ' 41

g(VI) =

4.14
248 (x)eM+EE

In the stopping function of eq.4.13, the exponential function is integrated with
the stopping parameters in the denominator of eq.4.12. The aim of this integration is to
increase the speed of convergence of the stopping function in eq.4.12, since it is known
from mathematics that the exponential function has the fastest increase over other
functions, and so, if thisfunction is added in the denominator of the stopping function, the
stopping function will decrease faster. Using this technique, it is expected to increase the
speed of convergence of the active contour by a noticeable percentage. In eq.4.14, the
exponential term in eg.4.13 is expanded using Taylor series up to the fourth order. This
modification in the stopping function is expected to increase the speed of convergence of
the stopping function by decreasing the computation time. The expansion of the
exponential function is stopped after the fourth order since there will be no improvement
in the speed of the contour after this order. This result was obtained by trial. The results
of implementing eqs.4.12, 4.13, and 4.14 and their effects over the speed of the active

contour will be presented and discussed in the following chapters.
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4.4. IMPROVING THE MODEL USING THE WAVELET TRANAFORM:

Wavelets are mathematical functions that cut up data into different frequency
components, and then study each component with resolution matching its scale [67]. One
of the important techniques used in wavelet is signal decomposition which is a sampling
technique used to decrease the complexity of the signal in order to facilitate its study. One
of the important Matlab commands which are used to perform this task over two
dimensiona data is “dwt2’. Using this command to decompose an image results in a
sampled image identical to the origina one but with its size ¥4 of the origina one

(figure.d.2).

Figure.4.2 Processing an I mage Using Wavelet
(Left) Original Image, (Right) Decomposed | mage

By using this technique on an image before starting its segmentation and then
start the segmentation process of the decomposed image, the speed of the active contour

is expected to be noticeably increased. The final contour from this process can be used as
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an initial contour to segment the original image. This procedure is expected to decrease

the time required for segmenting large images such as medical images.

The procedurein which the developed model followsis described below:

1. At the beginning, an image to be segmented is |oaded and smoothed.
2. The loaded image | is decomposed using wavelet transform. The output of this

step is adecomposed image | g.

3. A Set of points are chosen around the region of interest in the image .

4, The confidence interval of intensities of the selected points is computed.

5. The B matrix is formed depending on the confidence interval.

6. The gradient of the image l4 is computed and the stopping function is formed

depending on [ matrix.

7. An Initial contour is chosen and evolution is started. This contour is run for a
fixed number of iterations.

8. Steps 3 — 6 are repeated but this time for the original image l.

0. The fina contour of step 7 is loaded as an initial contour for segmenting the
original image, evolution resumed.

10. When the active contour reaches the ROI, in the real image, it stops there and the

final result of segmentation is displayed.

The data flow diagram which describes the listed procedure of the Wavelet

Active Contour Model (WACM) agorithm described above is shown in figure 4.3:
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Figure.4. 3. Data Flow Diagram for the WACM Segmentation Technique
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CHAPTER FIVE:

EXPERIMENTS AND RESULTS

5.1. DEVELOPING AN INITIAL ACM MODEL:

Our results were obtained using the system proposed by Li et.a. [49]. The
system was implemented in Matlab7.5.0 (R2007b) to gain familiarity with active contour
models and its different controlling parameters. The original stopping function of the

contour at this step isillustrated below in eg.5.1.

1
9WVID = TvGane 5.1

To test the performance of the system quantitatively, the following steps were

implemented:
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1 Gaussian white noise, with a signa to noise ratio (SNR) =10dB, was added to a
512x512 synthetic image to produce image 5.1(b).

2. In order to reduce the noise in the input image which can lead the contour to
false objects, the noisy image was smoothed with a Gaussian filter having asize

of 15x15 pixels and a standard deviation ¢ = 1.5 (seefigure. 5.10).

(@) (b) ©

Figure5.1. 512x512 Synthetic Image: (a) Original, (b) Noisy (SNR=10 dB), (c) Smoothed

3. The gradient of the smoothed image is calculated in order to form the stopping
function of the evolving contour using eg.5.1; this function is used to stop the
active contour when it reaches the edge of the desired object in the image since
this function has its minimum value (approximately zero) on the edges.

4, Aninitial contour was specified around the region of interest in the input image.
The specified contour deforms automatically and stops when it reaches the

desired object boundaries.

