
In Proceedings of the 7th IEEE European Conference on Software Maintenance and Reengineering (CSMR’03), pp.193-200,
Benevento, Italy, Mar. 2003.

Investigation of Metrics for Object-Oriented Design Logical Stability

Mahmoud O. Elish
Department of Computer Science

George Mason University
Fairfax, VA 22030-4400, USA

melish@gmu.edu

David Rine
Department of Computer Science

George Mason University
Fairfax, VA 22030-4400, USA

drine@gmu.edu

Abstract

As changes are made to an object-oriented design,
its structure and/or behavior may be affected.
Modifications made to one class can have ripple effects
on other classes in the design. The stability of an object-
oriented design indicates its resistance to interclass
propagation of changes that the design would have when
it is modified. There are two aspects of design stability:
logical stability and performance stability. Logical
stability is concerned with design structure, whereas
performance stability is concerned with design behavior.
In this study, the object-oriented design metrics proposed
by Chidamber and Kemerer were adopted as candidate
indicators of the logical stability of object-oriented
designs. The objective was to investigate whether or not
there are correlations between these metrics and the
logical stability of classes. The experimental results
indicated that WMC, DIT, CBO, RFC, and LCOM
metrics are negatively correlated with the logical stability
of classes. However, no correlation was found between
NOC metric and the logical stability of classes.

Keywords – Design stability, maintainability, metrics,
object-oriented designs.

1. Introduction

Software maintenance is inevitable if software
systems need to remain useful in their environments.
Changes are necessary to continue increasing the value of
software. Major portion of software maintenance
activities is devoted to the modification of the software
[16]. Due to the coupling between software artifacts,
changes made to one artifact can ripple throughout the
software requiring further changes to other artifacts.

The ISO/IEC 9126 software quality standard [17]
defines six quality attributes of software: functionality,
reliability, efficiency, usability, portability, and
maintainability. According to this standard,
maintainability has four quality attributes: analyzability,

changeability, testability, and stability. Stability is
defined as those attributes of software that bear on the
risk of unexpected effect of modifications.

According to DeMarco’s principle [4]: “You cannot
control what you cannot measure.” Some stability
measures were proposed for procedural programs and
designs [1, 2, 8, 11, 13, 14, 15, 16], and one for object-
oriented design [12]. There are some weaknesses in the
existing measures that prevent their wide acceptance.
These problems are identified in Section 3.

In this study, the object-oriented design metrics
proposed by Chidamber and Kemerer [3] were adopted as
candidate indicators of the logical stability of object-
oriented designs. These metrics were selected because
they are well defined, widely used, and were shown to be
valid maintainability predictors. The objective of this
study was to investigate whether or not there are
correlations between these metrics and the logical
stability of classes.

This paper is organized as follows. Section 2 gives
some technical backgrounds. Section 3 reviews related
work. Section 4 discusses the experiment and its results.
Section 5 concludes the paper and gives directions for
future work.

2. Background

This section gives brief background about the
stability concept of object-oriented designs, types of
class-level changes, and the metrics defined by
Chidamber and Kemerer.

2.1. Stability of Object-Oriented Designs

As changes are made to an object-oriented design, its
structure and/or behavior may be affected. Modifications
made to one class can have ripple effects on other classes
in the design. Ripple effects may or may not be desirable
(do not require additional changes). As an example of
desirable ripple effect, consider a concrete superclass
with a method that sort array of numbers using selection

sort algorithm. Assume that this method is inherited by
many subclasses. Now consider changing the
implementation of this method by replacing the selection
sort algorithm with more efficient algorithm such as
merge sort. Such modification will have desirable ripple
effect on all subclasses that inherit this method, and no
additional changes are required to be made to these
subclasses.

As an example of undesirable ripple effect, consider
an interface class with a set of method signatures. These
methods are implemented by the concrete classes that
implement this interface class. Now consider changing
the interface class by adding, deleting, or modifying a
method signature. Such modification will impact all
classes that implement the interface class, and will
require additional changes to be made to these classes.

