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problem is to find the production time which minimizes the total cost. The study generalizes the
work of Chung and Hou (2003), Hou (2005), Rahim and Hajailan (2006).Chung and Hou [2003]
considered the case where the defective rate is a constant percentage of the production. In this
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percent of defectives is proportion to the time the process is out of control to the total production
cycle which is Rahim and Hajailan (2006). In the Model Il when the process goes out-of-control
the percentage of defectives rate increases using an exponential function. However, Model III
considers the case where the process mean shifts after a random duration. The defective rate is
determined by the percentage of the production outside the specification limits. In the first model
we consider several distribution functions for the time to failure, namely the exponential
distribution, the Weibull distribution, the Gamma distribution and the Normal distribution. In the
Model 1l and Model III we consider only the case where the time to failure is exponentially
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Chapter | : Problem Description

1.1 Introduction

In developing classical Economic Production Quantity (EPQ) models, it has been
assumed that the product quality and production process are perfect. Indeed, product
quality is not always perfect and actually depends on the state of the production process.
The production process is subject to deterioration due to the occurrence of some
assignable cause which may shift the process from an in-control state to an out-of-control
state and produce some defective items.

The effect of an imperfect process on production run time and EPQ was initially studied
by Rosenblatt and Lee (1986). In their study, the elapsed time until the process shift was
assumed to be exponentially distributed. The optimal production run was found to be
shorter than that of classical EPQ model. In recent years, numerous research efforts have
been undertaken to extend the work of Rosenblatt and Lee (1986). Kim and Hong (1999)
extended the work of Rosenblatt and Lee (1986) by assuming that elapsed time until the
process shift was arbitrarily distributed. However, neither of their models took into
consideration of allowable shortages. Chung and Hou (2003), however, have generalized

the work of Kim and Hong (1999) by assuming that shortages were allowed.



Nevertheless, the common assumption of all the above-mentioned models was that there
were a fixed percentage of defective items produced during the out-of-control period. This
assumption may not be applicable in many industrial situations. Intuitively, the percentage
of the defective rate should increase with an increase in the duration of the out-of-control
period.

The main purpose of this thesis is to generalize the work of Chung and Hou (2003) by
introducing a time-varying percentage defective rate. That is, when the process shifts to an
out-of-control state, defective items are produced with variable increasing percentages
depending on the duration of out-of-control period. Hou (2005) generalized the work of
Rosenblatt and Lee (1986) to allow shortages and considered the restoration cost into
account for a two-state continuous-time Markovian deteriorating production system. Yeh,
Ho, and Tseng (2000) have studied the optimal production run length with free minimal
repair warranty where the deteriorated process of the system is characterised by a two-
state continuous-time Markov chain.

However, the above studied did not include that the percentage of defectives could be
variable. Rahim and Hajailan (2006) have introduced the case where the percentage of
defectives in a production process is time varying.

In the first model the percentage of defectives is computed by dividing the time of the
process out of control to the total production run time. In the second model when the
process goes out-of-control the percentage of defectives rate increases using an
exponential function. In the third model we consider the case where the process mean
shifts after a random duration. The defective rate is determined by the percentage of the

production outside the specification limits. Convexity of the all models is studied. If for



some parameters the total cost function is not convex it means that it has no optimal
production run time.

Sensitivity analysis is conducted for all models to show the interaction of the model
parameters values on the optimal production run time and the total cost that is incurred.

In the first model we consider several distribution functions for the time to failure, namely
the exponential distribution, the Weibull distribution, the Gamma distribution and the
normal distribution. In the second model we consider only the case where the time to

failure is exponentially distributed.

1.2 Assumptions and Notations

Assumptions:

1. At the start of each product cycle, the production process is always in an in-control
state and perfect items are produced but some items could be outside the
specification limits.

2. During a production run, the production process may shift from an in-control state
to an out-of-control state.

3. The elapsed time until the shift is a random variable with finite mean and variance.

4. Once the production process shifts to an out-of-control state, the shift cannot be
detected until the end of the production cycle, and a variable proportion of the
produced items are assumed to be defects.

5. All defective items produced are detected after the production cycle is over, and

rework cost for defective items will be incurred.



6. The process is brought back to the in-control state at each setup.
7. Shortages of inventory items are allowed.
8. The demand rate is constant.

9. The production rate is greater than the demand rate.

Notations:

The following notations will be used.

D = demand rate in units per unit time,

P = production rate in units per unit time (P > D),

h = holding cost per unit, per unit time,

K = cost for setting the machine up and inspecting or resetting it
to new condition before the beginning of the production
cycle,

s = rework cost for a defective item,

X = an elapsed time until production process shifts,

a = percentage of defective items produced once the system is in
the out-of-control state, it is to be taken as a function of
elapsed time,

T = Dbackorder cost per unit, per unit time,

B = average backorder level,

I = average inventory level,



IC
TRC(TI, T2)
T*

A

USL

LSL

B

H.

maximum on-hand inventory level,
maximum shortage permitted,
production time when backorder is replenished,

production time when inventory builds up,

time period when there is no production or inventory
depletion,

time period when there is no production and shortage occurs,

cycle time for each production lot, 7' =7, + T, + T} + T,

production run time in a production cycle, where ¢t =7, + T,
=(D/P)T

total cost,

total relative cost,

optimal production-inventory cycle time.

production system failure rate per unit time when an
exponential probability distribution of failure is assumed,
upper specification limit of the product quality characteristic,
lower specification limit of the product quality characteristic,
initial process mean when process is in control,

given constant used for rate of change in Model III,

mean at time T where t>x,



f(®)

#(®)

I'(z)

#(2) =%:[e_t2dt

Mi(t)

A®®)

q(t)

q,

h(z)

40

k, and k,

shape parameter for Weibull and Gamma distributions,
scale parameter for Weibull and Gamma distributions,

cost of scheduled maintenance,

probability distribution function (p.d.f) denoting the
transition from an in-control state to an out-of-control state,

standard normal probability distribution function,

Gamma function, defined by I'(z) = Itz_le”dt )
0

error function

J¥ fxyas.

0

-2tM(t) + 3Mx(t),

the fraction of nonconforming items,

the fraction of nonconforming items when process is in the
in-control state,

the fraction of nonconforming items when process is in the
out-of-control state,

hazard rate function,

average post-sale warranty cost,

repair cost per unit,

warranty period,

scale parameters used for hazard function,



m = shape parameter used for hazard function,

1.3 Terms and Terminology

1.3.1 Ordering Cost

Ordering costs include the cost of preparing and placing orders for replenishing
inventories, the cost of handling and shipping orders, the cost of machine setups for the
production run, the cost of inspecting the received orders in inventory, and all costs that

do not vary with the size of the order.

1.3.2 Inventory Carrying Cost

The cost of carrying inventory can be broken down into several components: (1) the
opportunity cost of money being tied up in inventory; (2) storage and space charges,
representing the cost of providing storage space, as well as its cost of maintenance; (3)
taxes and insurance, and the cost of physical deterioration and its prevention; (4) the cost

of obsolescence due to technological change.

1.3.3 Shortage Cost

This cost is incurred if units of inventory are not available when demanded. It is the cost
of lost sales, loss of goodwill, overtime payments, or customer dissatisfaction. There are
two types of shortage costs: (1) one-time shortage cost per unit short, independent of the

duration of the shortage; and (2) shortage cost per unit short per unit time.



1.3.4 Rework Cost

Re-work is defined as, ‘‘the process by which an item is made to conform to the original
requirement’’. Re-work effects the operating costs, if we are one of the few manufacturers
that never has to re-cut a component or re-make a cabinet door that was rejected, then the
cost of poor quality should not be an issue. However, if we are experiencing any type of
non-conformance or rework in the plant, then you cannot ignore the effect that it can have
on your total annual operating expense, because rework and quality costs are just that;
unnecessary additional operating costs that might as well be included in the operating
budget and classified as a valid expense.

Material waste and rework are natural occurrences that happen on a daily basis, and

require temporary corrective action to immediately reproduce or rework a part.

1.3.5 Warranty Cost

It is the cost related to the quality of items produced by deteriorating production system.
Under the minimal repair warranty, failures that occur within the warranty period o result

in valid warranty claims and are rectified by minimal repair at no cost to the buyers. Each

minimal repair incurs a cost of ¢ to the manufacturer.

