
VLSI CORE ARCHITECTURE FOR GF(P) ELLIPTIC CURVE
CRYPTO PROCESSOR

Adnan Abdul-Aziz Gutub

Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran 31261, SAUDI ARABIA
Email: gutub@ccse.kfupm.edu.sa

ABSTRACT

A novel GF(p) crypto processor core architecture is presented in
this paper. The core is used to implement GF(p) Elliptic Curve
Cryptosystem (ECC). The architecture is such that a single core
can be used to implement ECC or alternatively a two core
solution can be adopted. As a result, the core architecture
allows the exploitation of the parallelism that exists in elliptic
curve point addition and doubling. The core architecture results
in several advantages over conventional implementations with
regard to speed and power consumption.

1. INTRODUCTION

In 1985, Niel Koblitz and Victor Miller proposed Elliptic Curve
Cryptosystem (ECC) [1-9], which has received considerable
attention from mathematician around the world. Although
critics are still skeptical as to the reliability of this method, to
date no significant breakthroughs have been made in
determining weaknesses in the algorithm, which is based on the
discrete logarithm problem over points on an elliptic curve. The
fact that the problem appears so difficult to crack means that
key sizes can be reduced in size considerably, even
exponentially [2,5,8], especially when compared to the key size
used by other cryptosystems. This made ECC become a
challenge to RSA, one of the most popular public key methods
known, since ECC is showing to offer equal security to RSA
but with much smaller key size (128-256 bits) [2]. Several
encryption techniques have been developed recently using the
properties of elliptic curve [9].

Several ECC processors have been proposed in the
literature recently for GF(p) including GF(2k) [4,7,13]. The
advantage of using dedicated processors for encryption is that it
results in a considerable power reduction when compared to a
software solution on a general purpose programmable
processor. It also provides higher security than software
solutions.

It is well known that adding two points over an elliptic
curve would require a division operation, which is the most
expensive operation over GF(p) [14]. Many proposed
processors are based on representing the elliptic curve points as
projective coordinate points in order to eliminate division,
hence inversion, operations [4,6,13]. This approach is also
adopted in the proposed architecture.

The proposed architecture, however, differs from exiting
designs in departing from the dominant approach in the design
of crypto processors where the emphasis is placed on

minimizing area through sequential implementation by using a
single multiplier. It is worth noting that gate count is not a real
constraint with current technology. Furthermore, area
minimization is not the best approach for power reduction. In
the proposed architecture two multipliers are used inside the
core. In addition, more than one core can be used to implement
the ECC. It is shown that such parallelism can be used either to
improve speed, reduce power consumption, or achieve a
compromise between the two by simply trading off source
voltage with clock frequency.

2. ENCRYPTION AND DECRYPTION

It will be assumed that the reader is familiar with the arithmetic
over elliptic curve. For a good review the reader is referred to
[9]. There are many ways to apply elliptic curves for
encryption/decryption purposes. In it most basic form, users
randomly chose a base point (x, y), lying on the elliptic curve E.
The plaintext (the original message to be encrypted) is coded
into an elliptic curve point (xm, ym). Each user selects a private
key ‘n’ and compute his public key P = n(x, y). For example,
user A’s private key is nA and his public key is PA = nA(x, y).

For any one to encrypt and send the message point (xm, ym)
to user A, he/she needs to choose a random integer k and
generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }. The
ciphertext pair of points uses A’s public key, where only user A
can decrypt the plaintext using his private key.

To decrypt the ciphertext Cm, the first point in the pair of
Cm, k(x, y), is multiplied by A’s private key to get the point:
nA (k(x, y)). Then this point is subtracted from the second point
of Cm, the result will be the plaintext point (xm, ym). The
complete decryption operations are:
((xm,ym)+kPA) - nA(k(x,y))=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym)

The most time consuming operation in the encryption and
decryption procedure is finding the multiples of the base
point, (x,y). The algorithm used to implement this is discussed
in the next section.

3. POINT OPERATION ALGORITHM

The ECC algorithm used for calculating nP from P is the binary
method, since it is known to be efficient and practical to
implement in hardware [2,5,7,9,10]. This binary method
algorithm is shown below:

Define k: number of bits in n and ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q=nP (another point on the curve).
1. if nk-1 = 1, then Q:=P else Q:=0;

2. for i = k-2 down to 0;
3. { Q := Q+Q ;
4. if ni = 1 then Q:= Q+P ; }
5. return Q;

Basically, the binary method algorithm scans the binary bits of
n and doubles the point Q k-times. Whenever, a particular bit of
n is found to be one, an extra operation is needed. This extra
operation is Q+P.