A good object-oriented design from stability
standpoint should localize changes as much as possible to
classes on which alterations are made. The stability of an
object-oriented design indicates its resistance to interclass
propagation of changes that the design would have when
it is modified. Class stability is the likelihood that the
class will not be change-prone as a consequence of
changes made to other classes in the design.

There are two aspects of design stability: logical
stability that is concerned with the stability of design
structure, and performance stability that is concerned
with the stability of design behavior. This paper focuses
on the logical stability of object-oriented designs.

2.2. Types of Class-level Changes

Change impact analysis literature has identified
possible types of changes that can be made to object-
oriented designs/software, for example, Kung et al. [9],
and Li and Offutt [10]. These types of changes can be
classified into two main categories: design-level changes,
and class-level changes. Examples of design-level
changes include adding a class, deleting a class, adding
an association between two classes, and restructuring the
class hierarchy.

At the class-level, various types of changes can be
applied to the attributes, methods, and assertions of
classes. Attribute changes include addition, deletion, data
type change, value change, and scope change. Method
changes include addition, deletion, signature change,
implementation change, and scope change. Assertion
changes include modifications to class invariants, and
method preconditions and postconditions.

Changes may have syntactic and/or semantic impact.
The syntactic impacts cause compilation errors and can
be determined through static analysis. The semantic
impacts, however, do not cause compilation errors and
can be determined during run time. Performance stability

shall address changes with semantic impact. Since the
focus of this research is on the logical stability of object-
oriented designs in terms of interclass propagation of
changes, it is limited to those class-level changes that
have syntactic impact. Table 1 lists all possible types of
class-level changes with syntactic impact. It also
identifies the set of classes that are syntactically impacted
as a result of each type of change.

To further illustrate Table 1, consider the simple
class diagram shown in Figure 1. The diagram consists of
three classes C1, C2, and C3. C2 uses some of the
attributes and methods of C1, and C3 inherits the
attributes and methods of C1. As one example, assume
that attribute B of C1 is referenced by method Y of C1,
method M of C2 and method Z of C3. Consider changing
the scope of B from public to protected. This change will
syntactically impact C2.

As another example, assume that method X of C1 is
invoked by method Y of C1 and method N of C2.
Consider deleting X. This will syntactically impact C1
and C2.

Figure1. Simple class diagram example

2.3. Metrics by Chidamber & Kemerer

Chidamber and Kemerer [3] proposed a metrics suite
for object-oriented design that consists of the following
metrics:

• Weighted Methods per Class (WMC) – It is
defined as the sum of the complexities of all
methods of a class.

• Depth of Inheritance Tree (DIT) – It is defined
as the maximum length from a class to the root
class in the inheritance tree.

• Number of Children (NOC) – It is defined as the
number of immediate subclasses of a class.

Table 1. Possible class-level changes with syntactic impact

 Change Type Syntactically Impacted Classes
Data type X
Delete X
Scope (public to private) X – {C}
Scope (protected to private) X – {C}

Attribute (A) of
Class (C)

Scope (public to protected) X – [Z ∪ {C}]
Return data type Y
Signature Y
Delete Y
Scope (public to private) Y – {C}
Scope (protected to private) Y – {C}

Method (M) of
Class (C)

Scope (public to protected) Y – [Z ∪ {C}]
X is the set of classes, including C, that reference A
Y is the set of classes, including C, that invoke M
Z is the set of direct and indirect subclasses of C

• Coupling Between Object classes (CBO) – It is

defined as the number of classes to which a class
is coupled. Two classes are coupled if one uses
methods and/or instance variables of another.

• Response For a Class (RFC) – It is defined as
number of methods in the set of all methods that
can be invoked in response to a message sent to
an object of a class.

• Lack of COhesion in Methods (LCOM) – It is
defined as the number of different methods
within a class that reference a given instance
variable.

