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 خلاصة الرسالة
  
  

 وائل بن ابراهيم الحجيلان  :    الاسم
  

  عمليات الإنتاج الغير مكتملة مع حالات العجزدراسة   :  عنوان الدراسة
  

  سة النظمدهن  :  التخصص
  

   مـ2005يونيو    :  تاريخ التخرج
  
  

. نقطةٍ ما من دائرة الإنتاجإننا نأخذ في اعتبارنا نموذج آمية الإنتاج الاقتصادي حيث تكون العملية خارج السيطرة عند 
تكلفة , تكلفة العجز, ويتم تطوير أداء التكلفة الإجمالية والتي تتكون من تكلفة التأسيس. وتكون حالات العجز مقبولة

. والمشكلة تكمن في إيجاد وقت الإنتاج الذي يعمل على تقليل النفقات الإجمالية. وتكلفة إعادة العمل) الحيازة(الامتلاك 
 2005( ,Rahim and Hajailan (Houوالـ , )Chung and Hou) 2003لدراسة إلى استقراء أعمال الـ وتهدف ا

في اعتبارها الحالة حيث يكون معدل النقص نسبة مئوية ثابتة إلى ) 2003 (Chung and Houوتضع الـ ). 2006 (
نراعي ونأخذ في الاعتبار الحالة حيث نسبة في الأول . وفي هذا العمل نقوم بتمديد أعمالهم في ثلاثة اتجاهات. الإنتاج

 Rahim and Hajailanالمعيبات متناسبة مع الوقت والعملية خارج السيطرة بالنسبة لدائرة الإنتاج الكلي والتي هي 
فإن النسبة المئوية لسعر المعيبات تزداد مستخدمةً , في النموذج الثاني عندما تخرج العملية عن السيطرة). 2006(

بينما النموذج الثالث يأخذ في الاعتبار الحالة حيث العملية تعني الانتقالات ). Exponential Function( الأسية الدالة
ويتم تحديد القيمة المعيبة عن طريق النسبة المئوية للإنتاج خارج حدود التعيين . بعد فترة عشوائية) التغييرات(
وأعني التوزيع , ائف التوزيع العديدة بالنسبة للزمن إلى القصوروفي النموذج الأول نعير اهتمامنا لوظ). التخصيص(

في النموذج الثاني ". Normal"والتوزيع الـ " Gamma"توزيع الـ , " Weibull"توزيع الـ, )الأسي(الدليلي 
 وقد أظهرنا ).أُسيّة(والنموذج الثالث نأخذ في الاعتبار فقط الحالة حيث الزمن إلى القصور يتم توزيعه بطريقة دليلية 

بأن وظيفة الهدف هي بشكل عام غير محدبة بالنسبة لكل الحالات التي تمت دراستها بغض النظر عن توزيع 
ويتم أداء تحليل . المعينة لمعايير المشكلة) النسب(وظيفة الهدف هي محدبة بالنسبة للقيم . الاحتمالية للزمن إلى القصور

) 2006 (Rahim and Hajailanللزمن إلى القصور بالنسبة لـ ) الأسي(الحساسية بالنسبة لحالة الزمن الدليلي 
. فقد تم أيضاً إدماج تكاليف إصلاح الضمان بالنسبة لكل النماذج, بالإضافة إلى ذلك. النموذج الأول والثاني والثالث

  . ويتم ختم الرسالة عن طريق اقتراح عدد من التوصيات للبحث المستقبلي
 

تحѧدب  , معѧدل المعيبѧات   , طѧول دائѧرة الإنتѧاج     , قياس حجم الإنتاج الاقتصѧادي    , )الانهيار(ملية التلف   ع : الكلمات الهامة 
  . الحد الأدنى للضمان المجاني, التكلفة الإجمالية 

 
  

  درجة الماجستير في العلوم
  

  جامعة الملك فهد للبترول والمعادن
 مـ2005يونيو 



 1

 
 

 
 
 

Chapter I : Problem Description 
 

 

1.1   Introduction 
 

In developing classical Economic Production Quantity (EPQ) models, it has been 

assumed that the product quality and production process are perfect. Indeed, product 

quality is not always perfect and actually depends on the state of the production process. 

The production process is subject to deterioration due to the occurrence of some 

assignable cause which may shift the process from an in-control state to an out-of-control 

state and produce some defective items.  

The effect of an imperfect process on production run time and EPQ was initially studied 

by Rosenblatt and Lee (1986). In their study, the elapsed time until the process shift was 

assumed to be exponentially distributed. The optimal production run was found to be 

shorter than that of classical EPQ model. In recent years, numerous research efforts have 

been undertaken to extend the work of Rosenblatt and Lee (1986). Kim and Hong (1999) 

extended the work of Rosenblatt and Lee (1986) by assuming that elapsed time until the 

process shift was arbitrarily distributed. However, neither of their models took into 

consideration of allowable shortages. Chung and Hou (2003), however, have generalized 

the work of Kim and Hong (1999) by assuming that shortages were allowed. 
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Nevertheless, the common assumption of all the above-mentioned models was that there 

were a fixed percentage of defective items produced during the out-of-control period. This 

assumption may not be applicable in many industrial situations. Intuitively, the percentage 

of the defective rate should increase with an increase in the duration of the out-of-control 

period.  

The main purpose of this thesis is to generalize the work of Chung and Hou (2003) by 

introducing a time-varying percentage defective rate. That is, when the process shifts to an 

out-of-control state, defective items are produced with variable increasing percentages 

depending on the duration of out-of-control period. Hou (2005) generalized the work of 

Rosenblatt and Lee (1986) to allow shortages and considered the restoration cost into 

account for a two-state continuous-time Markovian deteriorating production system. Yeh, 

Ho, and Tseng (2000) have studied the optimal production run length with free minimal 

repair warranty where the deteriorated process of the system is characterised by a two-

state continuous-time Markov chain.  

However, the above studied did not include that the percentage of defectives could be 

variable. Rahim and Hajailan (2006) have introduced the case where the percentage of 

defectives in a production process is time varying.   

 In the first model the percentage of defectives is computed by dividing the time of the 

process out of control to the total production run time. In the second model when the 

process goes out-of-control the percentage of defectives rate increases using an 

exponential function. In the third model we consider the case where the process mean 

shifts after a random duration. The defective rate is determined by the percentage of the 

production outside the specification limits. Convexity of the all models is studied. If for 
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some parameters the total cost function is not convex it means that it has no optimal 

production run time. 

Sensitivity analysis is conducted for all models to show the interaction of the model 

parameters values on the optimal production run time and the total cost that is incurred. 

In the first model we consider several distribution functions for the time to failure, namely 

the exponential distribution, the Weibull distribution, the Gamma distribution and the 

normal distribution. In the second model we consider only the case where the time to 

failure is exponentially distributed. 

 

1.2   Assumptions and Notations 
 

Assumptions: 

1. At the start of each product cycle, the production process is always in an in-control 

state and perfect items are produced but some items could be outside the 

specification limits. 

2. During a production run, the production process may shift from an in-control state 

to an out-of-control state. 

3. The elapsed time until the shift is a random variable with finite mean and variance. 

4. Once the production process shifts to an out-of-control state, the shift cannot be 

detected until the end of the production cycle, and a variable proportion of the 

produced items are assumed to be defects. 

5. All defective items produced are detected after the production cycle is over, and 

rework cost for defective items will be incurred. 
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6. The process is brought back to the in-control state at each setup. 

7. Shortages of inventory items are allowed. 

8. The demand rate is constant. 

9. The production rate is greater than the demand rate. 

 
 
Notations: 
 
 
The following notations will be used. 
 
 
 
 

D = demand rate in units per unit time, 

P = production rate in units per unit time (P > D), 

h = holding cost per unit, per unit time, 

K = cost for setting the machine up and inspecting or resetting it 

to new condition before the beginning of the production 

cycle, 

s = rework cost for a defective item, 

x = an elapsed time until production process shifts, 

α = percentage of defective items produced once the system is in 

the out-of-control state, it is to be taken as a function of 

elapsed time, 

π = backorder cost per unit, per unit time, 

B  = average backorder level, 

I  = average inventory level, 
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maxI  = maximum on-hand inventory level,  

maxS  = maximum shortage permitted, 

1T  = production time when backorder is replenished, 

2T  = production time when inventory builds up, 

3T  = time period when there is no production or inventory 

depletion, 

4T  = time period when there is no production and shortage occurs, 

T  = cycle time for each production lot, 4321 TTTTT +++= , 

t = 
production run time in a production cycle, where 21 TTt +=  

= TPD )/(  

TC(t) = total cost, 

TRC(T1, T2) = total relative cost, 

T* = optimal production-inventory cycle time. 