In the developed program, the user has three options to choose from to select the

initial contour which are:



|Pageb3

A Polygon Initial Contour; in which the user should specify a number points on
the image using the mouse curser to form a polygon around the region of interest
in the image.

A Circle Initial Contour; in which the user should specify a center and aradius of
a circle on the image using the mouse cursor to let the program form a circle
initial contour around the region of interest in the image.

A Program Specified Initial Contour; in which the program itself defines an

initial contour around the region of interest in the image.

nitial contols Initiad ontour Initial contour

Figure5.2. Initial Contour (a) Polygon, (b) Circle, (c) Program Specified

After the initial contour is created, it starts evolution until it reaches the edge of
object of interest in the image (see figure.5.3 where the synthetic image in
figure5.1(b) is scaled to 128x128 and then segmented using a user-specified

polygon initial contour around ROI):
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Figure.5.3. Scaled Segmented Image

The reason why the size of the image in figure 5.1(b) is rescaled to its ¥ before
segmenting it refers to the fact that the size of this image is big. This means that the
segmentation process of this image needs a large number of computations to be done by
the algorithm in order to deform the contour. This number of calculations needs a lot of
time, which means that the deformation process of the contour will be slow, i.e. the
segmentation time will be too long.

After modifying the algorithm in the coming sections, it will be easy to segment
the origina image in figure5.1(b) without rescaling it. In figure.5.4, the result of
segmenting the origina image in figure.5.1(b) without rescaling it, before the
segmentation process started, and using the initial algorithm is shown. This process was
done in order to compare its result with the future results after modifying the current

segmentation algorithm.
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Figure.5.4. Result of Segmenting 512x512 Image Using The Initial Code

In figure5.5, the data flow diagram describes the steps in how the initia
algorithm works. This agorithm needs to be improved in order to increase its efficiency

and thisis our mission in the following sections.
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5.2. INCORPORATING PRIOR INFORMATION:

As noticed in section 5.1; the fina result of segmentation is inaccurate or
missing the real boundary, especially, when the input image is noisy. The reason for this
bad result is that the noise in the input image leads the contour to converge to false edges.
To solve this problem; number of points around the boundary of the region of interest
(ROI) are manually selected to generate a training set. This set will form the points of
interest (or samples). It needs to be further analyzed to discard some outliers since the
selection of process is effectively subjective. After the analyzing the set of points, an
intensity interval is obtained by applying some statistical techniques to the collected data.
These techniques are discussed in detail in section (4.2.1). The formed intensity interval
contains the pixel-range in which the region of interest (ROI) is situated.

As an example, the previous process was applied on the image in figure5.1(b) to
segment the circle shape in it. The intensity values of the chosen points around the ROI
were [253, 251,255,204,255,213]. After applying statistical analysis to the previous set
using equn.4.7 with a critical value (c=0.98), the remaining intensity values has been
limited to [253, 251,255,255,213] as result the initial intensity interval is [211,255]. By
applying equn.4.9 on the obtained intensity interval using a degree of belief a=0.02, the
remaining intensity values was limited to [253,251,255,255] which means that the final

intensity interval became [251,255].
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After getting the intensity interval, amatrix A isformed with its dimensions are
identical to the input image dimensions. This matrix should contain ones in each pixel
where the intensity value of its peer pixel in the input image is within the intensity range
of the intensity interval formed previously. The remaining pixels of this matrix are set to
zero. After obtaining (A) matrix, it is smoothed by a Gaussian filter. The result of this
process is the matrix (8) which contains the location of the desired region of interest

(ROI) extracted from the input image. Figure 5.5 shows an image mapping the resulting 4

and () matrices of the previous example.

Figureb5.6. (Left) An Image Mapping 4 matrix, (Right) An image Mapping 8 matix

In the next step, each point in this matrix (8) in multiplied by its peer point in
the image gradient-matrix (|V(G, * I)|? ), the resulting matrix is used to form the new

stopping function g according to eg.5.2.

1
144 (x)+|V(Gy*D]?

g(vI|) = , B(x) = G, * A(x) 5.2
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This modification on the stopping function of the active contour is expected to
increase its speed of convergence to the edges of the region of interest (ROI), since the
stopping function - after this modification — will no longer have sharp edges except the
edges of the (ROI), see figure 5.7, and this will force the contour to reach the edge in

smaller period of time than it did before.