1.4 Literature Review

Rosenblatt and Lee (1986) are the first who studied the effects of an imperfect production
process of on the optimal production cycle time. The system is assumed to be in an in-
control state at the beginning of each production cycle and may shift to an out-of-control
state. The elapsed time until the shift is assumed to be exponentially distributed. The

system will deteriorates during the production process and produce certain percentage of



defective items, which are to be reworked or repaired at some cost. Items are sold to the
customers, some costs of servicing, warranty or loss of goodwill will be incurred. The
optimal production run time is found to be shorter than that of the classical economic
manufacturing quantity. Lee and Rosenblatt (1987) have addressed the problem of joint
determination of economic production cycle or economic manufacturing quantity EMQ
and maintenance policy for a single product. It is shown that the optimal inspection
schedule is equally-. The problem is solved by using an approximation to the cost
function. The resulting EMQ is found to be an adjustment to the classical EMQ. Lee and
Rosenblatt (1989) have studied the joint problem of production planning and maintenance
schedules under the realistic assumption that the cost of process restoration is a function
of the detection delay. In addition, the possibility of incurring shortages in the model is
allowed. For specific restoration cost functions such as linear and exponential, an efficient
solution procedure is presented to find the number of maintenance inspections in a
production run, the length of the production run, the economic manufacturing quantity,
and the maximum level of back orders. Cheng (1991) relaxed two major assumptions of
the classical EOQ model with imperfect production process. These major assumptions are
that the demand is constant and deterministic, and that the unit price (unit production cost)
is independent of the order (production quantity). However, when demand is high, a
company can produce more items so as to spread the fixed costs of production more
widely, which will result in lower unit production costs. So, the unit cost of production is
an increasing function of the demand rate. The optimal solution was obtained in a closed-
form by using geometric programming (GP). Lion, Tseng, and Lin (1994) incorporated
type I and type II inspection errors into the EMQ model under the imperfect production
system which may seriously affect the product quality. They have derived the expected
total cost when the shift of the production process follows a general distribution and the
inspection interval is arbitrary. Huang and Chiu (1995) presented an imperfect production
process model with two monitoring policies. Policy [ represents the preventive
maintenance whereas policy II represents not use it, where the cost of restoration and the
proportion of defective items is a function of the detection delay. The objective is to
determine the optimal production cycle time while minimizing the total cost of the

imperfect production process under these two policies. They have shown that the total



costs under policy I are smaller than those of policy II. So, it is necessary for the
preventive maintenance procedure to be performed. Hariga and Ben-Daya (1998)
extended the EPQ model to consider the general shift distributions with the imperfect
process discussed by Rosenblatt and Lee (1986). They have developed distribution-based
and distribution-free bounds on the optimal total cost. For the exponential distribution
case, they compared the optimal solution with the Rosenblatt and Lee (1986) solution.
Kim and Hong (1999) considered the EMQ model with a deteriorating production
process. An optimal production run length and a minimum average cost are derived in
three deteriorating processes: constant, linearly increasing, and exponentially increasing.
The elapsed time until the shift is arbitrarily distributed. A numerical experiment is
carried out to investigate behaviour of the proposed model and to compare the solutions
with those from Rosenblatt and Lee (1986), and show that the differences in the two
solutions may be significant depending on the cost and the process parameters. Ben-Daya
and Hariga (2000) modelled the effects of an imperfect production process on the
economic lot scheduling problem (ELSP). The mathematical model developed has taken
into account the effect of imperfect quality and process restoration. Salameh and Jaber
(2000) presented a modified inventory model which accounts for imperfect quality items
when using the EPQ/EOQ formulae. It shows that the economic lot size quantity tends to
increase as the average percentage of imperfect quality items increases. Items of imperfect
quality are withdrawn from stock resulting in lower holding costs per unit per unit time
and they proposed discount sales for imperfect quality items. Yeh, Hi, and Tseng (2000)
studied the optimal production run length for a deteriorating production system in which
the products are sold with free minimal repair warranty. The deteriorating process of the
system is characterised by a two-state continuous-time Markov chain. Hayek and Salameh
(2001) studied the effect of imperfect quality items on the finite production model. When
production stops, defective items are assumed to be reworked at a constant rate. The
percentage of imperfect quality items is considered to be a random variable with a known
probability density function. The optimal operating policy that minimizes the total
inventory cost per unit time is derived where shortages are allowed and back ordered.
Wang and Sheu (2001) developed an EMQ model with a production process subject to

random deterioration with a general discrete shift distribution, while items are being

10



produced. Since defective items reach the marketplace the manufacturer will incur a
significant cost (warranty cost), an EMQ model has been employed to consider the
difference between the reworked cost before sale and warranty cost after sale. They
investigated the effect of the warranty cost on optimization of the EMQ. Chung and Hou
(2003) extended the work of Kim and Hong (1999) by allowing shortages. The elapsed
time to shift is assumed to be arbitrarily distributed. They showed that there exists a
unique optimal production run time to minimize the total relevant cost function. Chiu
(2003) considered the EPQ model with the rework process of imperfect quality items
under the assumption that not all of the defects are repairable. A portion of them are scrap
and will not be reworked. The disposal cost for each scrap item and the repairing and
holding costs for each reworked items are included in the cost analysis. The renewal
reward theorem is utilized to deal with the variable cycle length, and the optimal lot size
that minimizes the overall costs for the imperfect quality. The EPQ model is derived
where back orders are permitted. Hou (2005) generalized the work of Rosenblatt and Lee
to allow shortages and take the restoration costs into account for a two-state continuous-
time Markovian deteriorating production system. When the production process is in the
in-control (or out-of-control) state, ql(or q2) percent of the items produced will be

nonconforming, where q1<q2 .

1.5 Proposed Objectives

Rosenblatt and Lee (1986) have studied the effect of an imperfect production process of a
single machine-single product system on the optimal production cycle time. The elapsed
time till shift is assumed to be a random variable that is exponentially distributed with a
known mean. Defective items will be reworked at some cost or if passed to customers,
some costs of warranty or loss of goodwill. Kim and Hong (1999) have considered EMQ
model with a deteriorated production process. An optimal production run and a minimum

average cost are derived in three deteriorated processes constant, linearly increasing and

11



exponentially increasing. Chung and Hou (2003) extended the problem of Kim and Hong
(1999) by allowing shortages. Yeh, Ho, and Tseng (2000) have studied the optimal
production run length for a deteriorated production system in which the product are sold
with free minimal repair warranty. Rahim and Hajailan (2006) have extended the work of

Chung and Hou (2003) by allowing the percentage of defective items to be time varying.

Chung and Hou (2003) assumed that the expected number of defects is given by:

ED(t) = j-a(t—x)Pf(x)dx (1.1)

x=0
Where a is the percentage of defects per unit time. In this work we consider two models

for determining the expected number of units which require rework.

In the first model we consider the case where o is given by a = (t-x)/t in Rahim and
Hajailan (2006). This case is discussed in Chapter 2. In model II we assume that when the
process is in out of control state the percentage of defectives in increasing exponentially
which is discussed in chapter 3. In the Model III we assume that there are lower and upper
specification limits of the quality characteristics. The percentage of defects will be
determined by computing the probability of being outside those limits. Model III is

discussed in Chapter 4.

For each of the above models the time to failure is random. We will examine the
convexity conditions of the total cost function for these models. The optimal production
run time is determined and sensitivity analysis for all the considered models is performed.

In addition the free minimal repair warranty cost has been incorporated for all Models.

12



1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 deals with Model I what
will happens when the fraction of defective items depends on the detection delay divided
by the total production run time. The convexity conditions of the models are identified.
Sensitivity analysis is presented to find the effect of the model parameters on the optimal
production run time. Chapter 3 is discussing the case when the percentage of defectives
items in out of control is increasing exponentially. Chapter 4 provides Model III issues
faced when the fraction of defective items are represented by a normal probability
distribution function, by calculating the fraction when the mean and standard deviation are
changed, and when the process is moving from an in-control period to an out-of-control
period. Examples of convexity and sensitivity analysis are also presented. In chapter 5 a
summary of the work is listed, major contributions and possible directions for future
research are also given. However, warranty repair cost has been incorporated for all

Models where products are sold with free minimal repair warranty.

1.7 The Inventory Model

Chung and Hou (2003) presented the following production and inventory model.

13
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Figure 1: The production-inventory model with shortages

Figure 1 represents the production-inventory model with allowable shortages. This model
can be described by four parts: production is started with constant production and demand
rates when the back order is met (part 1), a period when the inventory level reaches its
maximum value (part 2), inventory is consumed by a constant demand (part 3) and
shortages period (part 4). The total relevant cost per unit time composed of setup costs,
backorder costs, and rework costs. Based on the basic four phases of the inventory cycles,

these costs are evaluated as follows:

(a) Setup Costs:

The average setup cost per unit time is : K = kD (1.2)
T Pt
(b) Holding Costs:
2
hfz@t—h(P—D)Tl +% (1.3)
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For details, please see Appendix 1.
(c) Back ordering costs:

AT (P - D)
2t
For details, please see Appendix 2.