λ = production system failure rate per unit time when an 

exponential probability distribution of failure is assumed, 

USL = upper specification limit of the product quality characteristic, 

LSL = lower specification limit of the product quality characteristic, 

0µ  = initial process mean when process is in control, 

βτ = given constant used for rate of change in Model III, 

τµ  = mean at time τ where τ≥x, 
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a = shape parameter for Weibull and Gamma distributions, 

β = scale parameter for Weibull and Gamma distributions, 

v = cost of scheduled maintenance,  

)(•f  = probability distribution function (p.d.f) denoting the 

transition from an in-control state to an out-of-control state, 

)(•φ  = standard normal probability distribution function, 

)(zΓ  = Gamma function, defined by ∫
∞

−−=Γ
0

1)( dtetz tz , 

)(zφ  = ∫ −
z

t dte
0

22
π

 = error function  

Mi(t) = ∫
t

i dxxfx
0

)( , 

A(t) = -2tM1(t) + 3M2(t), 

)(tq  = the fraction of nonconforming items, 

1q  = 
the fraction of nonconforming items when process is in the 

in-control state, 

2q  = 
the fraction of nonconforming items when process is in the 

out-of-control state, 

)(th  = hazard rate function, 

)(tW  = average post-sale warranty cost, 

rc  = repair cost per unit, 

ω  = warranty period, 

21   kandk  = scale parameters used for hazard function, 
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m = shape parameter used for hazard function, 

 
 

1.3  Terms and Terminology 
 
 

1.3.1   Ordering Cost 
 
Ordering costs include the cost of preparing and placing orders for replenishing 

inventories, the cost of handling and shipping orders, the cost of machine setups for the 

production run, the cost of inspecting the received orders in inventory, and all costs that 

do not vary with the size of the order. 

1.3.2   Inventory Carrying Cost 
 
The cost of carrying inventory can be broken down into several components: (1) the 

opportunity cost of money being tied up in inventory; (2) storage and space charges, 

representing the cost of providing storage space, as well as its cost of maintenance; (3) 

taxes and insurance, and the cost of physical deterioration and its prevention; (4) the cost 

of obsolescence due to technological change.   

1.3.3   Shortage Cost 
 
This cost is incurred if units of inventory are not available when demanded. It is the cost 

of lost sales, loss of goodwill, overtime payments, or customer dissatisfaction. There are 

two types of shortage costs: (1) one-time shortage cost per unit short, independent of the 

duration of the shortage; and (2) shortage cost per unit short per unit time. 
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1.3.4   Rework Cost 
 
Re-work is defined as, ‘‘the process by which an item is made to conform to the original 

requirement’’. Re-work effects the operating costs, if we are one of the few manufacturers 

that never has to re-cut a component or re-make a cabinet door that was rejected, then the 

cost of poor quality should not be an issue. However, if we are experiencing any type of 

non-conformance or rework in the plant, then you cannot ignore the effect that it can have 

on your total annual operating expense, because rework and quality costs are just that; 

unnecessary additional operating costs that might as well be included in the operating 

budget and classified as a valid expense.  

Material waste and rework are natural occurrences that happen on a daily basis, and 

require temporary corrective action to immediately reproduce or rework a part.  

1.3.5   Warranty Cost 
 
It is the cost related to the quality of items produced by deteriorating production system. 

Under the minimal repair warranty, failures that occur within the warranty period ω result 

in valid warranty claims and are rectified by minimal repair at no cost to the buyers. Each 

minimal repair incurs a cost of rc  to the manufacturer.  

 
 
 
1.4   Literature Review 

Rosenblatt and Lee (1986) are the first who studied the effects of an imperfect production 

process of on the optimal production cycle time. The system is assumed to be in an in-

control state at the beginning of each production cycle and may shift to an out-of-control 

state. The elapsed time until the shift is assumed to be exponentially distributed. The 

system will deteriorates during the production process and produce certain percentage of 
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defective items, which are to be reworked or repaired at some cost. Items are sold to the 

customers, some costs of servicing, warranty or loss of goodwill will be incurred. The 

optimal production run time is found to be shorter than that of the classical economic 

manufacturing quantity. Lee and Rosenblatt (1987) have addressed the problem of joint 

determination of economic production cycle or economic manufacturing quantity EMQ 

and maintenance policy for a single product. It is shown that the optimal inspection 

schedule is equally-. The problem is solved by using an approximation to the cost 

function. The resulting EMQ is found to be an adjustment to the classical EMQ. Lee and 

Rosenblatt (1989) have studied the joint problem of production planning and maintenance 

schedules under the realistic assumption that the cost of process restoration is a function 

of the detection delay. In addition, the possibility of incurring shortages in the model is 

allowed. For specific restoration cost functions such as linear and exponential, an efficient 

solution procedure is presented to find the number of maintenance inspections in a 

production run, the length of the production run, the economic manufacturing quantity, 

and the maximum level of back orders. Cheng (1991) relaxed two major assumptions of 

the classical EOQ model with imperfect production process.  These major assumptions are 

that the demand is constant and deterministic, and that the unit price (unit production cost) 

is independent of the order (production quantity). However, when demand is high, a 

company can produce more items so as to spread the fixed costs of production more 

widely, which will result in lower unit production costs. So, the unit cost of production is 

an increasing function of the demand rate. The optimal solution was obtained in a closed-

form by using geometric programming (GP). Lion, Tseng, and Lin (1994) incorporated 

type I and type II inspection errors into the EMQ model under the imperfect production 

system which may seriously affect the product quality. They have derived the expected 

total cost when the shift of the production process follows a general distribution and the 

inspection interval is arbitrary. Huang and Chiu (1995) presented an imperfect production 

process model with two monitoring policies. Policy I represents the preventive 

maintenance whereas policy II represents not use it, where the cost of restoration and the 

proportion of defective items is a function of the detection delay. The objective is to 

determine the optimal production cycle time while minimizing the total cost of the 

imperfect production process under these two policies. They have shown that the total 
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costs under policy I are smaller than those of policy II. So, it is necessary for the 

preventive maintenance procedure to be performed. Hariga and Ben-Daya (1998) 

extended the EPQ model to consider the general shift distributions with the imperfect 

process discussed by Rosenblatt and Lee (1986). They have developed distribution-based 

and distribution-free bounds on the optimal total cost. For the exponential distribution 

case, they compared the optimal solution with the Rosenblatt and Lee (1986) solution. 

Kim and Hong (1999) considered the EMQ model with a deteriorating production 

process. An optimal production run length and a minimum average cost are derived in 

three deteriorating processes: constant, linearly increasing, and exponentially increasing. 

The elapsed time until the shift is arbitrarily distributed. A numerical experiment is 

carried out to investigate behaviour of the proposed model and to compare the solutions 

with those from Rosenblatt and Lee (1986), and show that the differences in the two 

solutions may be significant depending on the cost and the process parameters. Ben-Daya 

and Hariga (2000) modelled the effects of an imperfect production process on the 

economic lot scheduling problem (ELSP). The mathematical model developed has taken 

into account the effect of imperfect quality and process restoration. Salameh and Jaber 

(2000) presented a modified inventory model which accounts for imperfect quality items 

when using the EPQ/EOQ formulae. It shows that the economic lot size quantity tends to 

increase as the average percentage of imperfect quality items increases. Items of imperfect 

quality are withdrawn from stock resulting in lower holding costs per unit per unit time 

and they proposed discount sales for imperfect quality items. Yeh, Hi, and Tseng (2000) 

studied the optimal production run length for a deteriorating production system in which 

the products are sold with free minimal repair warranty. The deteriorating process of the 

system is characterised by a two-state continuous-time Markov chain. Hayek and Salameh 

(2001) studied the effect of imperfect quality items on the finite production model. When 

production stops, defective items are assumed to be reworked at a constant rate. The 

percentage of imperfect quality items is considered to be a random variable with a known 

probability density function. The optimal operating policy that minimizes the total 

inventory cost per unit time is derived where shortages are allowed and back ordered. 

Wang and Sheu (2001) developed an EMQ model with a production process subject to 

random deterioration with a general discrete shift distribution, while items are being 
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produced. Since defective items reach the marketplace the manufacturer will incur a 

significant cost (warranty cost), an EMQ model has been employed to consider the 

difference between the reworked cost before sale and warranty cost after sale. They 

investigated the effect of the warranty cost on optimization of the EMQ. Chung and Hou 

(2003) extended the work of Kim and Hong (1999) by allowing shortages. The elapsed 

time to shift is assumed to be arbitrarily distributed. They showed that there exists a 

unique optimal production run time to minimize the total relevant cost function. Chiu 

(2003) considered the EPQ model with the rework process of imperfect quality items 

under the assumption that not all of the defects are repairable.  A portion of them are scrap 

and will not be reworked. The disposal cost for each scrap item and the repairing and 

holding costs for each reworked items are included in the cost analysis. The renewal 

reward theorem is utilized to deal with the variable cycle length, and the optimal lot size 

that minimizes the overall costs for the imperfect quality. The EPQ model is derived 

where back orders are permitted. Hou (2005) generalized the work of Rosenblatt and Lee 

to allow shortages and take the restoration costs into account for a two-state continuous-

time Markovian deteriorating production system. When the production process is in the 

in-control (or out-of-control) state, q1(or q2) percent of the items produced will be 

nonconforming, where q1<q2 . 