(b)

Figure.5.7 An Image M apping the Stopping Function of the Segmented Synthetic | mage
(Figure.5.1(b)). (a) Using Image Gradient Only (b) Incorporating Prior Infor mation

Steps of forming the stopping function with incorporating prior information

are summarized below:

1. Load an input image and smooth it.

2. Choose a set of points on the borders of the region of interest (ROI) in the
input image.

3. Create a confidence interval containing the range of intensities of the region

of interest (ROI) using eqs.4.7 - 4.9.
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4, Form amatrix A with dimensions identical to the input image dimensions, this

matrix contains ones in each pixel where the intensity value of its peer pixel
in the input image is within the intensity range of the intensity interval formed

using prior information, and the remaining pixels of this matrix are set to zero.

5. Form matrix B by smoothing matrix A.
6. Calculate the gradient matrix of the input image and smooth it.
7. Form the new stopping function using eq.5.2.

The result of segmentation with incorporating prior information to the stopping
function is excellent when comparing it to the previous method; the speed of convergence
to the edges of the region of interest is noticeably increased. Recall the poor result in
figure 5.4 (no convergence to the ROI even after 1000 iterations which took more than 20
minutes).

The segmentation of the same image (figure 5.1(b)) was repeated again, but this
time with incorporating prior information to the stopping function g. The result was
excellent; the contour had converged to the edge of (ROI) in 3 minutes and 45 seconds
after 180 iterations. The result of re-segmenting the noisy synthetic image in figure 5.1(b)

with incorporating prior information is shown in figure.5.7 below.
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Figure.5.8. Segmentation of Noisy 512x512 Synthetic Image
With Incorporating Prior Information to the Stopping Function

There are two main issues which have a great influence on the speed of

convergence of the active contour to the right edge with a minimum time, these factors

are:

1. The educated choice of the location and number the points on the boundaries of
the (ROI) in the image which are used to obtain a confidence interval in order to
form B matrix, (i.e. the best confidence interval, the best stopping function,
which means, the most convergence efficiency).

2. The educated way of specifying the initial contour (i.e. as the initial contour is

closer to the region of interest, it needs fewer iterations to converge to the right

edge which means a shorter convergence time).

These factors have a great influence on the active contour (snake) performance;
they need only alittle bit more accuracy from the user. It is recommended to put them in

consideration when using the algorithm to segment an image by specifying the initia
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contour as close as possible to the ROI and choosing the points, which are used to form 8

matrix, inside the ROI.

5.3. Introducing A NEW Stopping Function:

The stopping function (shown in eg.5.2.) can be enhanced more in order to make
the active contour converge faster and faster. This can be achieved by using the function
(e*) in the denominator of the stopping function in eq.5.2. By applying this change, we'll
benefit from the mathematical properties of the function (e*) in increasing the speed of
the stopping function. The following equations states how we can use the function ( e* )

to improve the speed of the current stopping function.

1
gUVID) = e M =1V(G, * DI? 53

If we expand the term (e *)*M ) using Taylor series expansion, this term will become

asthe following:

2402 3403 4404
)" eM?” BX)"eM” B()" M

2! 31 41 e >4

ePCIM =14+ B(x)e M +

Asaresult of thisexpansion, eg.5.3. becomes as the following:

1
g(vi]) = 5.5
24+ p() ey +ECDMZ FE) M7 BTC - M1
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In eq.5.5, the expansion was stopped at the 4™ power because there is no
speed improvement of the snake after this value. This result was obtained after running

the algorithm for several times.

Table 5.1 shows the performance of the active contour (snake). The resultsin the
table were obtained after performing atest over the ACM algorithm using the eqs.5.2, 5.3,
and 5.5 respectively in the stopping function. The target of this test was to determine the
most suitable stopping function for the ACM using an initial contour as “program
specified contour”.

The test was performed using 512x512 synthetic images and the initial contour
used in each run of the program was chosen to be a “program specified contour” around
the whole input image. Also, the confidence interval, obtained after prior information
analysis, was fixed for each image tested by the ACM agorithm using different stopping
functions. The reason why this confidence interval was fixed is that; we wanted to test the
effect of changing the stopping function, of the ACM, on the speed of its convergence for

each image tested. Thisrequired usto fix thevalue of [ matrix.
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Conver gence speed Co_nver gence speed Couns\i/ﬁrggs?i%?ieed
Tested Input image using priorsonly using priors& e* truncated e*
#of itrs. Seg. time #of itrs. Seg. time #of itrs. Seg. time
(sec.) (sec) (sec)
Figure5.9. (a) 780 794 1070 1070 780 778
Figure.5.9. (b) 800 790 1070 1069 800 816
Figure5.9. (c) 690 693 930 941 690 723
Figure.5.9. (d) 660 712 1060 1072 660 728
Avféeijzggf:rz‘;’eed 102 100.5 104.5