7B = (1.4)

(d) Rework costs:

If the process becomes out-of-control after production is over then no defective parts are
produced. However, if the process becomes out-of-control before the completion of the
production time, then the number of defective items is proportional to the duration that the
process is out-of-control, t-x, where x is the elapsed time before the process becomes out-
of-control. Chung and Hou (2003) use a linear function as follows:

N={ 0 lf X2t (1.5)
a(t-X)P if X<t

Therefore, the expected number of defective items in a production cycle is:
ED(t) = [ aP(t - x) f (x)dx (1.6)
(f)Total Costs:

TRC(T,,T, ) =setup costs + holding costs + back order costs + rework cost
= ? il + B +SEPO

__KD i (P-D) T12+h(P—D)
P(T, +T,) 2T +T1)

+—2__Ep@)
P(T, +T,)

1.8 The Current Mathematical Models

Rosenblatt and Lee (1986) derived the total cost function as follows:
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0 if X2t :
N = i , where « is constant.
aP(t-X) if X<t

() = (I;zt)}r h(P;D)t .\ sa,;th ,

which include setup cost, holding cost, and rework cost.

Chung and Hou (2003) have included the shortage cost:

( dd j+£ED(N)
h+rx Pt

KD h(P-D)

TRC(t) = .

In the above models, the percentages of defective items in the in-control period are
assumed to be zero. Hou (2005) has introduced the number of defectives as follows:

q,Pt if X2>t
N = , where ¢,<g, and are constant.

g PX +q,P(t-X) if X<t

So, the total cost function is:

KD h(P-DY( x \ rDli-e™*) 1-e
TC(t) = Dq, +sD(q, -
D=t (h+7z]+ P ERTS (@~ 4.) At

At

The percentage of defective items are assumed to be constant, however this is not always
true for real life industry.
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Chapter Il : Model |

2.1 Introduction

In this chapter we will discuss the imperfect production processes when the
percentage of defective units in the out-of-control period, a, is equal to the ratio of the
detection delay, t-x, to the cycle production time t, i.e. & = t—Tx This model appeared in
Rahim and Hajailan (2006).

Inventory Level
A T

V am VY

<>
t

Figure 2: A typical production cycle

Figure 2 shows a typical production cycle, when t is the production time and x is the time

when the process is in control.
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t 2
In this case we take ED(¢) = I (t _tX) Pf(x)dx and the total cost is given by
0

SED(t)

TRC(T,,T,) =§+h1_+7zl_?+

__KD_ sy PD) T12+h(P—D)
P(T, +T,) AT +T,)

+—3P ppgy
P(T, +T;)

(T, -T,)

2.2 Convexity Of The Total Cost Function, TRC (T4, Ty)

In this section we examine the convexity of TRC. It will be shown that, in general, TRC is
a non convex function. We accomplish this by examining its Hessian matrix at some
points.

A function, g(x, y), differentiated twice, is convex if:

2 2 2 2 2 \2
ag>0,ag>0andag><ag> 0g
oxoy

2 a 2

ox® oy x® oyt
The second derivatives of 7RC are given by;

d’TRC 2DK (P-D)h+ )T} 2Ds
2 7t 3 + 4
o P(T+T,) (7, +1,) (7, +1;)

(—2tM (1) +3M, (1)) (2.1)

d*TRC 2DK (P-DYh+7x)[}  2Ds
= + + —2tM  (t)+3M ,(t 2.2
R en) Gaery oOTRR0) 62

0’TRC _ 2DK (D-P)h+ )T, ,_ 2Ds

- -2 3
n, Rery T @y Geny nOTIRO) e

where M (1) = J. x' f(x)dx is the i"™ moment of the density function f(x).

0
Note that the first two terms of (2.1), (2.2) and (2.3) are always positive. However the last
term includes the moments of the density function f(t). Hence the signs of (2.1), (2.2) and
(2.3) depend on the sign and magnitude of the quantity —2/M,(¢)+3M,(¢).
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In the following subsections we examine the sign of —2tM (¢#)+3M,(t) for different
probability density functions, f(x).

2.21 Case of f(x) is the Exponential Distribution

In this section we examine the sign of A(t) = —2¢tM(¢)+3M,(¢), and the Hessian of TRC
where f(x)=Ae ™. In this case

—A
et

It (-6—402 1222 + " (6-202)) (2.4)

A(t) =

In the following we prove that A(t) <0 for t > 0. Towards this end we show that the
function B(t;1)=—6—4t.—t*1* +e”(6-2t2)<0 fort>0and A > 0.

Lemma 2.1

¢* (1 —x)<1 forall x and equality is satisfied at x =0

Proof

Note that e™ is a convex function. Its tangent at x = 0 is the liney=1—x hence e¢™>1-
X.

Theorem 2.2

B(t; ) =—6 — 4th—t*)* + e" (6 — 21) is non-positive for t > 0 and A > 0. Strict equality
holds att = 0.

Proof

Let x =t and g(x) = - 6 - 4x — x* + 2¢*(3-x). d’g/dx*=2(-1+¢*(1—x)). From
Lemma 2.1, g”(x) < 0. Hence g is concave. The tangent of g(x) at x =0 is the line y =0,
hence g(x) is also non-positive.

Figure 3 below shows a plot of A(t) for A=0.5
A(T)
At

-0.25 ¢
0.5
-0.75 |

1t
-1.25 |
1.5¢

-1.75 ¢

Figure 3: A(t) vs. production run time for Exponential Distribution
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By examining Equations (2.1), (2.2) and (2.3) we observe that the sign of these
derivatives could be negative for specific values of the parameters. In the following two
cases we show that the Hessian could be made indefinite or positive definite by the proper
choice of parameters.

Example 1:

We choose the following values for the parameters of the problem; K=100, D = 500, P =
1000, == 0.3, h=0.1, s =2, A=0.5. The Hessian at the point (T, T>) = (3.2, 9.6) and its
determinant is;

6.77426  —4.94449
=-31.4813
-4.94449 -1.03824

H 1s indefinite and hence the function TRC is not convex at this point.

Example 2:

The Hessain could be positive definite at some points. For example if we take K=150,
D=999, P=1000, n=2.5, h=0.75, s=10, A=0.5, and (T, T») = (0.145237, 0.484121) we get
the Hessian and its determinant, as given below;

1,032.64 1,028.67
1,028.67 1,029.86

‘ =5,316.78

The Hessian is positive definite and hence the function TRC is convex at this point.

We conclude that the cost function, 7RC, under consideration is generally non-convex, as
shown by the above two examples. The parameter values affect the function geometry
drastically. By examining Equations (2.1), (2.2), and (2.3) one could make the right hand
side (RHS) negative by choosing a large value for s, and very small values for K and P-D.
This will result in the first two terms becoming small positive numbers and the last term a
large negative number.

2.2.2 Case of f(x) is the Weibull Distribution

The Weibull Distribution has a wide industrial applications. When its shape parameter
a=1 it becomes exponential. If a >1 then the distribution tends to Normal. If a <1 it has
decreasing hazard rate.
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The Weibull distribution is given by

fx) = af-x*e P (2.5)

where a and B are the shape and scale parameters of the distribution. If a = 1, we get the
exponential distribution. We will consider two examples of a and B and show that
A(t)=-2tM ,(¢) +3M,(¢) <0.

Example 3:

Let a=2 and B=1,
In this case A(t) contains the Gamma and Incomplete Gamma integrals. Figure 4 shows a
plot of A(t). The graph illustrates the fact that A(t) is negative for t > 1.4.

0.1

0.05

0.5 1 .5 2 2.5 3
-0.05
-0.1

-0.15

-0.2

Figure 4: A(t) vs. production run time for Weibull Distribution
To examine the convexity of TRC we choose the following values for the parameters of

the problem; K=150, D=999, P=1,000, n=2.5, h=0.75, s=15 and the compute the Hessian
at (T, T) = (2.0, 1.5). The Hessian and the determinant are given below;

—632.663 —633.061
=-587.632
-633.061 -632.531

Note that H is indefinite and hence TRC is non convex at this point where the time to
failure is Weibull distributed.