 
 

1.5   Proposed Objectives 

 
Rosenblatt and Lee (1986) have studied the effect of an imperfect production process of a 

single machine-single product system on the optimal production cycle time. The elapsed 

time till shift is assumed to be a random variable that is exponentially distributed with a 

known mean. Defective items will be reworked at some cost or if passed to customers, 

some costs of warranty or loss of goodwill. Kim and Hong (1999) have considered EMQ 

model with a deteriorated production process. An optimal production run and a minimum 

average cost are derived in three deteriorated processes constant, linearly increasing and 
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exponentially increasing. Chung and Hou (2003) extended the problem of Kim and Hong 

(1999) by allowing shortages. Yeh, Ho, and Tseng (2000) have studied the optimal 

production run length for a deteriorated production system in which the product are sold 

with free minimal repair warranty. Rahim and Hajailan (2006) have extended the work of 

Chung and Hou (2003) by allowing the percentage of defective items to be time varying. 

 
Chung and Hou (2003) assumed that the expected number of defects is given by: 

                                           ∫
=

−=
t

x

dxxPfxttED
0

)()()( α                                             (1.1) 

Where α is the percentage of defects per unit time.  In this work we consider two models 

for determining the expected number of units which require rework.  

 

In the first model we consider the case where α is given by α = (t-x)/t in Rahim and 

Hajailan (2006). This case is discussed in Chapter 2. In model II we assume that when the 

process is in out of control state the percentage of defectives in increasing exponentially 

which is discussed in chapter 3. In the Model III we assume that there are lower and upper 

specification limits of the quality characteristics. The percentage of defects will be 

determined by computing the probability of being outside those limits.  Model III is 

discussed in Chapter 4. 

 

For each of the above models the time to failure is random. We will examine the 

convexity conditions of the total cost function for these models. The optimal production 

run time is determined and sensitivity analysis for all the considered models is performed. 

 In addition the free minimal repair warranty cost has been incorporated for all Models. 
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1.6   Thesis Organization 
 
 

The remainder of this thesis is organized as follows. Chapter 2 deals with Model I what 

will happens when the fraction of defective items depends on the detection delay divided 

by the total production run time. The convexity conditions of the models are identified. 

Sensitivity analysis is presented to find the effect of the model parameters on the optimal 

production run time. Chapter 3 is discussing the case when the percentage of defectives 

items in out of control is increasing exponentially. Chapter 4 provides Model III issues 

faced when the fraction of defective items are represented by a normal probability 

distribution function, by calculating the fraction when the mean and standard deviation are 

changed, and when the process is moving from an in-control period to an out-of-control 

period. Examples of convexity and sensitivity analysis are also presented. In chapter 5 a 

summary of the work is listed, major contributions and possible directions for future 

research are also given. However, warranty repair cost has been incorporated for all 

Models where products are sold with free minimal repair warranty. 

 

1.7   The Inventory Model 
 
 
Chung and Hou (2003) presented the following production and inventory model. 
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Figure 1:  The production-inventory model with shortages 
 
 

Figure 1 represents the production-inventory model with allowable shortages. This model 

can be described by four parts: production is started with constant production and demand 

rates when the back order is met (part 1), a period when the inventory level reaches its 

maximum value (part 2), inventory is consumed by a constant demand (part 3) and 

shortages period (part 4). The total relevant cost per unit time composed of setup costs, 

backorder costs, and rework costs. Based on the basic four phases of the inventory cycles, 

these costs are evaluated as follows: 

 
 
(a) Setup Costs:  

  

Pt
KD

T
K

=  :is unit timeper cost  setup average The                                                    (1.2) 

 
 
(b) Holding Costs: 

 

 
2

)()(
2

)( 2
1

1 t
TDPhTDPhtDPhIh −

+−−
−

=                                                 (1.3) 
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For details, please see Appendix 1. 
 
(c) Back ordering costs: 
 

t
DPTB

2
)(2

1 −
=
π

π                                                                                        (1.4) 

For details, please see Appendix 2. 
 
 
(d) Rework costs: 
 
If the process becomes out-of-control after production is over then no defective parts are 
produced. However, if the process becomes out-of-control before the completion of the 
production time, then the number of defective items is proportional to the duration that the 
process is out-of-control, t-x, where x is the elapsed time before the process becomes out-
of-control. Chung and Hou (2003) use a linear function as follows: 
 

⎩
⎨
⎧

<−
≥

=
tXifPXt
tXif

N
)(

0
α

                                                                       (1.5) 

 
Therefore, the expected number of defective items in a production cycle is: 

∫ −=
t

o

dxxfxtPtED )()()( α                                                                           (1.6) 

 (f)Total Costs: 
 

=)TTRC(T 21 , setup costs + holding costs + back order costs + rework cost  
                        

 
 
 

             
 
 
 

 
 

1.8   The Current Mathematical Models 
 
 
Rosenblatt and Lee (1986) derived the total cost function as follows: 
 

(1.7) 

)(
)(

                     

)(
2

)( 
)(2

)()(
)(

               

)(               

21

12
2

1
2121

tED
TTP

sD

TTDPhT
TT
DPh

TTP
KD

T
tsEDBIh

T
K

+
+

−
−

+
+
−

++
+

=

+++=

π

π



 16

( )⎩
⎨
⎧

<−
≥

=
tXifXtP
tXif

N
α

0
, where α  is constant. 

 
( )

22
)( DtstDPh

Pt
KDtC αµ

+
−

+⎟
⎠
⎞

⎜
⎝
⎛= , 

which include setup cost, holding cost, and rework cost. 
 
 
Chung and Hou (2003) have included the shortage cost: 
 

( ) )(
2

)( NED
Pt
sD

h
tDPh

Pt
KDtTRC +⎟

⎠
⎞

⎜
⎝
⎛

+
−

+=
π

π  

 
In the above models, the percentages of defective items in the in-control period are 
assumed to be zero. Hou (2005) has introduced the number of defectives as follows: 
 

( )⎩
⎨
⎧

<−+
≥

=
tXifXtPqPXq
tXifPtq

N
21

1 , where 1q < 2q  and are constant. 

 
So, the total cost function is: 
 

( ) ( ) ( )
t

eqqsDsDq
Pt
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h
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The percentage of defective items are assumed to be constant, however this is not always 
true for real life industry. 
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Chapter II : Model I 

 
 

2.1   Introduction 
 
 

In this chapter we will discuss the imperfect production processes when the 

percentage of defective units in the out-of-control period, α, is equal to the ratio of the 

detection delay, t-x, to the cycle production time t, i.e. 
t

xt −
=α . This model appeared in 

Rahim and Hajailan (2006). 

 

 

 

 

 

 

                  Figure 2:  A typical production cycle 

Figure 2 shows a typical production cycle, when t is the production time and x is the time 

when the process is in control. 

x 

(t-x)

t

Time 

Inventory Level 
T
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In this case we take ( )
∫

−
=

t

dxxPf
t
xttED

0

2

)()(  and the total cost is given by 
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2.2   Convexity Of The Total Cost Function, TRC (T1, T2) 
  
In this section we examine the convexity of TRC.  It will be shown that, in general, TRC is 
a non convex function.  We accomplish this by examining its Hessian matrix at some 
points. 
 
A function, g(x, y), differentiated twice, is convex if: 
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The second derivatives of TRC are given by; 

 
               
(2.1)           
 
 
                
(2.2) 
  
 

 
    (2.3) 
 
 
 

where ∫=
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i
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0

)()(  is the ith moment of the density function f(x). 

Note that the first two terms of (2.1), (2.2) and (2.3) are always positive. However the last 
term includes the moments of the density function f(t). Hence the signs of (2.1), (2.2) and 
(2.3) depend on the sign and magnitude of the quantity )(3)(2 21 tMttM +− . 
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In the following subsections we examine the sign of )(3)(2 21 tMttM +−  for different 
probability density functions, f(x). 

 

2.2.1   Case of f(x) is the Exponential Distribution 
 
In this section we examine the sign of A(t) = )(3)(2 21 tMttM +− , and the Hessian of TRC 
where xexf λλ −=)( .   In this case  
 

( )( )tλeλttλ
λ

etA tλ
tλ

2646)( 22
2 −+−−−=
−

                                                       (2.4) 

 
In the following we prove that A(t) ≤ 0  for t ≥ 0.  Towards this end we show that the 
function ( )tλeλttλtB tλ 2646);( 22 −+−−−=λ ≤ 0  for t ≥ 0 and λ > 0. 
 