As can be seen from the description of the above binary
algorithm, adding and doubling elliptic curve points are the
most basic operations in each iteration. As mentioned earlier,
the points operations over elliptic curve requires inversion [9].
As in the crypto processor in [6,13], inversion is eliminated
using projective coordinates as elaborated in the next section.

4. PROJECTIVE COORDINATES IN GF(P)

The projective coordinates are to eliminate the need for
performing inversion. For elliptic curve defined over GF(p), the
forms of formulas are found in [9] for point addition and
doubling. It projects (x,y)=(X/Z2,Y/Z3). The procedure for
projective point addition of P+Q (two elliptic curve points) is
shown below:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q
(x,y)=(X/Z2,Y/Z3) (X,Y,Z)

λ1 = X1Z2
2 2M

λ2 = X2Z1
2 2M

λ3 = λ1 - λ2
λ4 = Y1Z2

3 2M
λ5 = Y2Z1

3 2M
λ6 = λ4 - λ5
λ7 = λ1 + λ2
λ8 = λ4 + λ5
Z3 = Z1Z2λ3 2M
X3 = λ6

2 - λ7λ3
2 3M

λ9 = λ7λ3
2 – 2X3

Y3 = (λ9λ6 - λ8λ3
3)/2 3M

 15 M

Similarly, the form of formulas for projective point doubling is
shown below:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)
(x,y)=(X/Z2, Y/Z3) (X,Y,Z)

λ1 = 3X1
2 + aZ1

4 4M
Z3 = 2Y1Z1 1M
λ2 = 4X1 Y1

2 2M
X3 = λ1

2
 - 2λ2 1M

λ3 = 8Y1
4 1M

λ4 = λ2 - 2X3

Y3 = λ1λ4 -λ3 1M

 10M

The squaring calculation over GF(p) is very similar to the
multiplication computation. They both are noted as M
(multiplication). It is worth noting that any EC crypto processor
must implement the procedures of projective coordinates
efficiently since they are the core steps of the point operation
algorithm of ECC.

5. PROPOSED CORE ARCHITECTURE

The architecture of the new core processor is shown in Figure 1.
It has the following features:

• It has two serial multipliers and one adder. The multipliers
and adder used are the same as those proposed in [13].

• It has FOUR busses for intra-core communications that can
be configured dynamically to connect the core’s multipliers
with its own registers. Two of these are used for input
operands and two for output operands.

• It has TWO busses for inter/intra-core communications that
can be configured dynamically to connect a multiple of cores.

Figure 1. Architecture of the ECC core

The basic motivation behind the design of the proposed
core is to exploit, as much as possible, the full parallelism that
exists in ECC. Parallelism can be beneficial in two ways. It can
be used for high speed execution needed for high data rates
applications such as multimedia. It can also be used for low
power consumption which can be achieved by reducing the
clock frequency and hence consequently the source voltage. It
is well known that reducing the source power is the most
effective means of reducing power consumption. The benefits
of parallel implementation of ECC on power consumption and
its comparison with single multiplier implementations are
discussed in more details in section 7. The mapping of the ECC
on the proposed core is discussed in the next section.

6. MAPPINGS OF ECC ON PROPOSED CORE

In this paper we present two different implementations that lead
to different trade-offs between time and power consumption.
The first is based on two cores while the second is based on one
core.

6.1. Two Core Implementation

Using two cores, as shown in Figure 2, will allow the use of
four multipliers. As will be explained now, four multipliers are
sufficient to exploit the full parallelism inherent in the
projective coordinates discussed in section 4. Figures 3 and 4,
show the dataflow of the elliptic curve point doubling and
addition using the projective coordinates of section 4. The
corresponding critical path of each dataflow diagram is
effectively of 4 GF(p) multiplications and of 5 GF(p)
multiplications, respectively. Here the time of GF(p) addition
and subtraction is ignored since it is very small compared to
multiplication. Therefore, the lower bound of the minimum
computation time to perform one elliptic point operation in the
calculation of nP is 9 GF(p) multiplications. It can be easily
seen from Figures 3 and 4 that performing four multiplications
in parallel will meet this lower bound, and any further

concurrent multiplications will not actually achieve any further
reduction in the computation time.