Table 5.1 Results of Segmenting Synthetic Images Using a “ Program Specified” Initial Contour

From table 5.1, we conclude that; if we are using the initial contour to be

“program specified”, the best choice for the stopping functions of the ACM is to select

the one which incorporates prior information but without using the exponentia (eg.5.2.)

to accomplish this task. In this case, we can get the fastest speed of convergence of the

snake in terms of time and number of iterations. The input images used in the above test

are shown in (figure.5.9).
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Figureb. 9. 512x512 Synthetic | mages

The same test was repeated again using the same test images. This time, the
initial contour was chosen to be a “user-specified polygon”. Using this kind of initial
contours, the user is asked to choose points around the ROI in the image. These points are
used to form a contouring polygon around the ROI. Once this is done, the contour starts
deforming until it reaches the edges of the ROI and stops there. The same conditions as

the previous test apply here. Results of this experiment are shown in table 5.2.
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Convergence speed | Convergence speed Coun_.f,-’ ﬁrgg;?i%? Ss’%eed
Tested Input image using prlorson.ly using priors & .e truncated e’_‘
#of itrs. Seg. time #of itrs. Seg. time #of itrs. Seg. time
(sec) (sec) (sec)
Figure.5.9. (a) 170 196 170 196 170 196
Figure.5.9. (b) 280 324 280 324 210 243
Figure.5.9. (c) 140 136 180 176 140 135
Figure.5.9. (d) 180 174 250 245 180 173
AVG. contour speed
(Sec./100itrs.) 108 109 107

Table 5.2 Results of Segmenting Synthetic Images Using a “ User- Specified Polygon” Initial Contour

From the results above, we conclude that; if our choice for the initial contour

is a“user-specified polygon,” then, the best selection of stopping functions for the active

contour (snake) is using priors & truncated e* in the stopping function (eq.5.5) to

accomplish this task. In this case, we can get the fastest speed of convergence of the

snake in terms of time and number of iterations.

The same test was repeated for the third time, but now after choosing the

initial contour to be a “user-specified circle’. Using this kind of initial contours, the user

is asked to choose a center and a radius of a circle around the ROI in the input image.

Once this is done, a circle appears contouring the ROI. It starts deforming until it reaches

the edges of the ROI and stops there. The same conditions as the previous tests apply

here. Results of this experiment are shown in table 5.2.



|Page67

Conver gence speed Co_nver gence speed Coungr%gﬂ%?ieed
Tested Input image using priorsonly usingpriors& e”* truncated e*
#of itrs. Seg.time #of itrs. Seg.time #of itrs. Seg.time
(sec.) (sec) (sec)
Figure5.9. (a) 400 350 525 462 350 308
Figure.5.9. (b) 400 348 425 373 400 348
Figure.5.9. (c) 1100 940 1260 1065 910 793
Figure.5.9. (d) 1150 999 1320 1150 1000 875
s | s o

Table 5.3 Results of Segmenting Synthetic mages Using a “ User - Specified Circle” Initial Contour

From table 5.3, we conclude that; if we are using the initial contour to be a
“user-specified circle,” the best choice for the stopping function of the active contour
(snake) is selecting the one which incorporates priors only (eg.5.2.) to accomplish this
task, except when the shape of the ROI square-like. In this caseg, it is recommended to use
the stopping function which incorporates priors and uses the truncated e* (eg.5.5.) to

successfully do this task.

The results of the previous tests above showed that the best initial contour
used around the ROI of the snake is the “user-specified polygon”; Thisinitial contour can
be used for any shape of the ROI and it gives excellent results. The “user-specified circle’
initial contour gives very good results, except when the ROI is square-shaped, in this
case, this type of initia contour is not recommended to be used. Using a “program-

specified” initial contour, gives very good results but it needs more time than other
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techniques to converge to the ROI. This type of initial contours is recommended to be

use when the ROI ishig.