Lemma 2.1 
ex ( 1 – x ) ≤ 1 for all x and equality is satisfied at x = 0 
Proof 
Note that e-x is a convex function.  Its tangent at x = 0 is the line y = 1 – x hence   e-x ≥ 1 – 
x.   
 
Theorem 2.2 

( )tλeλttλtB tλ 2646);( 22 −+−−−=λ  is non-positive for t ≥ 0 and λ > 0. Strict equality 
holds at t = 0. 
Proof 
Let x = λt and g(x) = - 6 - 4x – x2 + 2ex(3-x). 22 dxgd = 2( -1 + ex(1 – x ) ).  From 
Lemma 2.1, g”(x) ≤ 0. Hence g is concave.  The tangent of g(x) at x = 0 is the line y = 0, 
hence g(x) is also non-positive. 
 
Figure 3 below shows a plot of A(t) for λ = 0.5  

1 2 3 4
λt
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-1.5

-1.25

-1

-0.75

-0.5

-0.25

AHTL

 
Figure 3:  A(t) vs. production run time for Exponential Distribution 
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By examining Equations (2.1), (2.2) and (2.3) we observe that the sign of these 
derivatives could be negative for specific values of the parameters. In the following two 
cases we show that the Hessian could be made indefinite or positive definite by the proper 
choice of parameters. 
 
 
Example 1: 
 
We choose the following values for the parameters of the problem; K=100, D = 500, P = 
1000, π= 0.3, h = 0.1, s = 2, λ=0.5.  The Hessian at the point (T1, T2) = (3.2, 9.6) and its 
determinant is;  
 

03824.194449.4
94449.477426.6

−−
−

 = -31.4813 

 
H is indefinite and hence the function TRC is not convex at this point. 
 
 
Example 2: 
 
The Hessain could be positive definite at some points.  For example if we take K=150, 
D=999, P=1000, π=2.5, h=0.75, s=10, λ=0.5, and (T1, T2) = (0.145237, 0.484121) we get 
the Hessian and its determinant, as given below;  
 

86.029,167.028,1
67.028,164.032,1

 = 5,316.78 

 
The Hessian is positive definite and hence the function TRC is convex at this point.  
 
We conclude that the cost function, TRC, under consideration is generally non-convex, as 
shown by the above two examples.  The parameter values affect the function geometry 
drastically. By examining Equations (2.1), (2.2), and (2.3) one could make the right hand 
side (RHS) negative by choosing a large value for s, and very small values for K and P-D. 
This will result in the first two terms becoming small positive numbers and the last term a 
large negative number.  
 
 

2.2.2   Case of f(x) is the Weibull Distribution 
 
The Weibull Distribution has a wide industrial applications. When its shape parameter 
a=1 it becomes exponential. If a >1 then the distribution tends to Normal. If a <1 it has 
decreasing hazard rate. 
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The Weibull distribution is given by  
 

f(x) = 
)(1 ββ

x
aa exa

−−− ,                                                                                            (2.5) 
 
where a and β are the shape and scale parameters of the distribution. If a = 1, we get the 
exponential distribution.  We will consider two examples of a and β and show that 

)(3)(2)( 21 tMttMtA +−= <0. 
 
 
Example 3: 
 
Let a=2 and β=1,   
In this case A(t) contains the Gamma and Incomplete Gamma integrals. Figure 4 shows a 
plot of A(t).  The graph illustrates the fact that A(t) is negative for t > 1.4. 
 
 
 
 
 
 
  
 

 
 
 
 

Figure 4:  A(t) vs. production run time for Weibull Distribution 
 
To examine the convexity of TRC we choose the following values for the parameters of 
the problem; K=150, D=999, P=1,000, π=2.5, h=0.75, s=15 and the compute the Hessian 
at (T1, T2) = (2.0, 1.5).   The Hessian and the determinant are given below;  

 

531.632061.633
061.633663.632

−−
−−

 = -587.632 

 
Note that H is indefinite and hence TRC is non convex at this point where the time to 
failure is Weibull distributed.  
 
 
Example 4: 
 
Let a=2 and β=1,   
Different values of the parameters are chosen the function could be convex. Here we use 
the following values for the parameters; K=150, D=999, P=1,000, π=2.5, h=0.75, s=5, and 

0.5 1 1.5 2 2.5 3
t
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-0.15
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-0.05
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AHtL
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use the point  (T1 , T2) = (  0.145237, 0.484121).  The Hessian and the determinant are 
given below; 
 

28.201,209.200,2
09.200,206.204,2

 = 11,366 

 
Note that H is positive semi definite, and the function TRC is convex at this point. 
 
 We conclude that the cost function under consideration is generally non-convex. As 
shown in the above two cases, the parameter values affect the function geometry 
drastically. By examining Equations (2.1), (2.2), and (2.3) one could make the RHS 
negative by choosing very small values for K and P-D, resulting in the first two terms 
being small. The third term can be made negative and large if s is large and t is also large. 
For the examples on hand t > 1.4 was sufficient to make the RHS negative.  
 
Figure 5, 6, and 7 shows the function A(t) for different condition of a and β.   
 
 
 
 
2.2.2.1 Hazard Rate 
 
 
a=0.5, β=1 
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Figure 5:  Graph of A(t) when a=0.5, β=1 
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a=1, β=1 
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Figure 6:  Graph of A(t) when a=1, β=1 

a=3, β=1 
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Figure 7:  Graph of A(t) when a=3, β=1 

 

 

2.2.3   Case of f(x) is the Gamma Distribution 
 
The density function in this case is given by:   

ββ
x

aa exxf
−−−= 1)(                                                                                                   (2.6) 

Where a is the shape parameter and β is the scale parameter. 
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Consider the case where a=2 and β=1, the A(t) is given by: 
 

( )( )432

21

6246061272
2
1       

)(3)(2)(

tttttee

tMttMtA

tt ++++−+−=

+−=

−
                                               (2.7) 

 
A plot of A(t) is shown in Figure 8. The graph illustrates the fact that A(t) < 0 for t > 3.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  A(t) vs. production run time for Gamma Distribution 
 
 
Example 5: 
 
Next we consider the Hessian of TRC.  We choose the following values for the 
parameters of the problem; K=150, D=999, P=1,000, π=2.5, h=0.75, s=15. We use the 
point (T1, T2) = (3.5, 1.5).  The Hessian and its determinant, in this case, are  
 

881.225412.226
412.226014.226

−−
−−

 = -210.029 

 
Note that H is not positive semi definite, and the function TRC is not convex at this point 
where the time to failure is Gamma distributed.  
 
 
Example 6: 
 
If we use the same parameters as above, but take s = 2 and consider the point (T1, T2) = 
(1, 0.5).   We get the following Hessian and determinant.  
 

11.117665.115
665.115387.116

 = 251.651 
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Note that H is positive definite and the function TRC is convex at this point. 
 
We conclude that the cost function under consideration is generally non-convex. As 
shown in the above two examples, the parameter values affect the function geometry 
drastically. By examining Equations (2.1), (2.2), and (2.3) one could make the RHS 
negative by choosing very small values for K and P-D, resulting in the first two terms 
being small. The third term can be made negative and large if s is large and t is also large. 
For the examples on hand t > 3.8 was sufficient to make the RHS negative.  
 

2.2.4   Case of f(x) is the Normal Distribution 
 
The density function of the Normal distribution is given by:  

2

2

2
)(

22
1)( σ

µ

πσ

−−

=
x

exf  and A(t)=-2tM1(t) + 3M2(t)                                           (2.8) 

Where µ is the mean of distribution and σ is the standard deviation. 
 
Consider the case when: µ=10, σ=1 take a large positive value. In this case A(t) contains 
the error function. Figure 9 shows a plot of A(t).  The graph illustrates the fact that A(t) is 
always negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9:  A(t) vs. production run time for Normal Distribution 
 
 
 
Example7: 
 
We chose the following values for the parameters of the problem K=100, D = 500, P = 
1000, π= 0.3, h = 0.1, s = 2, λ=0.5, U=13, L=7, (T1, T2)=(3.2,9.6) 
 
The Hessian and its determinant are, 
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375083.053117.3
53117.318758.8

−
−

 = -9.39812 

 
Note that H is not positive semi definite and the function TRC is not convex. By 
examining Equations (2.1), (2.2), and (2.3) one could make the RHS negative by choosing 
a large value for s, and very small values for K and P-D. This will result in the first two 
terms becoming small positive numbers and the last term a large negative number.  
 
 

2.3   Stationary Points of TRC 
 
In this section we derive the stationary points of function TRC given by (1.7) which is 
rewritten here for convenience of the reader. 
 