Furthermore the utilization of the four multipliers is very
high. As can be seen from Figures 3 and 4, all the four
multipliers will be used in five out of the 9 steps, in one cycle
three multipliers are used, and in only three out of the 9 cycles
where a single multiplier is used. This indicates high utilization
of hardware resources.

Figure 2. Implementation of ECC on two cores

In what follows we will show that two inter-core

communication busses and four intra-core communication
busses are sufficient to implement the dataflow in Figures 3 and
4 efficiently. From Figures 3 and 4, the operations inside the
right doted box are implemented on the right core in Figure 2,
while the operations within the left doted box are implemented
on the left core in Figure 2. It can be easily seen from Figures 3
and 4 that there is a maximum of only two arrows that cross
from one doted box to another for every multiplication/addition
stage. This effectively requires a maximum of two inter-core
busses which is the case in the proposed architecture.

Figure 3. Doubling an elliptic curve point data flow graph

As mentioned earlier, each core has four intra-core busses;
two busses being used for input operands and two busses for
output operands. It is clear that the two intra busses for the
output operands are sufficient since only two outputs are
generated at any one stage by within each core.

Figure 4. Data flow graph for adding two points

To justify the need for only two intra-core busses, a careful
examination of Figures 3 and 4 are needed. For each core, four
input operands are required. At every stage it can be verified by
simple inspection that some of these input operands are shared,
such that either:
(i) Two intra-busses plus two inter-busses are sufficient,
(ii) Four intra-busses are sufficient (note that inter-busses

also support intra-bus operation), or
(iii) Three intra-busses and one inter-bus are sufficient.

In all cases therefore, there is no need to use more than two
inter/intra-busses and two intra-busses. It should be pointed out
that the busses must be configured dynamically in order to
implement the dataflow shown in Figures 3 and 4.

6.2. Single Core Implementation

In applications where area becomes an important factor, the
ECC can also be implemented using a single core. In this case,
both the left and right doted boxes in Figures 3 and 4 are
mapped on the same core. In this case, the order of execution is
done such that the first stage of the right box is first executed
followed by the first stage of the left box, followed by the
second stage of the right box and so on. In effect, the
implementation of the operations within the two doted boxes in
each dataflow is interlaced on the same core.

7. PERFORMANCE EVALUATION AND
COMPARISONS

The power consumption of using two cores and one core is
compared in Figure 5 with that of using a single multiplier
(such as that in [13]) for different execution times. Here time is
computed as follows, time=No. of cycles x fo. Power is given
by P=fCVS

2 and assuming that VS=kfo, where fo is the maximum

 Y2Z1 Y1Z2 Z1
2 Z2

2

 Y2 Z1 Y1 Z2 Z1 Z2

λ2

λ9λ6

 Y2Z1
3 Y1Z2

3 X2Z1
2 X1Z2

2

X2

X1

 λ4 + λ5 λ4 - λ5 λ1 - λ2 λ1 + λ2

λ4

 λ3λ8 λ6
2 λ3Z2 λ3

2

Z2

 λ3
3λ8 λ3Z1Z2 λ7λ3

2

Z1

3λ7λ3
2

 - 2λ6
2 λ6

2
 - λ7λ3

2
λ9

(λ9λ6 - λ3
3λ8)/2

Y3 Z3 X3

λ5 λ1

λ8 λ6 λ3

3X1 X1 aZ1 Z1 Z1 Y1

 3X1
2 aZ1

2 Z1
2 Y1

2

3X1
2+aZ1

4

4X1

2Y1Z1 aZ1
4 8Y1

4 4X1Y1
2

2Y1

Z1

λ3 λ2

λ1
2

λ1
2- 2λ2

λ2–2X3

λ4
λ1λ4

λ1

λ1λ4 - λ3

 Z3 Y3 X3

operating frequency for the given Vs, then P=kf3C. The
capacitance is made proportional to Area.

In an existing design [13], a single multiplier and a single
adder is used to perform all the multiplications needed in
Figures 3 and 4. The reason is that using more than one
multiplier is perceived to be too expensive. However, as can be
seen from Figure 5, both of the proposed implementations in
fact lead to lower power consumption than using a single
multiplier for the same execution time. Furthermore one can
achieve a better trade-off between time and power consumption
when using two cores rather than using a single core. A single
core implementation becomes more advantageous when the
normalized execution time is higher than 75.