In figure.5.10, the resulting segmented images of the previous tests are shown.
They are arranged according to the initial contour used in the segmentation process of

each image.
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program specified

User specified polygon User specified circle

Figure5.10. 512x512 Segmented Synthetic I mages
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Figure 5.11, shows the data flow of the program after the modification in this section:

Select an
image

i

smooth the selected

image & calculate its
gradient

i

Select points on
the boundary of
ROI in the image

v

Calculate confidence
interval of intensities, form 3
matrix, and integrate it to
the stopping function

i

Choose the
way to form
the initial
contour

ﬁUSer defined circle————Y————User defined poylgonj

Choose center & Choose points to
radius to form a form a polygon
circle around ROI Program defined contour around ROI
[ J
Start evolution, display contour
> development after each n
interations

Display the
final result of
segmentation

i

End

Figure5.11 M odified Data Flow Diagram of The Segmentation Algorithm
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54 THE WAVELET-BASED ACM MODEL:

From previous experiments, we can find that the speed of the active contour is
approximately one second per iteration. This speed can be improved more by
decomposing the input image using wavelet transform and then running the active
contour to segment ROI in the sampled image. The final contour of this process is used as
an initial contour for the next step in which the real image is segmented. This process is
expected to increase the speed of the active contour by a noticeable ratio.

The purpose of the next test is to evaluate the performance of the active
contour after the new enhancement (using wavelet) is applied. The image used in this test
is IM78 (see figure 5.14). After adding the new enhancement to the program, it was run
30 times using the input image (IM78). After each 10 runs of the program, the stopping
function was changed (in order to test the enhanced program using the three proposed
stopping function in egs. 5.2, 5.3, 5.5). The results of this experiment are shown in

table5.4.
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Convergence
. . Convergence Convergence speed using
Stopping Function spe_zed using sp_eed using priors&
priorsonly priors& e* truncated e*
1 15.215 16.588 16.31
@ 2 16.421 14.389 14.785
'@ _5 3 18.429 16.738 14.490
2 S 4 15.696 17.190 14.187
o> 5 14.689 15.512 14.659
% é 6 15.491 14.368 14.289
Sd 7 14.321 16.982 14.250
g 8 14.806 14.356 14.736
~ 9 15.565 14.596 13.532
10 17.334 14.279 13.016
Aver age Speed sec./100 Itr. 15.797 14.2 14.423
Time Reduction 0 -10.11% -8.7%

Table 5.4 Active Contour Speed After Using Wavelet in the Developed ACM

By using wavelet to down-sample the medical image and then start segmenting the
sampled image (phasel), the algorithm speed has increased by more than 5 times. This

process does not affect the accuracy of the program (see figure 5.12).

After getting the final contour of the previous step, it isused as an initial contour for
segmenting the real input image (phase2). Applying this technique has decreased the
numbers of computation done by the algorithm and this improvement has increased the
speed of the contour evolution. Previoudly, it took the algorithm 104 seconds to perform
100 iterations, while now, the time required to perform this number of iteration has
dropped to 85 seconds only. For example, suppose that the algorithm is required to

perform 200 iterations in order to allow the active contour to reach the ROI, if the first
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100 iterations are performed using the sampled input image, the time needed to do this
step is only 15 seconds. The next 100 iterations are to be performed using the find
contour of the previous step to segment the real 512x512 input image. This step requires
85 seconds to accomplish it. The total time required for the whole segmentation process
(200 iterations) is 100 seconds. Recall that before this enhancement, the time needed to
perform 200 iterations was 208 seconds. This means that, by applying the new technique,

we have got an improvement of 43 % in the speed of convergence of the snake.

(a (b)

Figureb. 12 Segmentation Result Using Wavelet (a) Segmented Non-sampled | mage, Speed of
Snake=104 sec./100itr. (b) Segmented Sampled I mage, Speed of Snake=15.33 sec./100 itr.

The new technique was tested on the medical image named IM78 (see figure 5.14)
and compared with the previous segmentation technique (see sections 5.2 and 5.3). Using
the previous technique, the segmentation process was accomplished after the algorithm

performed 70 iterations with the rate of 108 sec./100itrs. which means that the process
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was accomplished after 76 seconds. Now, the new technique is applied on the same
image. This technique has two phases. In the first phase, the image is sampled using
wavelet and then segmented by running the algorithm to perform 35 iterations with the
rate of 15 sec. /100 itrs (see table 5.4). Then, the second phase started by using the final
contour of the previous phase as an initial contour for segmenting the real input image by
performing another 35 iterations by the algorithm with the rate of 108 sec. /100 itrs. (see
table 5.2). The time consumed to accomplish the whole process was 43 seconds which
means that, by using the new technique, we got 43% improvement in the speed of the
snake.