3. Related Work

The term ripple effect was introduced by Haney [8]
to describe that a change in one module may necessitate a
change in another module. Haney used a technique called
module connection analysis that is based on applied
matrix algebra to estimate the number of changes needed
to stabilize a system. Soong [13] developed techniques
based on the method of connectivity matrix to measure
program information structures for their stability
characteristics. Myers [11] used matrix to describe
dependencies between system’s modules, and then used it
to predict the stability of the system. There are two major
weaknesses in the stability measures proposed by Haney,
Soong, and Myers. First, these measures were not
validated because their inputs are difficult to obtain [14].
Second, they assume that all modifications to a module
have the same ripple effect [14].

Yau and Collofello [14] developed algorithm to
compute the logical stability of a program and its
modules using McCabe’s complexity measure. The
computation is based on the connection of modules in a
program by parameters and global variables. They then
proposed algorithm for computing design stability [16].
The major problem with these algorithms is that they take
too much computation time to be practicable for large
programs [1, 15].

Yau and Chang [15] developed more efficient
algorithm for computing ripple effect. This algorithm,
however, treats modules as black boxes and does not
consider information inside modules. Black [1, 2]
proposed an approximation algorithm for Yau and
Collofello’s algorithm to compute ripple effect for C
programs.

All the researches described so far were merely on
measuring the stability of procedural programs and their
designs. Samadzadeh and Khan [12] proposed a stability
metric for object-oriented software systems based on the
assumptions that different objects in a program make
about one another as a result of parameter coupling. This
metric ignores inheritance coupling resulting from is-a
relationships between classes, and component coupling
resulting from is-part-of relationships between classes.

As guidelines for building stable designs, Fayad [5,
6, 7] discussed the concepts of Enduring Business
Themes (EBTs), Business Objects (BOs), and Industrial
Objects (IOs), and how they can be used to build a stable
design. EBTs are those core concepts of the system that
remain stable over time. BOs are externally stable over

time, but may have internal changes. IOs are peripheral
and unstable objects of the system. Fayad argued that a
design model based on these concepts would reduce
reengineering, and thus yield a more stable design.

4. The Experiment

The objective of this experiment was to investigate
whether the object-oriented design metrics proposed by
Chidamber and Kemerer are good indicators of the
logical stability of classes. In other words, the conduced
experiment aimed to test for existence of significant
correlations between these metrics and the logical
stability of classes.

4.1. Hypotheses

Two Hypotheses were tested by this experiment:
• Hypothesis 1 – WMC, DIT, CBO, RFC, and

LCOM metrics are negatively correlated with
the logical stability of classes.

• Hypothesis 2 – There is no correlation between
NOC metric and the logical stability of classes.

4.2. Subjects

The experimental subjects used in this study were
three arbitrarily selected open source Java software:
Jxplorer version 2.1.001, JE (Just an Editor) version 1.65,
and Phex version 0.7.3. They vary in number of classes
and application domain. The source codes of these
systems can be freely downloaded from the web [18].
Although the subjects are source codes and not designs,
only design metrics and information were extracted from
them.

Jxplorer is a security application with 157 classes for
browsing LDAP (Lightweight Directory Access
Protocol). JE is a programming editor application with
252 classes. It provides syntax highlighting and can also
be used as an editor panel in other Java applications or
applets. Phex is a networking application with 303
classes that offers an automatic search functionality to
find new download candidates and uses swarming to
resume the downloads across different hosts. Table 2
gives various size metrics of these three systems.

4.3. Procedure

Three main steps were carried out in this experiment.
In the first step, the object-oriented design metrics
proposed by Chidamber and Kemerer were collected
from the classes of each subject system using Jstyle 4.6
metrics tool. WMC of a class was calculated by summing

the cyclomatic complexities of the methods defined in
this class. DIT of a class was measured by determining
the level of this class in the inheritance tree. NOC of a
class was computed by counting the number of direct
subclasses of this class. CBO of a class was measured by
counting the number of classes that this class depends on
and the number of classes that depend on this particular
class. In this context, a dependency between two classes
means that one uses methods and/or instance variables of
another. Classes that are depended on by a class and also
depend on it were counted once. RFC of a class was
calculated by counting the number of methods, internal
and external, available to this class. LCOM of a class was
calculated by subtracting the number of method pairs
whose similarity is not zero from the number of method
pairs whose similarity is zero. The similarity of two
methods is computed by counting the number of instance
variables that are used by both of them.