 
 
 
 
 
 
 

where ED(t) is the average number of defective units. In this chapter we take 
t

xtα −
=  

where t = T1 + T2. ED(t) and its partial derivatives are given by 
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The partial derivatives of the TRC function with respect to T1 and T2 are shown below: 
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:hence and vanish sderivative partialboth point  stationery aAt  
 
 
 
 

 
( )( )       0)(/1 =−−−+ DPhtTDPh π  
 
which simplifies to 
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Substituting into (1.7) gives: 
 

                                                            
 
 

 
 
Next we consider the derivative of )(tTC  with respect to t which is given by: 

 
 

 
 
 
 
The second derivative is given by: 

             
 
 
 
 

 
Note that no closed form solution can be obtained from (2.12). The value of t that 
minimizes TC could be computed by a root finding algorithm of (2.12) or by a line search 
algorithm of TC.  
Figure 10 below shows that a plot of function TC for the case f(x) is an exponential 
density function.  For this example we use the following values for the parameters of the 
problem; K=100, D = 500, P = 1000, π= 0.3, h = 0.1, s = 2, and λ=0.5.  
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In conclusion, we have shown that the function TC is generally nonconvex.  Equation 
(2.15) can be used to generate a stationary point and a plot of the function is used to verify 
that this point is a global minimum of the cost function. 
Table 1 shows the values used in plotting the function  shown in figure 10. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10:  Total cost function versus production run time 

 
 
 

Table 1: Table of production run time vs. total cost, TC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

t TC(t) t TC(t) 
0.01 5001.85 10.04 819.63 
0.1 518.335 10.63 846.683 
0.5 186.917 11.22 872.486 

1.19 236.351 11.81 897.17 
1.78 176.468 12.4 920.85 
2.37 246.437 12.99 943.628 
2.96 313.43 13.58 965.592 
3.55 375.708 14.17 986.819 
4.14 433.081 14.76 1007.38 
4.73 485.84 15.35 1027.33 
5.32 534.418 15.94 1046.74 
5.91 579.268 16.53 1065.64 
6.5 620.82 17.12 1084.07 

7.09 659.46 17.71 1102.09 
7.68 695.533 18.3 1119.72 
8.27 729.34 18.89 1136.99 
8.86 761.144 19.48 1153.93 
9.45 791.174 20.07 1170.57 
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Figure 11:  First derivative of TC(t) vs. production run time 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
        

Figure 12:  Second derivative of TC(t) vs. production run time 
 
 
The plot of the function TC shows that it is nonconvex, while its second derivative is 
positive at some range close to the origin and negative otherwise.  
 
 
 

5 10 15 20
t

-1000

-800

-600

-400

-200

DTCHtL

5 10 15 20
t

1000

2000

3000

4000

5000

6000

DDTC HtL



 30

2.4   Further Convexity Results 
 
Equation 1.7 gives total costs as a function of T1 and T2. Since t= T1+T2 then we can 
substitute t- T1 for T2. This will give a function in t and T1. Let ),( 1TtC be this function. 

=),( 1TtC ( ) ( ) ( ) ( ) )(
22 1

2
1 NE

Pt
sDTDPtDPhT

t
DPh

Pt
KD
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++ π  

2.4.1   Convexity of TC(t,T1) with respect to T1: 
 
For ),( 1TtTC  to be convex in 1T  we have to show that the Hessian is positive semi 
definite. Sections 2.2.2, 2.2.3, and 2.2.4 contain examples that the Hessian is indefinite, 
hence  ),( 1TtTC  is not convex in 1T . 
 

2.4.2   Existence and Uniqueness of t*: 
 
Intermediate Value Theorem says that if f is continuous function on the closed interval 
[a, b], and suppose d is a real number between f(a) and f(b); then there exists c in [a, b] 
such that f(c) = d. 
 
We will take the limit for the first derivative of  )(tTC  as it goes to zero and to infinity. 
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Note that (2.14) is negative at t=0. However, its second and third terms are strictly 

increasing function. Hence 
dt
dg  will eventually vanish for some value, say, t0. This 

implies that g is decreasing for t<t0 and increasing for t>t0. Next we examine the 

behaviour of
dt

dTC . We showed earlier that 0=
dt

dTC  at some points. Let these points t1, 

t2, …., tr then g=0 at these points but this contradicts the fact that g is decreasing before t0 

and increasing after t0. Therefore 0=
dt

dTC  at exactly one point. Hence we have shown 

the uniqueness of the minimum point of TC.  

 

2.5   Free Minimal Repair Warranty 
 
In Equation (1.7) the consideration of warranty period and warranty costs are not 
considered. In this section we are considering warranty. 
 
 The fraction of nonconforming items in a production run with length t denoted by )(tq is 
given by : 

Pt
tEDtq )()( =  

 
 
Under the free minimal repair warranty, it is well-known Hou (2005) that the failure 
process of a conforming (or nonconforming) item is a nonhomogenous process with 
intensity )(1 th  (or )(2 th ). The expected post-sale warranty cost for a warranty period ω  
is: 
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Hence the fraction of nonconforming items in a production run with length t denoted by 
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Example: 
 
Suppose 1

11 )( mtkth =  and 2
22 )( mtkth = where )(1 th < )(2 th  for 0≥t  denote the hazard 

rate associated with conforming and nonconforming item, respectively. Furthermore 
suppose that the time to failure is exponential distribution function. Assume K=150, 
D=1200, P=1650, π =2.5, h=.75, s=.85, λ=0.5, 1k =1, 2k =2, 1m =2, 2m =2, rc =1.5, ω =6. 
 
 

Table 2:  Free minimal repair warranty for Rahim and Hajailan (2006) Model  
 

Rahim and 
Hajailan (2006) 

Model  
Without Warranty With Warranty 

Optimal 
production run 

time, *t  
0.6293 0.5562 

Cost 354.109 914.295 
 
Note that if warranty is available the optimal production time is less than the case without 
warranty. This will reduce the probability of being out of control and hence less 
nonconforming items will be produced. 
 
 

2.6   Sensitivity Analysis 
 

 In this section, a sensitivity analysis of the model is conducted to study the effect 

of the different cost parameters on Rahim and Hajailan (2006) model. Table 2 gives the 

values of the parameters used to perform the analysis. The effect of each parameter is 

studied as well as the effect of simultaneous changes of two parameters. In addition, a 

comparison of the basic model versus the sequential changes of the selected parameters is 

made. 
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Table 3:  Values of the parameters used in the sensitivity analysis study for Model I 
 

Parameter Level 1 Level 2 Level 3

D 1,200 1,350 1,550 

P 1,650 1,850 2,250 

K 150 220 450 

h 0.75 1.2 1.95 

π 2.5 3.5 5.1 

λ 0.5 0.75 0.95 

s 0.85 1.25 1.75 

 
 
 
 
Exponential Distribution 
 
 
Effect of the demand rate, D 
 
Different values for the demand rate, D, are studied and presented in cases 1-3. As the 

demand rate increases, the optimal production run time, t*, also increases to meet the 

demand.  

Effect of the production rate, P 
 
The effects of changes in the production rate, P, are analyzed in cases 1, 4 and 5. An 

increase in the production rate will decrease the production run time, but the total relevant 

costs increase. If there is no constraint on the production run time, current results indicate 

low production rates have low total costs. 
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Effect of the setup cost, K 
 
Different values for the setup cost, K, are presented in cases 1, 6 and 7. By increasing the 

setup cost, the optimal production run time increases, so that the number of times the 

machines are set up for production is minimized in order to reduce the total cost of 

machine setups. 

 
Effect of the holding cost, h 
 
The effects of the holding cost, h, are presented in cases 1, 8 and 9. If the holding cost 

increases, the optimal production times tend to be smaller. So, if we produce smaller 

quantities to meet the demand, there will be smaller quantities left in the storehouse, and 

in turn will decrease the total holding cost. 

 
Effect of shortage cost, π 
 
 The effects of shortage cost, π, are presented in cases 1, 10 and 11. By increasing the 

shortage cost, the optimal production run time is decreased. This mean the TRC will be 

enhanced by decreasing production run time, t, if the shortage cost is increased.  

 
Effect of the process failure rate, λ, when the time to failure is exponentially distributed.  

The results of different values for the failure rate, λ, are presented in cases 1, 12 and 13. 

As the failure rate of the production system increases, the optimal production run time 

decreases. For this reason we will avoid having the system in the out-of-control state, 

which in turn will contribute to the reduction of the total relevant costs. 