Assuming that the number of iteration required to reach the ROI using the snakeis
denoted by ( n), we can calculate the improvement ( 1 ) in the active contour speed which

we got by applying the new technique as follows:

_ ((108/100 #n)~((198/19 «™/2)+(15/190 * n/z)))

- 108/100 1

=43 %

Thefollowing notes ar e clear ly observed when using thistechnique:

. The active contour speed is clearly increased by a factor depending on the ratios of

the number of iterations used in each phase.
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The speed of the contour depends on the stopping function used, and it is the
maximum when using the stopping function which incorporates prior & uses the
truncated e* (eg.5.3) to stop the snake on the edges of ROI (see table.5.4).

This method requires the user to define the confidence interval (see section 5.2)
twice; the first time is when tending to segment the sampled input image (phasel)
and the second time is when tending to segment the real input image (phase2). The

new data flow diagram of the program is shown in figure 5.12.
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Figure.5. 13 Data Flow Diagram of the ACM Model Using Wavelet
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5.5. APPLICATION OF WACM ALGORITHM ON SIMULATED DATA IN

MEDICAL IMAGING:

In this section, the developed program was used to segment a set of 512x512 real
DICOM CT images in order to examine its performance. The results of the previous tests
were taken into account in this experiment. So, the initial contour used in this experiment
was the “user-specified polygon,” the stopping functions in egns.5.2, 5.3, and 5.5 were
used respectively in the segmentation process of each image. Also, same initial contour
and P matrix are used for each image. The DICOM images used in this test are shown in

figure 5.14.

IM97

Figure .5.14 512x512 DICOM CT Images

Table 5.5, shows the results of segmenting the DICOM images of figure 5.14 using

“user-specified polygon” as an initial contour without using wavelet:
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Convergence speed | Convergence speed Coung ﬁrggs?i%? SS’%Leed
DICOM image name using priorsonly usingpriors& e”* truncated e*
#of itrs. Seg.time #of itrs. Seg.time #of itrs. Seg.time
(sec.) (sec.) (sec)
IM42 80 80.3 80 81 80 81
IM 66 80 79 80 79.5 80 83.6
IM78 110 113 100 105 100 101
IM89 80 82 80 80.4 80 80.4
IM97 240 241 240 225 240 228
IM102 70 72 70 69 70 63
AVG. contour speed 99 sec./100iitrs. 102 sec./100iitrs. 98 sec./100 itrs.

Table 5.5 Results of segmenting DICOM imagesusing “User- Specified Polygon” Initial Contour

After incorporating wavelet to the algorithm, we got the following results for

segmenting the same images:

Conver gence speest | Convergence speca | CoTYergence e
DICOM image name using priorsonly usingpriors& e* truncated e*
#of itrs. Seg.time #of itrs. Seg. time #of itrs. Seg.time
(sec.) (sec) (sec)
IM42 80 46.5 80 46.2 80 46.3
IM66 80 46 80 455 80 47.6
IM78 110 65.6 100 59.6 100 57.8
IM89 80 475 80 46 80 46
IM97 240 140 240 129.6 240 1313
IM102 70 41.6 70 395 70 36.6
AVG. contour speed 58.6 sec./100 itrs. 56.4 sec./100 itrs. 56.25 sec./100 itrs.
Speed | mprovement 41 % 44,7 % 42.6 %

Table 5.6 Results of segmenting DICOM imagesusing WACM Algorithm
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As noticed from table 5.6, the average speed improvement using the new technique
(WACM) is approximately 43%. The maximum improvement of the contour speed is
obtained when incorporating prior information and full e* to the stopping function of the

snake. Figure 5.15 shows the resulting segmented DICOM images.

IM78 IM97 IM102

Figure.5.15 512x512 Segmented DICOM Images

5.6 EVALUATING THE ALGORITHM ACCURACY:

Accuracy of the algorithm is an important measure which helps the user to
decide if the algorithm suits his’her application. To evauate the accuracy of WACM
algorithm, the segmented areas of synthetic images in figure 5.10 were compared with the
area of the actual objects. Suppose we want the obtain the segmentation accuracy of the

image in figure 5.16, to do this, we find the number of pixelsin both the areas segmented
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or unsegmented by error and add them together. Then, the obtained result is divided by

the actual number of pixels inthe ROI (see eq.5.6)

— ROT AOD

—_— Contour

—  Umngegmented area in' ROT (Al)
Segmented area out of ROI (A2)

Figure5.16 Segmentation accuracy test
_ (1 = L[NGAD+N ) 0
Q_(1 2[ e )*100/0 56

where N(.) is the number of pixels, Agisthe areaof ROI, A; isthe unsegmented areain

the ROI, and A is the segmented area out of ROI.

