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ABSTRACT 
 
A novel GF(p) crypto processor core architecture is presented in 
this paper. The core is used to implement GF(p) Elliptic Curve 
Cryptosystem (ECC). The architecture is such that a single core 
can be used to implement ECC or alternatively a two core 
solution can be adopted. As a result, the core architecture 
allows the exploitation of the parallelism that exists in elliptic 
curve point addition and doubling. The core architecture results 
in several advantages over conventional implementations with 
regard to speed and power consumption.  
 
 

1. INTRODUCTION 
 
In 1985, Niel Koblitz and Victor Miller proposed Elliptic Curve 
Cryptosystem (ECC) [1-9], which has received considerable 
attention from mathematician around the world. Although 
critics are still skeptical as to the reliability of this method, to 
date no significant breakthroughs have been made in 
determining weaknesses in the algorithm, which is based on the 
discrete logarithm problem over points on an elliptic curve. The 
fact that the problem appears so difficult to crack means that 
key sizes can be reduced in size considerably, even 
exponentially [2,5,8], especially when compared to the key size 
used by other cryptosystems. This made ECC become a 
challenge to RSA, one of the most popular public key methods 
known, since ECC is showing to offer equal security to RSA 
but with much smaller key size (128-256 bits) [2]. Several 
encryption techniques have been developed recently using the 
properties of elliptic curve [9]. 

Several ECC processors have been proposed in the 
literature recently for GF(p) including GF(2k) [4,7,13]. The 
advantage of using dedicated processors for encryption is that it 
results in a considerable power reduction when compared to a 
software solution on a general purpose programmable 
processor. It also provides higher security than software 
solutions.  

It is well known that adding two points over an elliptic 
curve would require a division operation, which is the most 
expensive operation over GF(p) [14]. Many proposed 
processors are based on representing the elliptic curve points as 
projective coordinate points in order to eliminate division, 
hence inversion, operations [4,6,13]. This approach is also 
adopted in the proposed architecture. 

The proposed architecture, however, differs from exiting 
designs in departing from the dominant approach in the design 
of crypto processors where the emphasis is placed on 

minimizing area through sequential implementation by using a 
single multiplier. It is worth noting that gate count is not a real 
constraint with current technology. Furthermore, area 
minimization is not the best approach for power reduction. In 
the proposed architecture two multipliers are used inside the 
core. In addition, more than one core can be used to implement 
the ECC. It is shown that such parallelism can be used either to 
improve speed, reduce power consumption, or achieve a 
compromise between the two by simply trading off source 
voltage with clock frequency. 

 
2. ENCRYPTION AND DECRYPTION 

 
It will be assumed that the reader is familiar with the arithmetic 
over elliptic curve. For a good review the reader is referred to 
[9]. There are many ways to apply elliptic curves for 
encryption/decryption purposes. In it most basic form, users 
randomly chose a base point (x, y), lying on the elliptic curve E. 
The plaintext (the original message to be encrypted) is coded 
into an elliptic curve point (xm, ym). Each user selects a private 
key ‘n’ and compute his public key P = n(x, y). For example, 
user A’s private key is nA and his public key is PA = nA(x, y). 

For any one to encrypt and send the message point (xm, ym) 
to user A, he/she needs to choose a random integer k and 
generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }. The 
ciphertext pair of points uses A’s public key, where only user A 
can decrypt the plaintext using his private key. 

To decrypt the ciphertext Cm, the first point in the pair of    
Cm, k(x,  y), is multiplied by A’s private key to get the point:       
nA (k(x, y)). Then this point is subtracted from the second point 
of Cm, the result will be the plaintext point (xm, ym). The 
complete decryption operations are:  
((xm,ym)+kPA) - nA(k(x,y))=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym) 

The most time consuming operation in the encryption and 
decryption procedure is finding the multiples of the base        
point, (x,y). The algorithm used to implement this is discussed 
in the next section. 
 