Example 4:
Let a=2 and B=1,

Different values of the parameters are chosen the function could be convex. Here we use
the following values for the parameters; K=150, D=999, P=1,000, n=2.5, h=0.75, s=5, and
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use the point (T, T,) = ( 0.145237, 0.484121). The Hessian and the determinant are
given below;

2,204.06 2,200.09
2,200.09 2,201.28

‘ =11,366

Note that H is positive semi definite, and the function TRC is convex at this point.

We conclude that the cost function under consideration is generally non-convex. As
shown in the above two cases, the parameter values affect the function geometry
drastically. By examining Equations (2.1), (2.2), and (2.3) one could make the RHS
negative by choosing very small values for K and P-D, resulting in the first two terms
being small. The third term can be made negative and large if s is large and t is also large.
For the examples on hand t > 1.4 was sufficient to make the RHS negative.

Figure 5, 6, and 7 shows the function A(t) for different condition of a and p.

2.2.2.1 Hazard Rate

a=0.5, p=1
At

0.1
02|
03|
04|
05 |
06|
0.7 |

Figure 5: Graph of A(t) when a=0.5, =1
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a=1, p=1

05 1 15 2 25
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 6: Graph of A(t) when a=1, f=1
a=3, p=1

A(T)

0.1
0.06

-0.06

0.1

-0.15

0.2
Figure 7: Graph of A(t) when a=3, f=1

2.2.3 Case of f(x) is the Gamma Distribution

The density function in this case is given by:
f)=pxrle

Where a is the shape parameter and B is the scale parameter.

(2.6)
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Consider the case where a=2 and =1, the A(t) is given by:
A(t) =-2tM () +3M , (¢)

2.7
- —%e‘t(72+126’(t—6)+ 601 + 241> + 61° +1*) @D

A plot of A(t) is shown in Figure 8. The graph illustrates the fact that A(t) <0 for t> 3.6

Figure 8: A(t) vs. production run time for Gamma Distribution

Example 5:

Next we consider the Hessian of TRC. We choose the following values for the
parameters of the problem; K=150, D=999, P=1,000, n=2.5, h=0.75, s=15. We use the
point (T, T2) = (3.5, 1.5). The Hessian and its determinant, in this case, are

-226.014 -226.412
=-210.029
—226.412 -225.881

Note that H is not positive semi definite, and the function TRC is not convex at this point
where the time to failure 1s Gamma distributed.
Example 6:

If we use the same parameters as above, but take s = 2 and consider the point (T;, Ty) =
(1,0.5). We get the following Hessian and determinant.

116.387 115.665
115.665 117.11

‘ =251.651
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Note that H is positive definite and the function TRC is convex at this point.

We conclude that the cost function under consideration is generally non-convex. As
shown in the above two examples, the parameter values affect the function geometry
drastically. By examining Equations (2.1), (2.2), and (2.3) one could make the RHS
negative by choosing very small values for K and P-D, resulting in the first two terms
being small. The third term can be made negative and large if s is large and t is also large.
For the examples on hand t > 3.8 was sufficient to make the RHS negative.

2.2.4 Case of f(x) is the Normal Distribution

The density function of the Normal distribution is given by:
1 ~(x=p)?

f(x)= Fe 29" and A(t)=-2tM;(t) + 3M(t) (2.8)
o

Where L is the mean of distribution and o is the standard deviation.

Consider the case when: p=10, c=1 take a large positive value. In this case A(t) contains
the error function. Figure 9 shows a plot of A(t). The graph illustrates the fact that A(t) is
always negative.

Figure 9: A(t) vs. production run time for Normal Distribution

Example7:

We chose the following values for the parameters of the problem K=100, D = 500, P =
1000, 7= 0.3, h=0.1, s =2, A=0.5, U=13, L=7, (T1, T2)=(3.2,9.6)

The Hessian and its determinant are,
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8.18758 —3.53117
=-9.39812
—-3.53117 0.375083

Note that H is not positive semi definite and the function TRC is not convex. By
examining Equations (2.1), (2.2), and (2.3) one could make the RHS negative by choosing
a large value for s, and very small values for K and P-D. This will result in the first two
terms becoming small positive numbers and the last term a large negative number.

2.3 Stationary Points of TRC

In this section we derive the stationary points of function TRC given by (1.7) which is
rewritten here for convenience of the reader.

TRC(T,,T,) :ﬂ_,_(h_,_ﬂ)LD)TIZ
P(T +T;) AT +T,)

WP-D) . sD
+ —2 (T, -T)+ —P(Tl V7)) ED(¢)

. . . . t—x
where ED(t) is the average number of defective units. In this chapter we take o = ——

where t =T, + T,. ED(t) and its partial derivatives are given by

ED(t) = Pj'@ F(x)dx
‘ (2.9)

h+T, 2
w:pF(Tl_,_Tz)_p I x—2
or, o (T+1)

l

f(x)dx=ED(t), i =1and 2

The partial derivatives of the TRC function with respect to 77 and 7, are shown below:

OTRC(T,,T,) _ KD (h+z)P-D)I;

+(h+7)P-D)T, /¢

oT, Pt? 212 (2.10)
h(P-D) sD sD .
+—~——— _WP-D)-—ED({t)+—ED (¢
( ) e (1) 7 )
OTRC(T,,T. KD (h P-D)I* hWP-D) sD
(] 2):_ 2_( +7Z')( - )1 + ( )_SZED(t) (211)
o7, Pt 2t 2 Pt
sD .
+2=ZED (¢
Pr ()
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At a stationery point both partial derivatives vanish and hence :

OTRC(T,,T,) _ OTRC(T,,T,) +(h+z)

P-D) /t—h(P-D
o o7, )T, /1= h(P-D)

Note that

(h+z)\P-D)I,/t—h(P-D)=0
which simplifies to

T

*

T, =

t

t and T, =
h+rn h+rn

Substituting into (1.7) gives:

TC(t) =

KD WP-Dy( z ) sD .,
Pt 2 h+r Pt

Next we consider the derivative of TC(¢) with respect to t which is given by:

a1C_ DK WP-Dyr 2Ds { (t-x)f(x)dx 2Ds ! (t-x)* f(x)dx 2.12)

dt P 2h+7) £ £

The second derivative is given by:

4*TC  2DK ) 2Ds.(|;f(x)dx . 8DS_£ (t—x) f(x)dx ) 6Ds_([ (t—x)* f(x)dx

dt? Pt? t* £ t*

(2.13)

Note that no closed form solution can be obtained from (2.12). The value of t that
minimizes 7C could be computed by a root finding algorithm of (2.12) or by a line search
algorithm of 7C.

Figure 10 below shows that a plot of function TC for the case f(x) is an exponential
density function. For this example we use the following values for the parameters of the
problem; K=100, D =500, P = 1000, = 0.3, h=10.1, s =2, and 2=0.5.
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In conclusion, we have shown that the function TC is generally nonconvex. Equation
(2.15) can be used to generate a stationary point and a plot of the function is used to verify
that this point is a global minimum of the cost function.
Table 1 shows the values used in plotting the function shown in figure 10.

TC (t)

2000

1500

1000

500

10

15

20

t

Figure 10: Total cost function versus production run time

Table 1: Table of production run time vs. total cost, TC

t TC(t) t TC(t)
0.01 5001.85 10.04 819.63
0.1 518.335 10.63 846.683
0.5 186.917 11.22 872.486
1.19 236.351 11.81 897.17
1.78 176.468 12.4 920.85
2.37 246.437 12.99 943.628
2.96 313.43 13.58 965.592
3.55 375.708 14.17 986.819
4.14 433.081 14.76 1007.38
4.73 485.84 15.35 1027.33
5.32 534.418 15.94 1046.74
5.91 579.268 16.53 1065.64
6.5 620.82 17.12 1084.07
7.09 659.46 17.71 1102.09
7.68 695.533 18.3 1119.72
8.27 729.34 18.89 1136.99
8.86 761.144 19.48 1153.93
9.45 791.174 20.07 1170.57
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Figure 11: First derivative of TC(t) vs. production run time

DDTC (t)
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5000 ¢

3000 |
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Figure 12: Second derivative of TC(t) vs. production run time

The plot of the function TC shows that it is nonconvex, while its second derivative is
positive at some range close to the origin and negative otherwise.
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2.4 Further Convexity Results

Equation 1.7 gives total costs as a function of T; and T2. Since t= T1+T2 then we can
substitute t- T1 for T2. This will give a function in t and T1. Let C(z,T;)be this function.