Applying the previous formula of the synthetic imagesin figure 5.10, we got the

following results for the algorithm accuracy.
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Image g;ggi;?erg Polygon Initial | Circlelnitial
Initial Contour Contour Contour
@ 92.0 % 85.7 % 88.7 %
(b) 91.3 % 845 % 89.0 %
(© 90.0 % 89.0 % 85.6 %
(d) 89.0 % 88.5 % 88.7 %
Q Avg. 90.6 % 86.75 % 88.0 % 88.45 %

S.7.

Table 5.7 Evaluating WACM Algorithm accuracy

GRAPHICAL USER INTERFACE (GUI):

A friendly graphical user interface was designed to facilitate the

practitioner interaction with the algorithm. At the beginning, a welcome

screen appears to identify the algorithm objective (figure 5.17-Left). Then,

the user is asked to load an image to segment it (figure 5.17-Right).

dh Select an am

nage to segment

i

tok s [

<p
Flacent Placas

hico

£

fmipics

Hame

Date modified  Type

| accracytest
DECOM medical images 512-512

480-320

-] rBsBE-
See

L L]
i

Figure5. 17. Program Initialization, (L eft) Welcome screen,
(Right) Request for loading an image to segment it.
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After choosing the image, it is smoothed by a Gaussian kernel and
decomposed using wavelets, then, the user is asked to choose a set of points
in the ROI in order to form an intensity confidence interval (figure 5.18-a).
After that, p matrix and image gradient are computed and the stopping

function of the active contour is formed. Figure 5.18-b.

) s 750 600
B Figure 1 oo o) | Figuare 1 — L
File Edit View Insert Tools Desktop Window Help ¥ le Edit View [msert Tools Deskiop Window m
O EEY B GEe L aame ¢ DB =0

edge detection function wsing gradiont only

Ao

100 150

edge detaction function using pricr information

50

100

150 *
200
250 L

50 100 150 200 250
@) (b)

Figure5. 18. Incor porating Priors (a) Choosing Pointsin the ROI, (b) mage of the Stopping Function

In order to start the segmentation process, an initial contour around ROI

should be specified by the user (figure 5.19).
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Figureb5. 19 An Interface Asking the User to Choose the Type of Initial Contour

The program offers the user the capability to specify one of the following initia
contours: User-Specified Polygon around ROI (figure 5.20), User-Specified Circle around

ROI (figure 5.21) and Program-Specified Contour around the whole image (figure 5.22).
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Fle Edit View Insert Tools Desktop Window Help
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Figure5. 20 Specifying A Polygon Initial Contour around ROI
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Figure5. 21 Specifying A Circle Initial Contour Around ROI
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Figure5. 22 A Program Specified Contour Around the whole image
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After choosing the initial contour, it starts its evolution for n/2 iterations,
where n is the total number of iterations required by the contour in order to reach ROI,

this processis called Phase | (seefigure 5.23).

<} MATLAE 7.5.0 (R2007h)

Figure 4
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200
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Figure5. 23 Final Contour of Phase

The final contour of the previous step is used as an initial contour to segment
the real image; this processis caled Phase Il. Figure 5.24 shows the final result of the

segmentation process.
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Figureb5. 24 Final Result of the Segmentation Process

Finally, the user is asked if he/sheis satisfied with the segmentation result. If

not, the program gives the user a choice to resume or repeat the segmentation process.

Figure5. 25 User Satisfaction of the Segmentation Result
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CHAPTER SIX

DISCUSSION AND CONCLUSIONS

6.1. SUMMARY OF RESULTS:

The role of medical imaging has expanded beyond the simple visualization and
inspection of anatomic structures. It has become a tool for surgical planning and
simulation, intra-operative navigation, radiotherapy planning, and for tracking the

progress of diseases.