In the second step, the logical stability of each class
was calculated using the algorithm given in the appendix.
To calculate the logical stability of a class (say C), the
algorithm applies all possible class-level changes with
syntactic impact (see Table 1) to the attributes and
methods of all other classes in the design. Changes are
applied one at a time, and they are all applied to the
original design. For each change, the algorithm computes
the set of syntactically impacted classes and determines
whether or not class C is among them. The number of
times that class C is found impacted divided by the total
number of possible changes represents the likelihood that
class C will be change-prone as a result of a class-level
change made else where in the design. So the logical
stability of class C is simply one minus that ratio. Given
that types of changes are unpredictable and that no
studies found that some changes are more likely than
others, it was assumed that all types of class-level
changes are equally likely.

In the third step, correlation analyses were performed
at 0.05 level of significance (95% confidence level) to
test for existence of correlation between each one of the
six investigated metrics and the calculated logical
stability of classes. For each case, correlation coefficient
was computed to determine the significance of
correlation.

4.4. Results

Table 3 provides descriptive statistics for Chidamber
and Kemerer’s metrics data that were collected from the
classes of the subject systems. On the one hand, wide
variations were found in WMC, CBO, RFC, LCOM
metrics from one system to another. On the other hand,
all of the three systems have a median value of zero for

both DIT and NOC metrics. This indicates that the use of
inheritance in these systems is limited.

Two results were obtained from the correlation
analyses performed at 0.05 level of significance (95%
confidence level) to test for existence of correlations
between the investigated metrics and the logical stability
of classes. First, there exists a negative correlation
between each one of WMC, DIT, CBO, RFC, and LCOM
metrics and the logical stability of classes. Second, there
does not exist a correlation between NOC metric and the
logical stability of classes. These results support the
hypotheses.

Table 4 provides the computed correlation
coefficients between each metric and the logical stability
of classes for each system. Some observations can be
obtained from this table. CBO and RFC metrics are
strongly correlated with the logical stability of classes,
with correlation coefficients of -0.69 and -0.84 on
average respectively. WMC and LCOM metrics come
next with reasonable correlation coefficients of -0.61 and
-0.50 on average respectively. DIT metric is weakly
correlated with the logical stability of classes, with a
correlation coefficient of -0.21 on average. This may due
to the low variations of DIT values in the subject systems
because of their limited use of inheritance.

4.5. Discussion

The negative correlations between WMC, DIT,
CBO, RFC, and LCOM metrics and the logical stability
of classes can be explained as follows. High WMC of a
class suggests that this class has many methods and/or its
methods have high complexity. This may increase the

likelihood of having some methods that use methods
and/or instance variables of other classes. If so, this
makes this class depends upon other classes, and thus
reduces its stability.

The higher DIT of a class, the more ancestor classes
it has. A subclass does not only depend upon its direct
superclass, but also upon its ancestor classes as it inherits
their features. This decreases the stability of subclasses
because changes to their ancestors may necessitate
changing them.

High CBO of a class means that this class depends
upon many classes (outgoing dependencies) and/or many
classes depend upon it (incoming dependencies). The
outgoing dependencies of a class reduce its stability since
they represent external influence to make it change.

The higher RFC of a class, the higher the number of
internal and external methods available to this class. The
external methods make this class depends upon the
classes in which these methods are defined. This in turn
may require modifying this class whenever these external
methods are modified. So this decreases class stability.