C(t,T) = %+(h+7z)(1)2;tmrf +h[@—(P—D)TI}+%E(N)

2.41 Convexity of TC(t,T,) with respect to T;:

For TC(¢,7)) to be convex in 7, we have to show that the Hessian is positive semi

definite. Sections 2.2.2, 2.2.3, and 2.2.4 contain examples that the Hessian is indefinite,
hence TC(¢,T)) is not convex in 7T, .

2.4.2 Existence and Uniqueness of t*:

Intermediate Value Theorem says that if f is continuous function on the closed interval
[a, b], and suppose d is a real number between f(a) and f(b); then there exists c in [a, b]
such that f(c) = d.

We will take the limit for the first derivative of 1C() as it goes to zero and to infinity.

lim d7C/dt =~ and limd7C/ds ="~ 2%
t—

> 0, therefore dTC/dt =0 at some point
1= 2(h+r)

*

t.
Let g =1 dTC/dt, then dg/dt =3t* dTC/dt +t* d*TC/dt* . Substituting dTC/dt from
(2.12) and d°TC/dt* from (2.13) gives,

DK 3t°h(P-D)rx ( 6Ds | 5
=3+ i 6Ds ! (1= x)f (v === ! (t — x) f (x)dx
t , 6Ds j (t —x)° f(x)dx
20K oDt j f(x)dx—8Ds j (t — x) £ (x)dx + —2

DK N 3t°h(P- D) N ZDStj.f(x)dx - 2Dsj (t—x)f(x)dx

P 2(h+ 1)
DK 3t*h(P-D)rx 0
=— s + 20t 7) + 2Ds.!‘xf(x)dx (2.14)
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Note that (2.14) is negative at t=0. However, its second and third terms are strictly

. . . d, . . .
increasing function. Hence 7g will eventually vanish for some value, say, tyo. This
t

implies that g is decreasing for t<ty and increasing for t>t;.. Next we examine the

. We showed earlier that
dt dt

ts, ...., t; then g=0 at these points but this contradicts the fact that g is decreasing before ty

behaviour of =0 at some points. Let these points t;,

. . dTC .
and increasing after ty. Therefore I =0 at exactly one point. Hence we have shown
t

the uniqueness of the minimum point of TC.

2.5 Free Minimal Repair Warranty

In Equation (1.7) the consideration of warranty period and warranty costs are not
considered. In this section we are considering warranty.

The fraction of nonconforming items in a production run with length t denoted by ¢(z)is
given by :

0= ED(t)

Under the free minimal repair warranty, it is well-known Hou (2005) that the failure
process of a conforming (or nonconforming) item is a nonhomogenous process with
intensity 4,(¢) (orh,(t)). The expected post-sale warranty cost for a warranty period @

is:
[0 [0) Pt
W) =c, [(1 —q(t)) j h (t)d7 + q(t) j h, (r)dz} x— (2.15)
In this chapter we use ED(¢) = J. ; ) ~——Pf (x)dx
Hence the fraction of nonconforming items in a production run with length t denoted by

q(t)is given by :

ED(t) 0

q(t) = S (x)dx

o'——,
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Example:

Suppose A, (t) =kt™ and h,(t) = k,t™ where h,(¢)<h,(t) for t >0 denote the hazard

rate associated with conforming and nonconforming item, respectively. Furthermore
suppose that the time to failure is exponential distribution function. Assume K=150,
D=1200, P=1650, 7 =2.5, h=.75, s=.85, 2=0.5, k=1, k,=2, m,=2, m,=2, c,=1.5, ®=6.

Table 2: Free minimal repair warranty for Rahim and Hajailan (2006) Model

Rahim and
Hajailan (2006)
Model

Without Warranty

With Warranty

Optimal
production run
time, ¢

0.6293

0.5562

Cost

354.109

914.295

Note that if warranty is available the optimal production time is less than the case without
warranty. This will reduce the probability of being out of control and hence less
nonconforming items will be produced.

2.6 Sensitivity Analysis

In this section, a sensitivity analysis of the model is conducted to study the effect

of the different cost parameters on Rahim and Hajailan (2006) model. Table 2 gives the

values of the parameters used to perform the analysis. The effect of each parameter is

studied as well as the effect of simultaneous changes of two parameters. In addition, a

comparison of the basic model versus the sequential changes of the selected parameters is

made.
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Table 3: Values of the parameters used in the sensitivity analysis study for Model I

Parameter | Level 1 | Level 2 | Level 3

D 1,200 1,350 | 1,550
P 1,650 1,850 | 2,250
K 150 220 450

h 0.75 1.2 1.95
m 25 3.5 5.1

A 0.5 0.75 0.95
s 0.85 1.25 1.75

Exponential Distribution

Effect of the demand rate, D

Different values for the demand rate, D, are studied and presented in cases 1-3. As the
demand rate increases, the optimal production run time, ¢*, also increases to meet the
demand.

Effect of the production rate, P

The effects of changes in the production rate, P, are analyzed in cases 1, 4 and 5. An
increase in the production rate will decrease the production run time, but the total relevant
costs increase. If there is no constraint on the production run time, current results indicate

low production rates have low total costs.
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Effect of the setup cost, K

Different values for the setup cost, K, are presented in cases 1, 6 and 7. By increasing the
setup cost, the optimal production run time increases, so that the number of times the
machines are set up for production is minimized in order to reduce the total cost of

machine setups.

Effect of the holding cost, h

The effects of the holding cost, 4, are presented in cases 1, 8 and 9. If the holding cost
increases, the optimal production times tend to be smaller. So, if we produce smaller
quantities to meet the demand, there will be smaller quantities left in the storehouse, and

in turn will decrease the total holding cost.

Effect of shortage cost, ©
The effects of shortage cost, 7, are presented in cases 1, 10 and 11. By increasing the
shortage cost, the optimal production run time is decreased. This mean the TRC will be

enhanced by decreasing production run time, t, if the shortage cost is increased.

Effect of the process failure rate, A, when the time to failure is exponentially distributed.
The results of different values for the failure rate, 4, are presented in cases 1, 12 and 13.
As the failure rate of the production system increases, the optimal production run time
decreases. For this reason we will avoid having the system in the out-of-control state,

which in turn will contribute to the reduction of the total relevant costs.

Effect of rework cost, s
Cases 1, 14 and 15 present different values for the rework cost, s. If we increase s, ¢*

tends to be smaller. So, the percentage of having defective items will be smaller.
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Table 4: Effects of each parameter on the optimal production run time for Model I

Case Vp* Level t* TRC(t) T, T,
1 Basic Model 1 0.6293 354.11 0.1452 | 0.4841
2 2 0.7043 358.83 0.1625 | 0.5418
3 D 3 0.8222 358.51 0.1897 | 0.6325
4 P 2 0.5378 367.35 0.1241 | 0.4137
5 P 3 0.4187 385.48 0.0966 | 0.3221
6 K 2 0.7689 426.95 0.1774 | 0.5915
7 K 3 1.1236 604.06 0.2593 | 0.8643
8 h 2 0.5749 385.73 0.1865 | 0.3884
9 h 3 0.5249 420.88 0.2300 | 0.2949
10 T 2 0.6187 359.82 0.1092 | 0.5095
11 T 3 0.6097 364.82 0.0782 | 0.5315
12 A 2 0.5691 396.43 0.1313 | 0.4378
13 A 3 0.5343 426.25 0.1233 | 0.4110
14 s 2 0.5602 398.22 0.1293 | 0.4309
15 s 3 0.4983 447.67 0.1150 | 0.3833

In the following table, the effect of simultaneous changes of two parameters is also
presented. For example, consider Cases 1 and 2; if we increase # and D, the optimal
production run time tends to be larger. Where in case 3, when 4 and P increases, the
optimal run time decreases. These analyses show us the interaction between paired model

parameters.

35



Table 5: Effects of simultaneous changes of two parameters on the optimal production

run time for Model [

Pairs of Level of | Level of " "
Case parameters | factor1 | factor 2 t TRC(r)
1 Basic Model 1 1 0.6293 | 354.11
2 hD 2 2 0.6569 | 382.67
3 hP 2 2 0.4845 406.1
4 hK 2 2 0.7011 | 465.55
5 hm 2 2 0.5589 | 396.29
6 hA 2 2 0.5272 | 425.23
7 hs 2 2 0.5207 | 426.62
8 m D 2 2 0.6953 | 363.1
9 mP 2 2 0.5272 | 374.39
10 m K 2 2 0.7556 | 433.94
11 mA 2 2 0.5611 | 401.61
12 T s 2 2 0.5526 | 403.32
13 A D 2 2 0.6244 | 410.56
14 AP 2 2 0.4931 | 404.69
15 A K 2 2 0.6991 | 476.77
16 As 2 2 0.4967 | 454.23
17 sD 2 2 0.6112 | 413.22
18 sP 2 2 0.4876 | 405.78
19 sK 2 2 0.6849 | 480.03

In addition, in the following table the sensitivity analysis is comparing the basic model

versus the sequential and/or simultaneous changes to the selected factors. For example, in

case 2, when the demand rate D increases, * will also increase. However, in case 3, when

the production rate P, and the demand rate D increase, ¢* will decrease.