3. POINT OPERATION ALGORITHM 
 
The ECC algorithm used for calculating nP from P is the binary 
method, since it is known to be efficient and practical to 
implement in hardware [2,5,7,9,10]. This binary method 
algorithm is shown below: 

Define k: number of bits in n and ni: the ith bit of n  
Input:  P (a point on the elliptic curve). 
Output:  Q=nP (another point on the curve). 
1.  if nk-1 = 1, then Q:=P else Q:=0; 



2.  for i = k-2 down to 0; 
3.   { Q := Q+Q ; 
4.      if ni = 1 then Q:= Q+P ; } 
5.  return Q; 

Basically, the binary method algorithm scans the binary bits of 
n and doubles the point Q k-times. Whenever, a particular bit of 
n is found to be one, an extra operation is needed. This extra 
operation is Q+P.  

As can be seen from the description of the above binary 
algorithm, adding and doubling elliptic curve points are the 
most basic operations in each iteration. As mentioned earlier, 
the points operations over elliptic curve requires inversion [9]. 
As in the crypto processor in [6,13], inversion is eliminated 
using projective coordinates as elaborated in the next section. 

 
4. PROJECTIVE COORDINATES IN GF(P) 

 
The projective coordinates are to eliminate the need for 
performing inversion. For elliptic curve defined over GF(p), the 
forms of formulas are found in [9] for point addition and 
doubling. It projects (x,y)=(X/Z2,Y/Z3). The procedure for 
projective point addition of P+Q (two elliptic curve points) is 
shown below: 

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q 
(x,y)=(X/Z2,Y/Z3) (X,Y,Z) 
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Similarly, the form of formulas for projective point doubling is 
shown below: 

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3) 
(x,y)=(X/Z2, Y/Z3)  (X,Y,Z) 
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The squaring calculation over GF(p) is very similar to the 
multiplication computation. They both are noted as M 
(multiplication). It is worth noting that any EC crypto processor 
must implement the procedures of projective coordinates 
efficiently since they are the core steps of the point operation 
algorithm of ECC. 
 

5. PROPOSED CORE ARCHITECTURE 
 
The architecture of the new core processor is shown in Figure 1. 
It has the following features: 

• It has two serial multipliers and one adder. The multipliers 
and adder used are the same as those proposed in [13]. 

• It has FOUR busses for intra-core communications that can 
be configured dynamically to connect the core’s multipliers 
with its own registers. Two of these are used for input 
operands and two for output operands. 

• It has TWO busses for inter/intra-core communications that 
can be configured dynamically to connect a multiple of cores. 

 

 
 

Figure 1.  Architecture of the ECC core 
 

The basic motivation behind the design of the proposed 
core is to exploit, as much as possible, the full parallelism that 
exists in ECC. Parallelism can be beneficial in two ways. It can 
be used for high speed execution needed for high data rates 
applications such as multimedia. It can also be used for low 
power consumption which can be achieved by reducing the 
clock frequency and hence consequently the source voltage.  It 
is well known that reducing the source power is the most 
effective means of reducing power consumption. The benefits 
of parallel implementation of ECC on power consumption and 
its comparison with single multiplier implementations are 
discussed in more details in section 7. The mapping of the ECC 
on the proposed core is discussed in the next section. 
 

6. MAPPINGS OF ECC ON PROPOSED CORE 
 
In this paper we present two different implementations that lead 
to different trade-offs between time and power consumption. 
The first is based on two cores while the second is based on one 
core. 
 
6.1. Two Core Implementation 
 
Using two cores, as shown in Figure 2, will allow the use of 
four multipliers. As will be explained now, four multipliers are 
sufficient to exploit the full parallelism inherent in the 
projective coordinates discussed in section 4. Figures 3 and 4, 
show the dataflow of the elliptic curve point doubling and 
addition using the projective coordinates of section 4. The 
corresponding critical path of each dataflow diagram is 
effectively of 4 GF(p) multiplications and of 5 GF(p) 
multiplications, respectively. Here the time of GF(p) addition 
and subtraction is ignored since it is very small compared to 
multiplication. Therefore, the lower bound of the minimum 
computation time to perform one elliptic point operation in the 
calculation of nP is 9 GF(p) multiplications. It can be easily 
seen from Figures 3 and 4 that performing four multiplications 
in parallel will meet this lower bound, and any further 



concurrent multiplications will not actually achieve any further 
reduction in the computation time.   

Furthermore the utilization of the four multipliers is very 
high. As can be seen from Figures 3 and 4, all the four 
multipliers will be used in five out of the 9 steps, in one cycle 
three multipliers are used, and in only three out of the 9 cycles 
where a single multiplier is used. This indicates high utilization 
of hardware resources. 
 