Medical image analysis has become one of the most active areas of research these
days, many important achievements have been addressed in thisfield whichisvita for
physicians who become highly dependent on the image information in order to give an

accurate diagnose for diseases.
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Computer processing and analysis of medical images covers a broad number of
potentia topic areas. One of the well known approaches in medical image analysis is
Image Segmentation; its idea is to subdivide the image into regions in which each one
contains components having the same properties. The goal of segmentation is to simplify
and/or change the representation of an image into something that is more meaningful and
easier to analyze. This approach iswidely used in extracting the tumor areas from medical

images as afirst step in the therapy planning.

Many techniques in image segmentation were proposed. The most visible
approaches brought to maturation during the 1980s and 1990s in terms of both
methodology development and application were boundary finding strategies based on
deformable model. This approach can be found in literature under different names such
as snakes, active contours, surfaces or balloons; It is a deformable continuous curve
consists of a set of control points connected by straight lines. Forces are applied upon the
snake in order to control its shape. Its objective is to divide an image into a number of
strongly correlated objects of reality. Shaping the image by fitting active contours is an
interactive process in which an initial contour should be suggested by the user (should be
as close as possible to the intended shape). The contour will be attracted to featuresin the
image extracted by internal energy creating an attracter image.

In this work, three techniques for specifying theinitial contour were proposed,
these methods are; (1) User-Specified Polygon initial contour; in which the user should

specify a number points on the image using the mouse curser to form a polygon around
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the region of interest in the image. (2) User-Specified Circle initial contour; in which the
user should specify a center and a radius of a circle on the image using the mouse cursor
to let the program form a circle initial contour around the region of interest in the image.
(3) Program specified initia contour; in which the program itself defines an initial

contour around the region of interest in the image.

Sometimes, curve evolution becomes sensitive and unstable so that the final result
in some cases will be inaccurate or missing the real boundary. To remedy this problem; a
number of points on the boundary of the region of interest (ROI) are manually selected to
generate a training set. This set will form the points of interest (or samples) and need to

be further analyzed to discard some outliers since the selection is effectively subjective.

Within the GAC technique, the stopping function g plays a critical role and controls
when the curve evolution will arrive at the boundary during the iterative approximation
procedure where there is high image gradient (e.g. at a boundary) the value of g will be
closer to zero; in homogeneous regions the value will be closer to 1. Thus, we can revise
the stopping function according to the prior information where we wish the priors to
affect the process of curve evolution. Our method was to modify the stopping function in
order to make its value (around object boundary) closer to zero by employing the prior
information while the curve is approaching to the boundary. This process was applied in
three different ways in which the speed of convergence of the snake to the edges of the

region of interest was noticeably improved.
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The speed of the active contour can be improved more by decomposing the input
image using wavelet transform and then running the active contour to segment ROI in the
sampled image. The final contour of this process is used as an initial contour for the next
step in which the real image is segmented. This process has increased the speed of the

active contour by anoticeableratio.

The developed model was then used to segment a set of 512x512 real DICOM
CT images in order to examine its performance on real images. In this experiment, the
program has given very good results, but it was needed to improve the snake speed more
in order to reduce the segmentation time of the medical images. To solve this problem,
Wavelet transform was used to down-sample the input image. The resulting image after
down sampling was segmented by the snake. The final contour resulting from this process
was used as an initial contour for the snake to segment the original (un-sampled) input

image. This process has increased the speed of the snake very significantly.

In order to facilitate the use of the proposed model, a friendly graphical user
interface (GUI) was designed. It starts by asking the user to choose an image to segment.
Next, the selected image is loaded and the user is asked to choose a set of points on the
edges of ROI. After that, the user is asked to choose the type of the initia contour and
also to select points around the ROI in order to create it. Then, the evolution of the
contour over the image is displayed after each n iterations. At the end of segmentation

process, the final curveis displayed contouring the ROI in the image and the user is asked



|[Page9l

if he/she is satisfied with the segmentation result and if he/she wants to continue or

repeat segmentation of the current image, or if he/she wants to segment a new image.

6.2.

FUTURE RESEARCH DIRECTIONS:

The following research directions are expected to have promising results:

Joining active contour and region growing segmentation techniques by using the
final contour obtained by the snake to create an initia seed for the region
growing segmentation technique.

Performing parallel segmentation of two or more objects in an image at the same
time using the active contour approach.

Constructing a three dimensiona object after segmenting a series of two
dimensional images using active contour. The final contour obtained after

segmenting each image can be used as an initial contour to segment the next one.
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