Table 6: Effects of sequential changes of the parameters on the optimal production run
time for Model I

Model parameters

Case Effects D P K h m A s t* TRC(t%)
1 Basic 1 (121|121 |1|1]| 06293 354.11
2 D 21111 |1]|1] 0.7043 | 358.83
3 P 212|111 |1]1| 05947 375.59
4 K 21212 |1|1|1]1)| 07264 452.95
5 h 21212121111 0.663 493.48
6 m 212|222 [|1]1]| 06444 507.01
7 A 2|2|2|2|2|2|1] 05945 | 55597
8 s 2|2|2|2|2|2|2]| 05304 | 624.34
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Chapter Ill : Model Il

3.1 Introduction

In this chapter we introduce a new structure for the percentage of defectives. In this model
the percentage of defectives when the process in control is ¢, = 0. When the process goes

out-of-control the percentage of defectives rate increases using an exponential function,
q,(t)=u +v(1 —e*b’). At t=0, qz(O): g, hence u=g,. On the other hand as t goes to o

q, (oo) =1, hencev =1—g¢,. Therefore in this model ¢, () = ¢, + (l -q, )(1 —e™ ) Note that

this model generalize the models of Rosenblatt and Lee (1986), Lee and Rosenblatt
(1989), Chung and Hou (2003), and Hou (2005). We call this; model II.

The number of defectives is given by:
B q,Pt if X>t
g PX +q,(0P(-X) if X<t

where x is the elapsed time until production process shifts and t is the production run
time in a production cycle.

Where the expected number of defectives is given by:

ED(1) = quPtf(x)dx + j(qlPx +4, () P(t = x))f (x)dx (3.1)

3.2 Nonconvexity of the Total Cost Function, TRC (T4, T5)

In this section we examine the convexity. We restrict the study to the case of exponential
distribution.
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We show the non-convexity of TRC through an example.

Example 1:
We choose the following values for the parameters of the problem; K=100, D = 500, P =
1000, == 0.3, h=0.1, s =2, A=0.5, q1=0.15. The Hessian at the point (T, T,) = (3.2, 9.6)

and its determinant is;

7.0122  —4.70655
=-27.7635
-4.70655 -0.800304

The Hessain is indefinite and hence the function TRC is not convex at this point.

In the next example we show that TRC is convex for another values for the problem
parameter and a different T; and T,.

Example 2:

The Hessain could be positive definite at some points. For example if we take K=150,

D=999, P=1000, n=2.5, h=0.75, s=10, A=0.5, q1=0.15 and (T;, T,) = (0.145237,
0.484121) we get the Hessian and its determinant, as given below;

2093.96 2089.99
2089.99 2091.18

‘ =10,797.4

The Hessian is positive definite and hence the function TRC is convex at this point.

These two examples illustrates the fact that TRC is in general nonconvex.

3.3 Free Minimal Repair Warranty

In Equation (1.7) the consideration of warranty period and warranty costs are not
considered. In this section we are considering warranty.

The fraction of nonconforming items in a production run with length t denoted by ¢(¢)is
given by:
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ED(f) I G PYf (x)dx+ { (¢,Px+ g, Ple = x))f (x)dx
A (3.2)
! Pt

The warranty cost W(t) is given by (2.15).

Example:

Suppose A, (t) =k,t™ and h,(t)=k,t™ where h (t)<h,(t) for t >0 denote the hazard
rate associated with conforming and nonconforming item, respectively. Furthermore
suppose that the time to failure is exponential distribution function. Assume K=150,
D=1200, P=1650, 7#=2.5, h=.75, s=.85, 2=0.5, k,=1, k,=2, m,=2, m,=2, ¢, =1.5, @=6,
ql1=0.15

Table 7: Free minimal repair warranty for Model II

Model 11 Without Warranty With warranty
Optimal
production run 0.692 0.6358
time, ¢
Cost 439.69 1,048.16

Note that if warranty is available the optimal production time is less than the case without
warranty. This will reduce the probability of being out of control and hence less
nonconforming items will be produced.

3.4 Sensitivity Analysis

Exponential Distribution

In this section, a sensitivity analysis of the model is conducted using Exponential
distribution as a time to failure to study the effect of the different cost parameters.
Warranty costs have not been considered in this section. We used a mean of 10, upper
specification limit and lower specification limit is 10 and 7 respectively. Also the variance

is equal 1. Table 6 gives the values of the parameters used to perform the analysis. The
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effect of each parameter is studied as well as the effect of simultaneous changes of two
parameters. In addition, a comparison of the basic model versus the sequential changes of

the selected parameters is made.

Table 8: Values of the parameters used in the sensitivity analysis study for Model 11

Parameter | Level 1 | Level 2 | Level 3

D 1,200 1,350 | 1,550
P 1,650 1,850 | 2,250
K 150 220 450

h 0.75 1.2 1.95
m 2.5 3.5 51

A 0.5 0.75 0.95
S 0.85 1.25 1.75

Effect of the demand rate, D
Different values for the demand rate, D, are studied and presented in cases 1-3. As the
demand rate increases, the optimal production run time, ¢*, also increases to meet the

demand.

Effect of the production rate, P

The effect of changes in the production rate, P, are analyzed in cases 1, 4 and 5. An
increase in the production rate will decrease the production run time, but the total costs
increase. If there is no constraint on the production run time, current results indicate low

production rates have low total costs.
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Effect of the setup cost, K

Different values for the setup cost, K, are presented in cases 1, 6 and 7. By increasing the
setup cost, the optimal production run times increase, so that the number of times to setup
the machines up for production is minimized in order to reduce the total setup cost.

Effect of the holding cost, h

The effects of the holding cost, 4, are presented in cases 1, 8 and 9. If the holding cost
increases, the optimal production times tend to be smaller. So, if we produce smaller
quantities to meet the demand, there will be a smaller quanties left in the storehouse and

in turn decrease the total holding cost.

Effect of the shortage cost, &
The effects of shortage costs, 7, are presented in cases 1, 10 and 11. By increasing the
shortage cost, the optimal production run time is decreased. This means the TRC will be

enhanced by decreasing production run time t if the shortage costs are increased.

Effect of the process failure rate, A when the time to failure is exponentially distributed.

The results of different values for the failure rate, 4, are presented in cases 1, 12 and 13.
As the failure rate of the production system increases, the optimal production run time
decreases. So, we will avoid having the system in the out-of-control state, which in turn

will contribute to the reduction of the total relevant costs.

Effect of the rework cost, s
Cases 1, 14 and 15 present different values for the rework cost, s. If we increase s, ¢*

tends to be smaller. So, the percentage of having defective items will be smaller.
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Table 9: Effect of each parameter on the optimal production run time for Model II

Case Vp* Level t* TRC(t*)
1 Basic Model 1 0.6920 | 439.69
2 D 2 0.7757 | 451.12
3 D 3 0.9000 | 459.17
4 P 2 0.5930 | 458.21
5 P 3 0.4601 | 485.24
6 K 2 0.8211 | 506.94
7 K 3 1.1373 | 677.62
8 h 2 0.6298 | 474.40
9 h 3 0.5718 | 512.80
10 m 2 0.68 445.97
11 m 3 0.6697 | 451.47
12 A 2 0.6041 | 473.87
13 A 3 0.5524 | 500.75
14 s 2 0.639 | 528.88
15 S 3 0.5905 | 637.59

In the following table, the effect of simultaneous changes of two parameters is also
presented. For example, consider Cases 1 and 2; if we increase & and D, the optimal
production run times tend to be larger. Where in case 3, when /4 and P increase, the
optimal run time decreases. These analyses show us the interaction between paired model

parameters.
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Table 10: Effects of simultaneous changes of two parameters on the optimal production
run time for Model I1

Pairs of Level of | Level of " "

Case parameters | factor 1 | factor 2 t TRC(F)
1 Basic Model 1 1 0.6920 | 439.69
2 hD 2 2 0.7232 | 477.38
3 h P 2 2 0.5300 | 500.77
4 h K 2 2 0.7494 | 548.19
5 hm 2 2 0.6112 | 485.96
6 hA 2 2 0.5617 | 504.51
7 hs 2 2 0.5902 | 561.18
8 m D 2 2 0.7658 | 455.83
9 m P 2 2 0.5805 | 465.97
10 m K 2 2 0.8072 | 514.40
11 T A 2 2 0.5961 | 479.37
12 mTs 2 2 0.6297 | 534.69
13 A D 2 2 0.6575 | 495.63
14 AP 2 2 0.5302 | 485.67
15 A K 2 2 0.7171 | 550.91
16 As 2 2 0.5455 | 572.55
17 sD 2 2 0.7009 | 555.21
18 sP 2 2 0.5571 | 543.53
19 sK 2 2 0.7545 | 601.90

Additionally, in the following table the sensitivity analysis is comparing the basic model
versus the sequential and/or simultaneous changes to the selected factors. For example, in
case 2, when the demand rate D increases, ¢* will also increase. However, in case 3, when
the production rate P and demand rate D increase, ¢* will decrease.