 
Effect of rework cost, s 
 
Cases 1, 14 and 15 present different values for the rework cost, s. If we increase s, t* 

tends to be smaller. So, the percentage of having defective items will be smaller. 
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Table 4:  Effects of each parameter on the optimal production run time for Model I 
 

Case Vp* Level t* TRC(t*) T1 T2 

1 Basic Model 1 0.6293 354.11 0.1452 0.4841 

2   2 0.7043 358.83 0.1625 0.5418 

3 D 3 0.8222 358.51 0.1897 0.6325 

4 P 2 0.5378 367.35 0.1241 0.4137 

5 P 3 0.4187 385.48 0.0966 0.3221 

6 K 2 0.7689 426.95 0.1774 0.5915 

7 K 3 1.1236 604.06 0.2593 0.8643 

8 h 2 0.5749 385.73 0.1865 0.3884 

9 h 3 0.5249 420.88 0.2300 0.2949 

10 π 2 0.6187 359.82 0.1092 0.5095 

11 π 3 0.6097 364.82 0.0782 0.5315 

12 λ 2 0.5691 396.43 0.1313 0.4378 

13 λ 3 0.5343 426.25 0.1233 0.4110 

14 s 2 0.5602 398.22 0.1293 0.4309 

15 s 3 0.4983 447.67 0.1150 0.3833 

 
 

In the following table, the effect of simultaneous changes of two parameters is also 

presented. For example, consider Cases 1 and 2; if we increase h and D, the optimal 

production run time tends to be larger. Where in case 3, when h and P increases, the 

optimal run time decreases. These analyses show us the interaction between paired model 

parameters. 
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Table 5:  Effects of simultaneous changes of two parameters on the optimal production 
run time for Model I 

 
Case Pairs of  

parameters 
Level of 
factor 1 

Level of 
factor 2 t* TRC(t*) 

1 Basic Model 1 1 0.6293 354.11 
2 h D 2 2 0.6569 382.67 
3 h P 2 2 0.4845 406.1 
4 h K 2 2 0.7011 465.55 
5 h π 2 2 0.5589 396.29 
6 h λ 2 2 0.5272 425.23 
7 h s 2 2 0.5207 426.62 
8 π  D 2 2 0.6953 363.1 
9 π  P 2 2 0.5272 374.39 
10 π  K 2 2 0.7556 433.94 
11 π  λ 2 2 0.5611 401.61 
12 π  s 2 2 0.5526 403.32 
13 λ  D 2 2 0.6244 410.56 
14 λ  P 2 2 0.4931 404.69 
15 λ  K 2 2 0.6991 476.77 
16 λ  s 2 2 0.4967 454.23 
17 s D 2 2 0.6112 413.22 
18 s P 2 2 0.4876 405.78 
19 s K 2 2 0.6849 480.03 

 
 

In addition, in the following table the sensitivity analysis is comparing the basic model 

versus the sequential and/or simultaneous changes to the selected factors. For example, in 

case 2, when the demand rate D increases, t* will also increase. However, in case 3, when 

the production rate P, and the demand rate D increase, t* will decrease. 

 
 

Table 6:  Effects of sequential changes of the parameters on the optimal production run 
time for Model I 

 
 

    Model parameters     

Case Effects D P K h π λ s t* TRC(t*) 
1 Basic 1 1 1 1 1 1 1 0.6293 354.11 
2 D 2 1 1 1 1 1 1 0.7043 358.83 
3 P 2 2 1 1 1 1 1 0.5947 375.59 
4 K 2 2 2 1 1 1 1 0.7264 452.95 
5 h 2 2 2 2 1 1 1 0.663 493.48 
6 π 2 2 2 2 2 1 1 0.6444 507.01 
7 λ 2 2 2 2 2 2 1 0.5945 555.97 
8 s 2 2 2 2 2 2 2 0.5304 624.34 
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Chapter III : Model II 
 
 

3.1   Introduction 
 
 
In this chapter we introduce a new structure for the percentage of defectives. In this model 
the percentage of defectives when the process in control is 01 ≥q . When the process goes 
out-of-control the percentage of defectives rate increases using an exponential function, 

( )btevutq −−+= 1)(2 . At t=0, ( ) 12 0 qq =  hence u= 1q . On the other hand as t goes to ∞  
( ) 12 =∞q , hence 11 qv −= . Therefore in this model ( )( )bteqqtq −−−+= 11)( 112 . Note that 

this model generalize the models of Rosenblatt and Lee (1986), Lee and Rosenblatt 
(1989), Chung and Hou (2003), and Hou (2005). We call this; model II. 
 
The number of defectives is given by: 

 ( )⎩
⎨
⎧

<−+
≥

=
tifXtPtqPXq
tifPtq

N
X  )(
X  

21

1  

 
where x is the elapsed time until production process shifts and  t is the production run 
time in a production cycle. 
 
Where the expected number of defectives is given by: 

( )( )∫∫ −++=
∞ t

t

dxxfxtPtqPxqdxxPtfqtED
0

211 )()()()(                                            (3.1) 

 
 
 
3.2   Nonconvexity of the Total Cost Function, TRC (T1, T2) 
 
In this section we examine the convexity. We restrict the study to the case of exponential 
distribution. 
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We show the non-convexity of TRC through an example. 
 
 
 
Example 1: 
 
We choose the following values for the parameters of the problem; K=100, D = 500, P = 
1000, π= 0.3, h = 0.1, s = 2, λ=0.5, q1=0.15.  The Hessian at the point (T1, T2) = (3.2, 9.6) 
and its determinant is;  
 

800304.070655.4
70655.40122.7

−−
−

 = -27.7635 

 
The Hessain is indefinite and hence the function TRC is not convex at this point. 
 
 
In the next example we show that TRC is convex for another values for the problem 
parameter and a different T1 and T2. 
 
 
Example 2: 
 
The Hessain could be positive definite at some points.  For example if we take K=150, 
D=999, P=1000, π=2.5, h=0.75, s=10, λ=0.5, q1=0.15 and (T1, T2) = (0.145237, 
0.484121) we get the Hessian and its determinant, as given below;  
 

18.209199.2089
99.208996.2093

 = 10,797.4 

 
The Hessian is positive definite and hence the function TRC is convex at this point.  
 
These two examples illustrates the fact that TRC is in general nonconvex. 

 

3.3   Free Minimal Repair Warranty 
 
In Equation (1.7) the consideration of warranty period and warranty costs are not 
considered. In this section we are considering warranty. 
 
The fraction of nonconforming items in a production run with length t denoted by )(tq is 
given by: 
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The warranty cost W(t) is given by (2.15). 
 
 
Example: 
 
Suppose 1

11 )( mtkth =  and 2
22 )( mtkth = where )(1 th < )(2 th  for 0≥t  denote the hazard 

rate associated with conforming and nonconforming item, respectively. Furthermore 
suppose that the time to failure is exponential distribution function. Assume K=150, 
D=1200, P=1650, π =2.5, h=.75, s=.85, λ=0.5, 1k =1, 2k =2, 1m =2, 2m =2, rc =1.5, ω =6, 
q1=0.15 
 

Table 7:  Free minimal repair warranty for Model II 
 

Model II Without Warranty With warranty 
Optimal 

production run 
time, *t  

0.692 0.6358 

Cost 439.69 1,048.16 
 
Note that if warranty is available the optimal production time is less than the case without 
warranty. This will reduce the probability of being out of control and hence less 
nonconforming items will be produced. 
 
 

3.4   Sensitivity Analysis 
 
 
Exponential Distribution 

 

In this section, a sensitivity analysis of the model is conducted using Exponential 

distribution as a time to failure to study the effect of the different cost parameters. 

Warranty costs have not been considered in this section. We used a mean of 10, upper 

specification limit and lower specification limit is 10 and 7 respectively. Also the variance 

is equal 1.  Table 6 gives the values of the parameters used to perform the analysis. The 
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effect of each parameter is studied as well as the effect of simultaneous changes of two 

parameters. In addition, a comparison of the basic model versus the sequential changes of 

the selected parameters is made. 

 
Table 8:  Values of the parameters used in the sensitivity analysis study for Model II 

 
Parameter Level 1 Level 2 Level 3

D 1,200 1,350 1,550 

P 1,650 1,850 2,250 

K 150 220 450 

h 0.75 1.2 1.95 

π 2.5 3.5 5.1 

λ 0.5 0.75 0.95 

s 0.85 1.25 1.75 

 
 
 
 
Effect of the demand rate, D 
 
Different values for the demand rate, D, are studied and presented in cases 1-3. As the 

demand rate increases, the optimal production run time, t*, also increases to meet the 

demand.  

 
Effect of the production rate, P 
 
The effect of changes in the production rate, P, are analyzed in cases 1, 4 and 5. An 

increase in the production rate will decrease the production run time, but the total costs 

increase. If there is no constraint on the production run time, current results indicate low 

production rates have low total costs. 
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Effect of the setup cost, K 
 
Different values for the setup cost, K, are presented in cases 1, 6 and 7. By increasing the 

setup cost, the optimal production run times increase, so that the number of times to setup 

the machines up for production is minimized in order to reduce the total setup cost. 

Effect of the holding cost, h 
 
The effects of the holding cost, h, are presented in cases 1, 8 and 9. If the holding cost 

increases, the optimal production times tend to be smaller. So, if we produce smaller 

quantities to meet the demand, there will be a smaller quanties left in the storehouse and 

in turn decrease the total holding cost. 