 
 

Figure 2. Implementation of ECC on two cores 
 
In what follows we will show that two inter-core 

communication busses and four intra-core communication 
busses are sufficient to implement the dataflow in Figures 3 and 
4 efficiently. From Figures 3 and 4, the operations inside the 
right doted box are implemented on the right core in Figure 2, 
while the operations within the left doted box are implemented 
on the left core in Figure 2. It can be easily seen from Figures 3 
and 4 that there is a maximum of only two arrows that cross 
from one doted box to another for every multiplication/addition 
stage. This effectively requires a maximum of two inter-core 
busses which is the case in the proposed architecture.  
 

 
 

Figure 3. Doubling an elliptic curve point data flow graph 
 

As mentioned earlier, each core has four intra-core busses; 
two busses being used for input operands and two busses for 
output operands. It is clear that the two intra busses for the 
output operands are sufficient since only two outputs are 
generated at any one stage by within each core. 

 

 
 

Figure 4. Data flow graph for adding two points 
 
To justify the need for only two intra-core busses, a careful 
examination of Figures 3 and 4 are needed. For each core, four 
input operands are required. At every stage it can be verified by 
simple inspection that some of these input operands are shared, 
such that either: 
(i) Two intra-busses plus two inter-busses are sufficient,  
(ii) Four intra-busses are sufficient (note that inter-busses 

also support intra-bus operation), or  
(iii) Three intra-busses and one inter-bus are sufficient.   

In all cases therefore, there is no need to use more than two 
inter/intra-busses and two intra-busses. It should be pointed out 
that the busses must be configured dynamically in order to 
implement the dataflow shown in Figures 3 and 4. 
 
6.2.  Single Core Implementation 
 
In applications where area becomes an important factor, the 
ECC can also be implemented using a single core. In this case, 
both the left and right doted boxes in Figures 3 and 4 are 
mapped on the same core. In this case, the order of execution is 
done such that the first stage of the right box is first executed 
followed by the first stage of the left box, followed by the 
second stage of the right box and so on. In effect, the 
implementation of the operations within the two doted boxes in 
each dataflow is interlaced on the same core.  
 

7. PERFORMANCE EVALUATION AND 
COMPARISONS 

 
The power consumption of using two cores and one core is 
compared in Figure 5 with that of using a single multiplier 
(such as that in [13]) for different execution times. Here time is 
computed as follows, time=No. of cycles x  fo. Power is given 
by P=fCVS

2 and assuming that VS=kfo, where fo is the maximum 
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operating frequency for the given Vs, then P=kf3C. The 
capacitance is made proportional to Area. 

In an existing design [13], a single multiplier and a single 
adder is used to perform all the multiplications needed in 
Figures 3 and 4. The reason is that using more than one 
multiplier is perceived to be too expensive. However, as can be 
seen from Figure 5, both of the proposed implementations in 
fact lead to lower power consumption than using a single 
multiplier for the same execution time. Furthermore one can 
achieve a better trade-off between time and power consumption 
when using two cores rather than using a single core.  A single 
core implementation becomes more advantageous when the 
normalized execution time is higher than 75.  
 

 
Figure 5. Power time comparison when using different number 

of multipliers in the complete ECC architecture. 
 

It should also be pointed out that the proposed architecture 
can support a further reduction in power by dynamically 
switching off either a whole core, or one of the multipliers. As 
can be seen from Figures 3 and 4, not all the multipliers are 
needed in the final stages of computing elliptic point doubling 
and addition.  In this case the control unit will simply ensure 
that either the entire core is switched off (in the case of two 
core implementation) and/or one of the multipliers is turned off 
such that there is no dynamic power consumption. 
 

8. CONCLUSION 
 

An innovative GF(p) elliptic curve crypto core processor is 
proposed in this paper. The new architecture results in 
considerable reduction in power consumption as well as 
offering users a range of trade-off between power and time. The 
basic feature of the new architecture is that it exploits the 
inherent parallelism in the computation of point doubling and 
addition over an elliptic curve. Performance evaluation shows a 
considerable advantage over conventional implementation of 
using a single multiplier in terms of power consumption and 
time. Finally, in addition to the discussed advantages of using 

two multipliers in the proposed core, this feature can also be 
exploited to lead to a fault tolerant implementation. 
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