Table 11: Effects of sequential changes of the parameters on the optimal production run
time for Model II

Model parameters

Case Effects D P K h m A s t* TRC(t%)
1 Basic |1 1|11 |1]|1|1]| 06920 | 439.69
2 D 21|11 |1|1|1)| 07757 | 451.12
3 P 212|111 |1]|1] 06598 | 473.80
4 K 212 |2|1]1|1]|1] 0.7825 544.6
5 h 212 |2|2|1|1]|1] 07140 | 588.27
6 m 212|222 |1]|1] 06935 | 602.83
7 A 2|22 |2|2]2|1] 06212 | 642.21
8 s 212 |2|2|2|2]|2]| 05692 | 755.06
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Chapter IV : Model lll

4.1 Introduction

In this chapter we will discuss the imperfect production process where the rate of
defective items is determined by the probability of not meeting lower and upper
specifications limits. The process is in-control for a random period of time, X. During
this period the process mean and variance are fixed and are given by po and . The
process becomes out-of-control at time X and the mean changes linearly which variance

remains constant. Let t be the time spent while the process is out of control and 3 be the

rate of change in the mean, then the mean at 7 is given by , = u, + fr .

Lower Upper
specification specification
limit limit

(a)

Figure 13: The production process is in control
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Lower Upper
specification specification
Himit limit

(b)

Figure 14: The production process is out of control

If the process becomes out of control at time X = x > t, the number of defects is given by

USL
N=Pz(1— ] ¢(y,ﬂo)dyj (1)
LSt
Where y is a quality characteristic which follows a normal distribution, ¢, with mean p
when the process is in control. The quantity in parenthesis in eq. (4.1) represents the
probability of being out side the specification limit. When the process is out of control at
time X = x <t, then the number of defective parts t is given by;

N= PHl - o ﬂo)dyj +f [1 - Uf?(y,mdyjdr} @2)

LSL =0 LSL

The first term in eq. (4.2) represent the number of defectives when the process is in
control for duration x and the mean is .

The bracket within the second integral gives the percentage of defectives at time z where
USL

the mean sy, . Let@, =1- _[¢(Y>ﬂ,)d7. Then Pa,dr represents the number of
LSL

defectives in an infinitesimal intervald . The second integral times P represents the

number of defectives during the interval (t-x) where the process is out of control.

Hence the expected number of defective items during the production period t is given by:
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USL

ED(t) = Pt[l - [8(. 1, )dyJ(l ~F(0)+

LSL

P Hl = [o0na, )dyJ [ (1 - o0 ﬂ,)ddef%x)dx

LSL =0 LSL

(4.3)

then ED(t) simplifies to
ED(t) = P{ao (- F@®)+ M, (0)+ j f(x)tj.xardm’x} (4.4)

Where M(t) is the 1¥ moment of the density function f(x).

For the exponential distribution, (4.3) simplifies to

_ At t t—x
ED(t) = P{ao(l ; ]+ 2 j e ja,drdx} (4.5)
x=0 =0

The total cost function TC(t) is given by (1.7). In the next section we examine the
stationary points of this function.

4.2 Stationary Points of TRC

From (4.3) we have diED(t) = Pla,(1- F(1))+ j f(a,_ dx] (4.6)
t x=0
To obtain the partial derivative of ED(¢) with respect to 7; and 7, note that r = 7} + 7, hence
wzﬁED(z)xﬂzED'(z), i=land2 (4.7)
oT, dt oT,

i i

The partial derivatives of TRC(T},T,) are exactly as those obtained in Chapter 2 so they
are not repeated here. In Chapter 2 we showed that at a stationary point of TRC we have

tandT, =
h+rm h+rx

*

le

¢t . Substituting in TRC(7;,T,) we obtain:
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TC(t)=KD+h(P_D)t( i j+£ED(t)
Pt 2 h+r Pt

If the time to failure is exponentially distributed then TC(t) simplifies to:

_ -t t t—x
reqy = X2 P D)’( 7 j+£p | Sl | a [ e [aduix| (@48)
P 2 \hix 2 Je

dTC ~KD | h(P- D)z . SD
dt Pt? 20h+7m) Pt

(tED'(t) - ED(1)) (4.9)

Define g(t) =1t dLC, then
dt
gt)y=- kD, WP-D)x t* + SD(t—dED @ _ ED(T)j (4.10)
P 2(h+ ) dt

The necessary condition for t* to be optimal is g(t*)=0.

4.3 Nonconvexity of the TRC (T4, T»)

In this section we examine the convexity, or rather the lack of convexity of the cost
function. We restrict the study to the case of exponential distribution. However, our
conclusions apply to other distributions.

Exponential Distribution

The TC function is not convex. To show this we present an example. Choose the
following values for the cost parameters of the problem; K=100, D=1,200, P=1,650, n=1,
h=0.75, s=3. The parameter of the exponential distribution is A=0.5. When the process
becomes out of control the mean becomes p,=10+t, where T denotes the time since the
process became out of control. The quality characteristic is normally distributed with
mean 10 and variance 1. The lower and upper specification limits are 7 and 13
respectively. The plot of TC with those parameters is shown below. The graph of TC is
nonconvex.
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2 4 6 8 10 12 14

Figure 15: Graph of the Total cost function (t)

4.4 Free Minimal Repair Warranty

In Equation (1.7) the consideration of warranty period and warranty costs are not
considered. In this section we are considering warranty.

The fraction of nonconforming items in a production run with length t denoted by ¢(¢)is
given by :

ED(t 1-e™ 0 oar
q(t):p—t(){ao[ -~ J+1J.ei ja,drdx}/z

x=0 =0

The warranty cost W(t) is given by (2.15).

Example:
Let’s use the time to failure is exponential distribution function.

K=150, D=1200, P=1650, 7=2.5, h=.75, s=.85, 2=0.5, o=1, k,=1, k,=2, m;=2, m,=2,
c,=1.5, =6, o=1, no=10, U=no+3 o, L=pno-3 o.
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Table 12: Free minimal repair warranty for Model I11

Model III Without Warranty | With Warranty
Optimal
production run 0.91107 0.9083
time, ¢
Cost 241.216 756.02

Note that if warranty is available the optimal production time is less than the case without
warranty. This will reduce the probability of being out of control and hence less
nonconforming items will be produced.

4.5 Sensitivity Analysis

Exponential Distribution

In this section, a sensitivity analysis of the model is conducted using Exponential
distribution as a time to failure to study the effect of the different cost parameters.
Warranty costs have not been considered in this section. We used a mean of 10, upper
specification limit and lower specification limit is 10 and 7 respectively. Also the variance
is equal 1. Table 10 gives the values of the parameters used to perform the analysis. The
effect of each parameter is studied as well as the effect of simultaneous changes of two
parameters. In addition, a comparison of the basic model versus the sequential changes of

the selected parameters is made.
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Table 13: Values of the parameters used in the sensitivity analysis study for Model III

Parameter | Level 1 | Level 2 | Level 3

D 1,200 1,350 | 1,550
P 1,650 1,850 | 2,250
K 150 220 450

h 0.75 1.2 1.95
m 2.5 3.5 51

A 0.5 0.75 0.95
S 0.85 1.25 1.75

Effect of the demand rate, D
Different values for the demand rate, D, are studied and presented in cases 1-3. As the
demand rate increases, the optimal production run time, #*, also increases to meet the

demand.