 
Effect of the shortage cost, π 
 
 The effects of shortage costs, π, are presented in cases 1, 10 and 11. By increasing the 

shortage cost, the optimal production run time is decreased. This means the TRC will be 

enhanced by decreasing production run time t if the shortage costs are increased.  

 
Effect of the process failure rate, λ   when the time to failure is exponentially distributed. 
 
The results of different values for the failure rate, λ, are presented in cases 1, 12 and 13. 

As the failure rate of the production system increases, the optimal production run time 

decreases. So, we will avoid having the system in the out-of-control state, which in turn 

will contribute to the reduction of the total relevant costs. 

 
Effect of the rework cost, s 
 
Cases 1, 14 and 15 present different values for the rework cost, s. If we increase s, t* 

tends to be smaller. So, the percentage of having defective items will be smaller. 
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Table 9:  Effect of each parameter on the optimal production run time for Model II 
 

Case Vp* Level t* TRC(t*) 

1 Basic Model 1 0.6920 439.69 
2 D 2 0.7757 451.12 
3 D 3 0.9000 459.17 
4 P 2 0.5930 458.21 
5 P 3 0.4601 485.24 
6 K 2 0.8211 506.94 
7 K 3 1.1373 677.62 
8 h 2 0.6298 474.40 
9 h 3 0.5718 512.80 
10 π 2 0.68 445.97 
11 π 3 0.6697 451.47 
12 λ 2 0.6041 473.87 
13 λ 3 0.5524 500.75 
14 s 2 0.639 528.88 

15 s 3 0.5905 637.59 

 
In the following table, the effect of simultaneous changes of two parameters is also 

presented. For example, consider Cases 1 and 2; if we increase h and D, the optimal 

production run times tend to be larger. Where in case 3, when h and P increase, the 

optimal run time decreases. These analyses show us the interaction between paired model 

parameters. 
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Table 10:  Effects of simultaneous changes of two parameters on the optimal production 
run time for Model II 

 
Case Pairs of 

parameters 
Level of 
factor 1 

Level of 
factor 2 t* TRC(t*) 

1 Basic Model 1 1 0.6920 439.69 
2 h D 2 2 0.7232 477.38 
3 h P 2 2 0.5300 500.77 
4 h K 2 2 0.7494 548.19 
5 h π 2 2 0.6112 485.96 
6 h λ 2 2 0.5617 504.51 
7 h s 2 2 0.5902 561.18 
8 π  D 2 2 0.7658 455.83 
9 π  P 2 2 0.5805 465.97 
10 π  K 2 2 0.8072 514.40 
11 π  λ 2 2 0.5961 479.37 
12 π  s 2 2 0.6297 534.69 
13 λ  D 2 2 0.6575 495.63 
14 λ  P 2 2 0.5302 485.67 
15 λ  K 2 2 0.7171 550.91 
16 λ  s 2 2 0.5455 572.55 
17 s D 2 2 0.7009 555.21 
18 s P 2 2 0.5571 543.53 
19 s K 2 2 0.7545 601.90 

 

Additionally, in the following table the sensitivity analysis is comparing the basic model 

versus the sequential and/or simultaneous changes to the selected factors. For example, in 

case 2, when the demand rate D increases, t* will also increase. However, in case 3, when 

the production rate P and  demand rate D increase, t* will decrease. 

 
Table 11:  Effects of sequential changes of the parameters on the optimal production run 

time for Model II 
 

  Model parameters   

Case Effects D P K h π λ s t* TRC(t*) 

1 Basic 1 1 1 1 1 1 1 0.6920 439.69 
2 D 2 1 1 1 1 1 1 0.7757 451.12 
3 P 2 2 1 1 1 1 1 0.6598 473.80 
4 K 2 2 2 1 1 1 1 0.7825 544.6 
5 h 2 2 2 2 1 1 1 0.7140 588.27 
6 π 2 2 2 2 2 1 1 0.6935 602.83 
7 λ 2 2 2 2 2 2 1 0.6212 642.21 

8 s 2 2 2 2 2 2 2 0.5692 755.06 
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Chapter IV : Model III 

 
 

4.1   Introduction 
 
 
 
In this chapter we will discuss the imperfect production process where the rate of 

defective items is determined by the probability of not meeting lower and upper 

specifications limits.  The process is in-control for a random period of time, X.  During 

this period the process mean and variance are fixed and are given by µ0 and σ2.  The 

process becomes out-of-control at time X and the mean changes linearly which variance 

remains constant. Let τ be the time spent while the process is out of control and β be the 

rate of change in the mean, then the mean at τ is given by βτµµτ += 0 .   

 

Figure 13:  The production process is in control 
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Figure 14:  The production process is out of control 
 

 

If the process becomes out of control at time X = x ≥ t, the number of defects is given by  
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Where y is a quality characteristic which follows a normal distribution, φ, with mean µ0 

when the process is in control. The quantity in parenthesis in eq. (4.1) represents the 

probability of being out side the specification limit. When the process is out of control at 

time X = x < t, then the number of defective parts t is given by; 
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The first term in eq. (4.2) represent the number of defectives when the process is in 
control for duration x and the mean is 0µ .  
 
The bracket within the second integral gives the percentage of defectives at time τ  where 

the mean is τµ . Let τµφα ττ dy
USL

LSL
∫−= ),(1 . Then τατ dP  represents the number of 

defectives in an infinitesimal interval τd . The second integral times P represents the 
number of defectives during the interval (t-x) where the process is out of control.       
 
 
Hence the expected number of defective items during the production period t is given by: 
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then ED(t) simplifies to 
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Where M1(t) is the 1st moment of the density function f(x). 

For the exponential distribution, (4.3) simplifies to 
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The total cost function TC(t) is given by (1.7). In the next section we examine the 
stationary points of this function. 
 
 
 

4.2   Stationary Points of TRC 
 

From (4.3) we have ( ) ∫
=

−+−=
t

x
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The partial derivatives of ),( 21 TTTRC  are exactly as those obtained in Chapter 2 so they 
are not repeated here.  In Chapter 2 we showed that at a stationary point of TRC we have 
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If the time to failure is exponentially distributed then TC(t) simplifies to: 
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The necessary condition for t* to be optimal is g(t*)=0. 
 
 
 
4.3   Nonconvexity of the TRC (T1, T2) 
 
In this section we examine the convexity, or rather the lack of convexity of the cost 
function.  We restrict the study to the case of exponential distribution.  However, our 
conclusions apply to other distributions. 
  
 
Exponential Distribution 
 
The TC function is not convex. To show this we present an example. Choose the 
following values for the cost parameters of the problem; K=100, D=1,200, P=1,650, π=1, 
h=0.75, s=3. The parameter of the exponential distribution is λ=0.5. When the process 
becomes out of control the mean becomes µτ=10+τ, where τ denotes the time since the 
process became out of control. The quality characteristic is normally distributed with 
mean 10 and variance 1. The lower and upper specification limits are 7 and 13 
respectively.   The plot of TC with those parameters is shown below.  The graph of TC is 
nonconvex.  
 

(4.10) 
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Figure 15:  Graph of the Total cost function (t) 
 
 

 

4.4   Free Minimal Repair Warranty 
 
In Equation (1.7) the consideration of warranty period and warranty costs are not 
considered. In this section we are considering warranty. 
 
 
The fraction of nonconforming items in a production run with length t denoted by )(tq is 
given by : 
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The warranty cost W(t) is given by (2.15). 
 
 
Example: 
 
Let’s use the time to failure is exponential distribution function. 
 
K=150, D=1200, P=1650, π =2.5, h=.75, s=.85, λ=0.5, σ=1, 1k =1, 2k =2, 1m =2, 2m =2, 

rc =1.5, ω =6, σ=1, µo=10, U=µo+3 σ, L=µo-3 σ. 
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Table 12:  Free minimal repair warranty for Model III 

 
Model III Without Warranty With Warranty 
Optimal 

production run 
time, *t  

0.91107 0.9083 

Cost 241.216 756.02 
 
 
Note that if warranty is available the optimal production time is less than the case without 
warranty. This will reduce the probability of being out of control and hence less 
nonconforming items will be produced. 
 
 
 

4.5   Sensitivity Analysis 
 
 
Exponential Distribution 

 

In this section, a sensitivity analysis of the model is conducted using Exponential 

distribution as a time to failure to study the effect of the different cost parameters. 

Warranty costs have not been considered in this section. We used a mean of 10, upper 

specification limit and lower specification limit is 10 and 7 respectively. Also the variance 

is equal 1.  Table 10 gives the values of the parameters used to perform the analysis. The 

effect of each parameter is studied as well as the effect of simultaneous changes of two 

parameters. In addition, a comparison of the basic model versus the sequential changes of 

the selected parameters is made. 
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Table 13:  Values of the parameters used in the sensitivity analysis study for Model III 
 

Parameter Level 1 Level 2 Level 3

D 1,200 1,350 1,550 

P 1,650 1,850 2,250 

K 150 220 450 

h 0.75 1.2 1.95 

π 2.5 3.5 5.1 

λ 0.5 0.75 0.95 

s 0.85 1.25 1.75 

 
 
 
Effect of the demand rate, D 
 
Different values for the demand rate, D, are studied and presented in cases 1-3. As the 

demand rate increases, the optimal production run time, t*, also increases to meet the 

demand.  