High LCOM of a class suggests that this class is
lowly cohesive and does not promote encapsulation. This
may increase the likelihood of this class being dependant
upon other classes. If so, this reduces the stability of this
class.

The absence of correlation between NOC metric and
the logical stability of classes can be explained as
follows. The more subclasses a class has, the higher its
incoming dependencies since these subclasses depend
upon it. Since only the outgoing dependencies of a class
affect its stability, NOC metric is not expected to have
correlation with class stability.

Table 2. Size metrics for the subject systems

 Jxplorer JE Phex
No. of Classes 157 252 303
No. of Code Lines 30112 18445 36729
No. of Comment Lines 17015 3171 13837
No. of Blank Lines 10770 1608 7162
No. of Declarative Statements 6044 4221 7405
No. of Executable Statements 13266 10768 13472

Table 3. Descriptive statistics of the classes in the subject systems

 WMC DIT NOC CBO RFC LCOM Class Logical Stability
 Average 31.90 0.27 0.28 11.66 22.82 181.35 96.39%

 Median 16 0 0 7 14 28 97.45%
Jxplorer Std. Dev. 40.03 0.51 1.39 14.02 26.32 425.75 4.34%

 Maximum 223 3 14 88 172 2701 100.00%
 Minimum 0 0 0 0 0 0 76.43%
 Average 17.13 0.48 0.45 7.24 13.98 110.11 98.51%
 Median 6 0 0 4 7 3 99.01%

JE Std. Dev. 46.19 0.62 2.18 10.82 28.09 806.98 2.25%
 Maximum 550 3 29 103 334 11325 100.00%
 Minimum 0 0 0 0 0 0 71.83%
 Average 14.67 0.40 0.27 10.26 15.39 58.37 98.37%
 Median 9 0 0 5 10 10 99.01%

Phex Std. Dev. 17.31 0.68 2.23 14.55 19.37 169.66 2.33%
 Maximum 133 2 34 125 136 2080 100.00%
 Minimum 0 0 0 0 0 0 84.82%

Table 4. Correlation coefficients

 WMC DIT NOC CBO RFC LCOM
jxplorer -0.51 -0.20 -0.05 -0.64 -0.77 -0.49
JE -0.71 -0.27 0.03 -0.71 -0.88 -0.59
Phex -0.60 -0.16 0.06 -0.73 -0.86 -0.41
Average -0.61 -0.21 0.01 -0.69 -0.84 -0.50
Std. Dev. 0.10 0.05 0.06 0.04 0.06 0.09

5. Conclusions

Stability is one of the most desirable features of any
software design. If the stability of a design is poor, the
impact of any original modification on it is large, i.e. high
amplification of changes throughout the design is
expected. Consequently, the maintenance cost and effort
may turn to be higher than what was estimated, and the
software reliability may also suffer due to the
introduction of possible new defects. Therefore, the
availability of a verified set of logical stability metrics for
object-oriented designs represents early crucial signals of
any out-of-control situation that may occur during
maintenance.

The goal of this study was to investigate whether
Chidamber and Kemerer’s metrics represent good
indicators of the logical stability of classes. The
experimental results concluded that WMC, DIT, CBO,
RFC, and LCOM metrics are negatively correlated with

the logical stability of classes. In addition, CBO and RFC
metric were found to be good indicators of the logical
stability of classes. However, no correlation was found
between NOC metric and the logical stability of classes.

This study represents the first step toward a suite of
logical stability metrics for object-oriented designs.
Future works include investigation of more object-
oriented design metrics for logical stability, as well as
deriving new metrics. Once a verified set of these metrics
is identified, various logical stability prediction models
can be developed.

6. References

[1] S. Black, “Computing ripple effect for software
maintenance,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 13, pp. 263-279,
2001.

[2] S. Black, “Measuring Ripple Effect for Software
Maintenance,” Proceedings of the International
Conference on Software Maintenance, Sep. 1999.

[3] S. Chidamber and C. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476-493, June
1994.