Effect of the production rate, P

The effect of changes in the production rate, P, are analyzed in cases 1, 4 and 5. An
increase in the production rate will decrease the production run time, but the total costs
increase. If there is no constraint on the production run time, current results indicate low

production rates have low total costs.
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Effect of the setup cost, K
Different values for the setup cost, K, are presented in cases 1, 6 and 7. By increasing the
setup cost, the optimal production run times increase, so that the number of times to setup

the machines up for production is minimized in order to reduce the total setup cost.

Effect of the holding cost, h

The effects of the holding cost, 4, are presented in cases 1, 8 and 9. If the holding cost
increases, the optimal production times tend to be smaller. So, if we produce smaller
quantities to meet the demand, there will be a smaller quanties left in the storehouse and

in turn decrease the total holding cost.

Effect of the shortage cost, ©
The effects of shortage costs, 7, are presented in cases 1, 10 and 11. By increasing the
shortage cost, the optimal production run time is decreased. This means the TRC will be

enhanced by decreasing production run time t if the shortage costs are increased.

Effect of the process failure rate, A when the time to failure is exponentially distributed.

The results of different values for the failure rate, 4, are presented in cases 1, 12 and 13.
As the failure rate of the production system increases, the optimal production run time
decreases. So, we will avoid having the system in the out-of-control state, which in turn

will contribute to the reduction of the total relevant costs.

Effect of the rework cost, s
Cases 1, 14 and 15 present different values for the rework cost, s. If we increase s, ¢*

tends to be smaller. So, the percentage of having defective items will be smaller.
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Table 14: Effect of each parameter on the optimal production run time for Model 111

Case Vp* Level t TRC(t)

Basic Model 1 0.9109 | 241.2156
2 D 2 1.1699 | 210.4143
3 D 3 1.8299 | 139.7973
4 P 2 0.7199 | 273.1065
5 P 3 0.5099 | 314.1628
6 K 2 1.0999 | 291.8445
7 K 3 1.5499 | 417.8426
8 h 2 0.7699 | 285.1719
9 h 3 0.6599 | 330.8916
10 m 2 0.8809 | 249.4249
11 m 3 0.8569 | 256.5027
12 A 2 0.9089 | 241.4167
13 A 3 0.9069 | 241.5653
14 s 2 0.9089 | 242.7263
15 S 3 0.9049 244.612

In the following table, the effect of simultaneous changes of two parameters is also

presented. For example, consider Cases 1 and 2; if we increase & and D, the optimal

production run times tend to be larger. Where in case 3, when /4 and P increase, the

optimal run time decreases. These analyses show us the interaction between paired model

parameters.
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Table 15: Effects of simultaneous changes of two parameters on the optimal production
run time for Model I11

Pairs of Level of | Level of " "
Case parameters | factor1 | factor 2 t TRC(F)
1 Basic Model 1 1 0.9109 | 241.2156
2 hD 2 2 0.9949 | 248.1416
3 h P 2 2 0.6069 | 323.1267
4 hK 2 2 0.9319 | 344.9480
5 hm 2 2 0.7349 | 299.1908
6 hA 2 2 0.7699 | 285.2923
7 hs 2 2 0.7699 | 286.5942
8 m D 2 2 1.1319 | 217.4397
9 m P 2 2 0.6949 | 282.4558
10 m K 2 2 1.0639 | 301.7539
11 mA 2 2 0.8789 | 249.6065
12 mTs 2 2 0.8789 | 250.9140
13 A D 2 2 1.1590 | 210.9065
14 AP 2 2 0.7179 | 273.2034
15 AK 2 2 1.0949 | 292.2066
16 As 2 2 0.9049 | 243.0190
17 sD 2 2 1.1589 | 212.4133
18 sP 2 2 0.8179 | 274.5035
19 sK 2 2 1.0949 | 293.5358

Additionally, in the following table the sensitivity analysis is comparing the basic
model versus the sequential and/or simultaneous changes to the selected factors. For
example, in case 2, when the demand rate D increases, ¢* will also increase. However, in

case 3, when the production rate P and demand rate D increase, ¢* will decrease.

Table 16: Effects of sequential changes of the parameters on the optimal production run
time for Model 111

Model parameters

Case Effects D P K h m A s t* TRC(t%)
1 Basic |1 1|21 |1 |1]|1]|1]| 09109 | 241.2156
2 D 211|111 ]1|1] 11689 | 210.4141
3 P 212111 |1]|1] 08659 | 254.8370
4 K 212|211 |1]|1]| 1.0459 | 308.2517
5 h 212221 |1]|1] 08859 | 364.3614
6 m 212222 |1]|1] 0.8449 | 382.2690
7 A 2122 |2|2]2]|1]| 08439 | 382.4485
8 s 212 2|2|2|2]|2]| 08419 | 384.1796
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4.6 Comparison Among the Current and Proposed Models

Table 6 shows the percentages of defectives used in the literature as well as the models

proposed in this thesis namely, Model II and Model I1I. The parameters used to obtain ¢’

and the optimal cost are as follows: K=32, D=200, P= 400, n=2.5, h=0.08, A=0.1

Table 17: Models Parameters

Model Parameters

Rosenblatt and Lee (1986) =03

Lee and Rosenblatt (1989) v=4,1=10, 0=.05, a=0.15, b=1.0/.15

Chung and Hou Model (2003) s=10, a=05

s=10, q;=.15, q;=.65, =200

Hou Model (2005)
Rahim and Hajailan (2006) s=10, 3=1, alpha=2
Model I
— = = — — _ % _ _
Proposed Model IT s=10, =1, alpha=2, q;=.15, q=qi+(1-q1)*(1-Exp[-1 t])
— — = = + — - — =
Proposed Model I1I =10, 0=1, uo=10, U=po+3 0, L=pe-3 0, B=1,,51=1,

alpha=2, p-=1otB -
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Table 18: Optimal production run lengths and minimum average costs

Percentages of Defects .
Model In-Control Period Out-of-Control Period Shortage | Optimal ¢ Cost
Rosenblatt o+ p 1.1581 | 25.5313
and Lee 0 no
(1986) a+all-e™) 0.9 31.9
q Linear Restoration:
Lee an
1.43666 29.0849
Rosenblatt 0 o no E IR .
(1989) xponential Restoration:
1.43666 31.0028
Chung and
Hou Model 0 a yes 1.13644 28.3616
(2003)
Hou Model
Rahim and
Hajailan X
1-=
(2006) 0 . yes 0.4685 68.6542
Model I
Proposed it
Model 11 9 G =q+0-gl-¢”) | yes 0.8718 | 331.122
Proposed i T
_ 1—
Mool 11 ! £¢dy f[ ! ddy d yes | 12998 | 284238
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Chapter V : Summary and Future Research Direction

5.1 Summary

In this thesis we examine a model prepared by Rahim and Hajailan (2006). We
showed that the objective function is not convex. However, a unique minimum exist. We
also proposed a model which allows for defectives when the process is in control as well
as out of control. When the process out of control the number of defectives items is an
exponential function. This model generalizes the four well known models in the literature,
[Rosenblatt and Lee (1986), Lee and Rosenblatt (1989), Chung and Hou (2003), and Hou
(2005)].

In chapter 3 we introduced Model III which assumes that there are specification
limit for the quality characteristics. Therefore there are defectives even when the process
is in control. After random period of time the mean of quality characteristics changes
linearly with time. Hence the percentage of defectives increases as the process remains in

out of control. The objective function of this model is con-convex.

5.2 Possible Directions for Future Research

In this thesis we considered one type of products. A worthwhile extension is to
consider several products with a constraint on space availability. One may include an
inspection within the production cycle that involves cost. Based on the inspection
production may be halted if the process is found to be out of control or allowed to be
continue if it is in control. The problem in this case will be to find the optimal production

time and the optimal inspection point during production.
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Appendices

Appendix 1

The average inventory is given by:

1
_ E(T2+T'3)Imax
A ——
T

o 1 L. <

Substituting 7, = ——and 7; = —*in I we get
P-D D

- I’

] — max

20(1-D/P)

Imax =Q_Smax :TXD_SmaX =(%jx(P_D)_SmaX

;_1-D/P)-5,. ) _Q(1-D/P) o S,
20(1-D/P) 2 "™ 20(1-D/P)’
we know that S, =(P—D)T, and Q = Pt
t(P—-D) (P-D)T;
2t

I=

~(P-D)T; +

The holding cost is hl

Appendix 2

Backordering cost

LIXP=DI 4 (LD, (TNP-D)+TD

T 2T

B =

Pt
we know that DT, =(P-D)T,, and T = o then

I'(P-D) , (P=D)’'T? _T;(P-D)
2T 2TD 2t

2 —
The Backordering cost is = 7B = %;D)

B =
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