 
Effect of the production rate, P 
 
The effect of changes in the production rate, P, are analyzed in cases 1, 4 and 5. An 

increase in the production rate will decrease the production run time, but the total costs 

increase. If there is no constraint on the production run time, current results indicate low 

production rates have low total costs. 

 
 
 
 



 51

Effect of the setup cost, K 
 
Different values for the setup cost, K, are presented in cases 1, 6 and 7. By increasing the 

setup cost, the optimal production run times increase, so that the number of times to setup 

the machines up for production is minimized in order to reduce the total setup cost. 

 
Effect of the holding cost, h 
 
The effects of the holding cost, h, are presented in cases 1, 8 and 9. If the holding cost 

increases, the optimal production times tend to be smaller. So, if we produce smaller 

quantities to meet the demand, there will be a smaller quanties left in the storehouse and 

in turn decrease the total holding cost. 

 
Effect of the shortage cost, π 
 
 The effects of shortage costs, π, are presented in cases 1, 10 and 11. By increasing the 

shortage cost, the optimal production run time is decreased. This means the TRC will be 

enhanced by decreasing production run time t if the shortage costs are increased.  

 
Effect of the process failure rate, λ   when the time to failure is exponentially distributed. 
 
The results of different values for the failure rate, λ, are presented in cases 1, 12 and 13. 

As the failure rate of the production system increases, the optimal production run time 

decreases. So, we will avoid having the system in the out-of-control state, which in turn 

will contribute to the reduction of the total relevant costs. 

 
Effect of the rework cost, s 
 
Cases 1, 14 and 15 present different values for the rework cost, s. If we increase s, t* 

tends to be smaller. So, the percentage of having defective items will be smaller. 
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Table 14:  Effect of each parameter on the optimal production run time for Model III 
 

Case Vp* Level t* TRC(t*) 

1 Basic Model 1 0.9109 241.2156 
2 D 2 1.1699 210.4143 
3 D 3 1.8299 139.7973 
4 P 2 0.7199 273.1065 
5 P 3 0.5099 314.1628 
6 K 2 1.0999 291.8445 
7 K 3 1.5499 417.8426 
8 h 2 0.7699 285.1719 
9 h 3 0.6599 330.8916 
10 π 2 0.8809 249.4249 
11 π 3 0.8569 256.5027 
12 λ 2 0.9089 241.4167 
13 λ 3 0.9069 241.5653 
14 s 2 0.9089 242.7263 

15 s 3 0.9049 244.612 

 
 

In the following table, the effect of simultaneous changes of two parameters is also 

presented. For example, consider Cases 1 and 2; if we increase h and D, the optimal 

production run times tend to be larger. Where in case 3, when h and P increase, the 

optimal run time decreases. These analyses show us the interaction between paired model 

parameters. 
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Table 15:  Effects of simultaneous changes of two parameters on the optimal production 
run time for Model III 

 
Case Pairs of 

parameters 
Level of 
factor 1 

Level of 
factor 2 t* TRC(t*) 

1 Basic Model 1 1 0.9109 241.2156 
2 h D 2 2 0.9949 248.1416 
3 h P 2 2 0.6069 323.1267 
4 h K 2 2 0.9319 344.9480 
5 h π 2 2 0.7349 299.1908 
6 h λ 2 2 0.7699 285.2923 
7 h s 2 2 0.7699 286.5942 
8 π  D 2 2 1.1319 217.4397 
9 π  P 2 2 0.6949 282.4558 
10 π  K 2 2 1.0639 301.7539 
11 π  λ 2 2 0.8789 249.6065 
12 π  s 2 2 0.8789 250.9140 
13 λ  D 2 2 1.1590 210.9065 
14 λ  P 2 2 0.7179 273.2034 
15 λ  K 2 2 1.0949 292.2066 
16 λ  s 2 2 0.9049 243.0190 
17 s D 2 2 1.1589 212.4133 
18 s P 2 2 0.8179 274.5035 
19 s K 2 2 1.0949 293.5358 

 
 

Additionally, in the following table the sensitivity analysis is comparing the basic 

model versus the sequential and/or simultaneous changes to the selected factors. For 

example, in case 2, when the demand rate D increases, t* will also increase. However, in 

case 3, when the production rate P and demand rate D increase, t* will decrease. 

 
 
Table 16:  Effects of sequential changes of the parameters on the optimal production run 

time for Model III 
 

  Model parameters   

Case Effects D P K h π λ s t* TRC(t*) 

1 Basic 1 1 1 1 1 1 1 0.9109 241.2156 
2 D 2 1 1 1 1 1 1 1.1689 210.4141 
3 P 2 2 1 1 1 1 1 0.8659 254.8370 
4 K 2 2 2 1 1 1 1 1.0459 308.2517 
5 h 2 2 2 2 1 1 1 0.8859 364.3614 
6 π 2 2 2 2 2 1 1 0.8449 382.2690 
7 λ 2 2 2 2 2 2 1 0.8439 382.4485 

8 s 2 2 2 2 2 2 2 0.8419 384.1796 
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4.6   Comparison Among the Current and Proposed Models 
 
Table 6 shows the percentages of defectives used in the literature as well as the models 

proposed in this thesis namely, Model II and Model III. The parameters used to obtain *t  

and the optimal cost are as follows: K=32, D=200, P= 400, π=2.5, h=0.08, λ=0.1 

 
 
 

Table 17:  Models Parameters 
 

Model Parameters 

Rosenblatt and Lee (1986) α=.05 

Lee and Rosenblatt (1989) v=4, r=10, α=.05, a=0.15, b=1.0/.15 

Chung and Hou Model (2003) s=10, α=.05 

Hou Model (2005) s=10, q1=.15, q2=.65, r=200 

Rahim and Hajailan (2006)  
Model I  

s=10, β=1, alpha=2 

Proposed Model II s=10, β=1, alpha=2, q1=.15, q2=q1+(1-q1)*(1-Exp[-λ t]) 

Proposed Model III s=10, σ=1, µo=10, U=µo+3 σ, L=µo-3 σ, β=1, ,β1=1, 
alpha=2, µτ=µo+β τ 
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Table 18:  Optimal production run lengths and minimum average costs 
 

Percentages of Defects 
Model In-Control Period Out-of-Control Period Shortage Optimal t* Cost 

tβα +  1.1581 25.5313 Rosenblatt 
and Lee 
(1986) 

0 
( )btea −−+ 1α  

no 
0.9 31.9 

Linear Restoration: 
1.43666 29.0849 

Exponential Restoration: 

Lee and 
Rosenblatt 

(1989) 
0 α  no 

1.43666 31.0028 
Chung and 
Hou Model 

(2003) 
0 α  yes 1.13644 28.3616 

Hou Model 
(2005) 1q  2q  yes 0.5368 370.07 

Rahim and 
Hajailan 
(2006) 

Model I  

0 
t
x

−1  yes 0.4685 68.6542 

Proposed 
Model II 1q  ( )( )teqqq λ−−−+= 11 112  yes 0.8718 331.122 

Proposed 
Model III ∫−

U

L

dyφ1  τφ
τ

ddy
U

L
∫ ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−1  yes 1.2998 28.4238 
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Chapter V : Summary and Future Research Direction 
 
 

5.1   Summary 
 
 In this thesis we examine a model prepared by Rahim and Hajailan (2006). We 

showed that the objective function is not convex. However, a unique minimum exist. We 

also proposed a model which allows for defectives when the process is in control as well 

as out of control. When the process out of control the number of defectives items is an 

exponential function. This model generalizes the four well known models in the literature, 

[Rosenblatt and Lee (1986), Lee and Rosenblatt (1989), Chung and Hou (2003), and Hou 

(2005)]. 

 In chapter 3 we introduced Model III which assumes that there are specification 

limit for the quality characteristics. Therefore there are defectives even when the process 

is in control. After random period of time the mean of quality characteristics changes 

linearly with time. Hence the percentage of defectives increases as the process remains in 

out of control. The objective function of this model is con-convex. 

  

 5.2   Possible Directions for Future Research 
 

In this thesis we considered one type of products. A worthwhile extension is to 

consider several products with a constraint on space availability. One may include an 

inspection within the production cycle that involves cost. Based on the inspection 

production may be halted if the process is found to be out of control or allowed to be 

continue if it is in control. The problem in this case will be to find the optimal production 

time and the optimal inspection point during production. 
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Appendices 
 

Appendix 1 
 
 
The average inventory is given by: 
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Appendix 2 
 
Backordering cost 
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