Figure 5. Power time comparison when using different number

of multipliers in the complete ECC architecture.

It should also be pointed out that the proposed architecture
can support a further reduction in power by dynamically
switching off either a whole core, or one of the multipliers. As
can be seen from Figures 3 and 4, not all the multipliers are
needed in the final stages of computing elliptic point doubling
and addition. In this case the control unit will simply ensure
that either the entire core is switched off (in the case of two
core implementation) and/or one of the multipliers is turned off
such that there is no dynamic power consumption.

8. CONCLUSION

An innovative GF(p) elliptic curve crypto core processor is
proposed in this paper. The new architecture results in
considerable reduction in power consumption as well as
offering users a range of trade-off between power and time. The
basic feature of the new architecture is that it exploits the
inherent parallelism in the computation of point doubling and
addition over an elliptic curve. Performance evaluation shows a
considerable advantage over conventional implementation of
using a single multiplier in terms of power consumption and
time. Finally, in addition to the discussed advantages of using

two multipliers in the proposed core, this feature can also be
exploited to lead to a fault tolerant implementation.

9. ACKNOWLEDGMENTS

The Author is grateful to Professor Mohammad Ibrahim and
Muhammad Elrabaa for their beneficial ideas and observations
related to this research. Thanks to King Fahd University of
Petroleum and Minerals for supporting this work.

10. REFERENCES

[1] Miyaji A., “Elliptic Curves over FP Suitable for

Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, December 1992.

[2] Stallings, W. “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice Hall
Inc., New Jersey, 1999.

[3] Chung, J., Sim, S., and Lee, P., “Fast Implementation of
Elliptic Curve Defined over GF(pm) on CalmRISC with
MAC2424 Coprocessor”, Workshop on Cryptographic
Hardware and Embedded Systems, MA, USA, Aug 2000.

[4] Okada, S., Torii, N., Itoh, K., and Takenaka, M.,
“Implementation of Elliptic Curve Cryptographic
Coprocessor over GF(2m) on an FPGA”, Workshop on
Cryptographic Hardware and Embedded Systems, CHES
2000, Massachusetts, August 2000.

[5] Crutchley, D. A., “Cryptography And Elliptic Curves”,
Master Thesis under Supervision of Prof. Gareth Jones,
submitted to the Faculty of Mathematics at University of
Southampton, England, May 1999.

[6] Orlando, G., and Paar, C., “A High-Performance
Reconfigurable Elliptic Curve Processor for GF(2m)”,
Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.

[7] Stinson, D. R., “Cryptography: Theory and Practice”,
CRC Press, Boca Raton, Florida, 1995.

[8] Paar, C., Fleischmann, P. and Soria-Rodriguez, P., “Fast
Arithmetic for Public-Key Algorithms in Galois Fields
with Composite Exponents”, IEEE Transactions on
Computers, Vol. 48, No. 10, October 1999.

[9] Blake, I., Seroussi, G., and Smart, N., “Elliptic Curves in
Cryptography ”, Cambridge University Press: NY, 1999.

[10] Hankerson, D., Hernandez, J., and Menezes, A.,
“Software Implementation of Elliptic Curve
Cryptography Over Binary Fields”, Workshop on
Cryptographic Hardware and Embedded Systems, CHES
2000, Massachusetts, August 2000.

[11] Orton, G. A., Roy, M. P., Scott, P. A., Peppard, L. E., and
Tavares, S. E., “VLSI implementation of public-key
encryption algorithms”, Advances in Cryptology -
CRYPTO '86, volume 263 of Lecture Notes in Computer
Science, pages 277-301, Springer-Verlag, 1987.

[12] Scott, Norman R., “Computer Number Systems and
Arithmetic”, Prentice-Hall Inc., New Jersey, 1985.

[13] Orlando, G., and Paar, C., “A scalable GF(p) elliptic
curve processor architecture for programmable
hardware”, Cryptographic Hardware and Embedded
Systems, CHES 2001, May 14-15, 2001, Paris, France.

[14] Gutub, Adnan Abdul-Aziz, Tenca, A., and Koc, C.,
“Scalable VLSI architecture for GF(p) Montgomery
modular inverse computation”, IEEE Computer Society
Annual Symposium on VLSI, pages 53-58, Pittsburgh,
Pennsylvania, April 25-26, 2002.