[4] T. DeMarco, Controlling Software Projects:
Management, Measurement & Estimation, Prentice-
Hall, 1982.

[5] M. Fayad and A. Altman, “An Introduction to Software
Stability,” Communications of the ACM, vol. 44, no. 9,
pp. 95-98, Sep. 2001.

[6] M. Fayad, “Accomplishing Software Stability,”
Communications of the ACM, vol. 45, no. 1, pp. 111-
115, Jan. 2002.

[7] M. Fayad, “How to Deal with Software Stability,”
Communications of the ACM, vol. 45, no. 4, pp. 109-
112, Apr. 2002.

[8] F. Haney, “Module Connection Analysis – A Tool for
Scheduling Software Debugging Activities,”
Proceedings of the AFIPS Fall Joint Computer
Conference, pp. 173-179, Dec. 1972.

[9] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C.
Chen, “Change Impact Identification in Object Oriented
Software Maintenance,” Proceedings of the
International Conference on Software Maintenance, pp.
202-211, 1994.

[10] L. Li and J. Offutt, “Algorithmic Analysis of the Impact
of Changes to Object-Oriented Software,” Proceedings
of the International Conference on Software
Maintenance, pp. 171-184, 1996.

[11] G. Myers, Reliable Software through Composite Design,
Petrocelli/Charter, pp. 137-149, 1975.

[12] M. Samadzadeh and S. Khan, “Stability, Coupling, and
Cohesion of Object-Oriented Software Systems,”
Proceedings of the 22nd Annual ACM Computer Science
Conference, pp. 312-319, 1994.

[13] N. Soong, “A Program Stability Measure,” Proceedings
of the ACM Annual Conference, pp. 163-173, 1977.

[14] S. Yau and J. Collofello, “Some Stability Measures for
Software Maintenance,” IEEE Transactions on Software
Engineering, vol. SE-6, no. 6, pp. 545-552, Nov. 1980.

[15] S. Yau and S. Chang, “Estimating Logical Stability in
Software Maintenance,” Proceedings of the 8th Annual
International Computer Software and Applications
Conference, pp. 109-119, Nov. 1984.

[16] S. Yau and J. Collofello, “Design Stability Measures for
Software Maintenance,” IEEE Transactions on Software
Engineering, vol. SE-11, no. 9, pp. 849-856, Sep. 1985.

[17] ISO/IEC 9126: Information technology - Software
Product Evaluation - Quality characteristics and
guidelines for their use - 1991.

[18] SourceForge.net, Online at http://sourceforge.net/.

7. Appendix: Algorithm for calculating class logical stability

ClassLogicalStability (Class C, ObjectOrientedDesign OOD)
 Input: Class C, Object-Oriented Design OOD in which class C exist
 Output: The likelihood that C will not be change-prone as a result of
 a class-level change with syntactic impact made to another class in OOD
 BEGIN

TotalNumOfChanges = 0
 NumOfChangesImpactedClassC = 0
 FOR each class A except C in OOD DO
 FOR each attribute T in A DO
 FOR each type of attribute change I DO /* see Table 1 */
 IF I can be applied to T THEN
 IC = {set of classes impacted by applying I to T}
 IF C ∈ IC THEN
 NumOfChangesImpactedClassC = NumOfChangesImpactedClassC + 1
 ENDIF
 TotalNumOfChanges = TotalNumOfChanges + 1
 ENDIF
 ENDFOR
 ENDFOR
 FOR each method M in A DO
 FOR each type of method change J DO /* see Table 1 */
 IF J can be applied to M THEN
 IC = {set of classes impacted by applying J to M}
 IF C ∈ IC THEN
 NumOfChangesImpactedClassC = NumOfChangesImpactedClassC + 1
 ENDIF
 TotalNumOfChanges = TotalNumOfChanges + 1
 ENDIF
 ENDFOR
 ENDFOR
 ENDFOR
 RETURN (1 - (NumOfChangesImpactedClassC / TotalNumOfChanges))
 END

